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Abstract. Mining, discovering, and integrating process-oriented services has 
attracted growing attention in the recent year. Workflow precedence graph and 
workflow block structures are two important factors for comparing and mining 
processes based on distance similarity measure. Some existing work has done 
on comparing workflow designs based on their precedence graphs. However, 
there lacks of standard distance metrics for comparing workflows that contain 
complex block structures such as parallel OR, parallel AND. In this paper we 
present a quantitative approach to modeling and capturing the similarity and 
dissimilarity between different workflow designs, focusing on similarity and 
dissimilarity between the block structures of different workflow designs. We 
derive the distance-based similarity measures by analyzing the workflow block 
structure of the participating workflow processes in four consecutive phases. 
We first convert each workflow dependency graph into a block tree by using 
our block detection algorithm. Second, we transform the block tree into a binary 
tree to provide a normalized reference structure for distance based similarity 
analysis. Third, we construct a binary branch vector by encoding the binary tree. 
Finally, we calculate the distance metric between two binary branch vectors. 
Our initial experience shows that this distance measure can be used as a 
quantitative and qualitative tool for understanding and detecting block structure 
similarity and dissimilarity between two workflow designs. It can be effectively 
combined with a workflow precedence based similarity analysis tool in process 
mining, process merging, and process clustering, and ultimately it can reduce or 
minimize the costs involved in design, analysis, and evolution of workflow 
systems. 
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1   Introduction 

Business process management has continued to attract attentions of both academics 
and industry. With the increasing interest and wide deployment of BPML, we see a 
growing demand for efficient business process management architectures and 
technologies that support enterprise transformation [7]. Effective enterprise 
transformation refers to strategic business agility in terms of how efficiently an 
enterprise can respond to its competitors and how timely an enterprise can anticipate 



new opportunities that may arise in the future. In the increasingly globalized 
economy, enterprises face complex challenges that require rapid and possibly 
continual transformations. As a result, more and more enterprises are focused on the 
strategic management of fundamental changes with respect to markets, products, and 
services [8]. Such transformation typically has a direct impact on the business 
processes of an enterprise. 
Fundamental to enabling the transformation of an enterprise is the development of 
novel tools and techniques for transforming the business processes of an enterprise. In 
this paper, we present a critical component to the problem of process transformation 
from a business process management point-of-view. Workflow precedence graph and 
workflow block structures are two important factors for comparing and mining 
business processes based on distance similarity measures. Although some existing 
work has done in comparing workflow designs based on their precedence graphs [GT 
tech report], there lacks of formal distance metrics for comparing workflows that 
contain complex block structures such as parallel OR, parallel AND. In this paper, we 
present a novel process difference analysis method using distance measures between 
block structure of two business processes. We present a quantitative approach to 
derive the distance-based similarity measures in four consecutive phases. We first 
convert each workflow dependency graph into a block tree by using our block 
detection algorithm. Then, we transform the block tree into a binary tree to provide a 
normalized reference structure for distance based similarity analysis. In the third 
phase, we construct a binary branch vector by encoding the binary tree. Finally, we 
calculate the distance metric between two binary branch vectors. The proposed 
difference analysis method achieves three distinct goals. First, by analyzing the block 
structures of process models, we present a quantitative process similarity metric to 
determine the relative distance between two process designs in terms of their block 
structure similarity. This similarity analysis facilitates not only the comparison of 
existing process models with each other, but also provides the flexibility to adapt to 
changes in existing business workflow processes. Second, the proposed method is 
quick and flexible, which reduces the cost of both the analysis and design phases of 
web service processes. Third, the proposed method enables the flexible deployment of 
process mining, discovery, and integration – all key features that are necessary for 
effective transformation of an enterprise. We argue that the block structure based 
distance measure can be effectively combined with a workflow precedence based 
similarity analysis tool [4] in process mining, process merging, and process 
clustering, and ultimately it can help to reduce or minimize the costs involved in 
design, analysis, and evolution of workflow systems.  

2. Process Definition Model 

The business process reference model (process model for short in the rest of the 
paper) consists of business process definitions and the specification of workflows 
among the processes with respect to data flow, control flow, and operational views 
[9]. We define a business process in terms of business activity patterns. An activity 
pattern consists of objects, messages, message exchange constraints, preconditions 
and postconditions [10], and is designed to specify the service actions and execution 
dependencies of the business process. We consider two types of activity patterns – 



elementary activity patterns and composite activity patterns [1, 5]. An elementary 
activity pattern is an atomic unit. A composite activity pattern consists of a one or 
more elementary activity patterns or other composite activity patterns.  

We define a business workflow as a collection of business activities connected by 
data flow and control flow, where each represents a business process. We use data 
flow among processes to define the data dependencies among processes within a 
given business workflow. We use control flow to capture the operational structure of 
the business workflow service, including the process execution ordering, the 
transactional semantics and dependencies of the workflow.  

Formally, each workflow service is specified in terms of process definitions. We 
can model each process definition using a directed graph, in which the nodes of the 
graph are activities. The process dependency graph captures information about how 
activities share information and how data flows from one activity to another. Due to 
the space constraint, in this paper we focus our discussion only on the dependency 
graph.  

Definition 1 (Dependency Graph, DG) A dependency graph DG is defined by a 
binary tuple <DN, DE>, where 
• 1 2{ , , ..., }nDN nd nd nd=  is a finite set of activity nodes where 1n ≥ . 

• 1 2{ , , ..., }mDE e e e=  is a set of edges, 0m ≥ . Each edge is of the form 

i jnd nd→ .  
Note that in the dependency graph formulation, self-edges are disallowed since 

edges are intended to denote data flow dependencies between different activities 
(nodes). Additionally, a dependency graph must be a connected graph. Unconnected 
nodes and isolated groups of nodes are disallowed in the graph, as isolated nodes or 
groups of nodes are considered a separate service process in our reference model. 
Two dependency graphs are said identical if the two graphs have the same set of 
nodes and the same set of edges. 

Given two workflow processes and their respective dependency graphs, there are 
numerous ways these two graphs may differ. Typically, it makes more sense to 
compare only those graphs that have sufficient similarity in terms of their dependency 
graphs. Consider two extreme cases: one is when the two dependency graphs have the 
same set of nodes and the other is when there is no common node between two 
graphs. By assigning 1 for the first case and 0 for the latter case, we define a 
comparability measure that indicates the ratio of common nodes in two graphs. One 
way to measure the extent of comparability between two graphs is to use a user-
controlled threshold, called δ-Comparability, which is set to be between 0 and 1. 
Because this value represents the ratio of common nodes over the union of all nodes 
in two graphs, the larger the value is, the greater degree of comparability between the 
two graphs. Note that δ value can not be 0 since δ = 0 means that there is no common 
node between two graphs, i.e., 1 2DN DN∩ ≠ ∅ . 



Definition 2 (δ-Comparability of DG) 
Let 1 1 1( , )DG DN DE=  and 2 2 2( , )DG DN DE=  be two dependency graphs, and δ 
be a user-defined control threshold. We say that DG1 and DG2 are δ-comparable if the 

condition 1 2

1 2

DN DN
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δ

∩
≥

∪
holds, where 0 1δ< ≤    

If we apply the δ-Comparability to the example graphs shown in Fig. 1 with δ=0.5, 
g0 and f1 are not comparable because there is no common node in the two graphs, and 
also g0 and f2 are not comparable because the number of common nodes is only one 
but the number of total 
nodes is 7, that is 
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. On the other hand, g0 
and g1 are δ-
comparable because all 
of the nodes in both 
graphs are common 
nodes. g0 and g2 are δ-comparable because there are 3 common nodes and the total 
number of nodes is 5, thus the two graphs satisfy the δ-comparability condition 
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 and δ = 0.5. 

3. Motivating Scenarios 

Given the process reference model, we consider two motivating scenarios that benefit 
from the difference analysis methodology introduced in this paper. Consider a 
scenario where a company has maintained a warehouse of existing processes used in 
various business locations. Process mining[2, 3]of the process warehouse can help the 
enterprise to discover interesting associations or classifications among business 
processes running at different locations or branches of the company. 
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Fig. 2. Process mining example 

In Fig. 2, we show a process warehouse that contains many types of processes (for 
example, g1, g2, g3, g4, g5).  A typical process mining scenario is the identification of 

A C B D A B C E A
B

D

A B C D

g0

A B C D

g0

g1 g2 g3

C

F G H I

f1

F G H I

f1

A G H I

f2

A G H I

f2

 
Fig. 1 Examples of δ-Comparability



the processes most similar to a baseline process template in the process warehouse. 
Given a query process and a comparability threshold δ-value, the process mining will 
identify (g3) the process that is most similar based on the comparability criterion. It is 
obvious that the concept of process similarity (or distance) is critical to the 
effectiveness of process mining. 

4. Block Structure in Workflow 

The first task in block structure based similarity analysis is to identify and extract 
structural patterns between two business processes. We assume that each business 
process and their process steps are described in terms of workflow and its activities in 
a precedence dependency graph. Our similarity comparison algorithm takes two 
workflow activity dependency graphs that satisfy δ-Comparability criteria as input 
and produces a block structure-based distance measure. Below we first introduce the 
concept of block types and then discuss the design of our block detection algorithm. 

4.1 Block Types 

If we use dependency graph in the process definition, the precedence relationships 
and existence of activities can be represented well. However, if there are splits in 
workflow (workflow denoting a parallel relationship), the dependency graph does not 
include the meaning completely. Thus, we need another representation method to 
measure parallel relationships. In this section the structure information that can be 
found in the dependency graph is used to define the distance measure between 
processes. 
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Fig. 3 Two example business processes represented in terms of workflow activities 

Fig. 3 provides an example of a parallel relationship in the process definition, in 
which there are properties other than precedence relationship. One of other properties 
is parallel relationship and this parallel relationship comprises the structure of a 
process by using a nested relationship. In order to compare the structure properties, it 
is necessary to define how a process is composed of basic structures. 

In order to represent the parallel relationship, the concept of block is introduced in 
this paper. A block is a unit of representation that can minimally specify the 
behavioral pattern of process flow. The behavioral patterns found in process models 
are classified into iterative, serial and parallel ones, each of which is illustrated in Fig. 
4. Our discussion in this paper is confined to such networks that can be built by 



combining those patterns. In this paper, the iterative block is not dealt with because it 
has less meaning in similarity of dependency and structure than serial and parallel. A 
serial pattern is shown in 
Fig. 4 (b). This pattern is 
simple in that it involves 
no iteration and has no 
split or merge in its task 
flow. But the serial 
block is related with the 
dependency measure 
which is discussed in the 
previous section. In this 
section, the parallel 
block is investigated in more detail. 

A parallel pattern is such a flow that a node splits into two or more branches, the 
branches proceed in parallel, and merge into a node. Fig. 4 (c) is an illustration of this 
kind of pattern. The pattern is further subdivided into four types: AND-, XOR-, and 
SOR-parallel. Although all the parallel patterns are different in terms of their 
semantics, they have the same graphical structure. This is because the graphical 
objects of nodes and arcs deal only with the split-and-merge relations of tasks. The 
semantics distinguishing the parallel patterns are usually specified on the split or 
merge nodes. 

4.2 Block Detection Algorithm 

Since a component task of a process can be a nested process, the structure relation can 
be represented as a block structure. So in this paper, a block detection algorithm is 
used in order to 
generate blocks in 
the process and 
the generated 
blocks are used in 
the development 
of distance 
measure. The 
block detection 
algorithm[5] 
searches serial 
block and parallel 
block alternately 
and modifies the 
original network 
to construct a 
block tree from a 
process 
definition. 
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Fig. 4. Block types 



In reference [5], the block detection algorithm finds a cycle in the process network 
but these cycles are not used in the distance measure because the cycle does not affect 
the structure of a process. After serial blocks and parallel blocks are found alternately, 
this algorithm finally ends with a single node that means the uppermost block in the 
block tree. Fig. 5 provides an example of transforming a process network into block 
structure by using the block detection algorithm. In the example, the cycle block is 
removed at first, and then serial block, AND-parallel block, serial block, XOR-
parallel block and serial block are generated. Since these blocks have hierarchy 
information, a tree can be made by combining the found blocks. 

Definition 3 (Block Tree) 
Let 1 1 1( , )DG DN DE=  be the input and T=(N, E, Root(T), label) be the output of 
block detection algorithm respectively. The output is called block tree N is a finite set 
of nodes, which include the DN1 and detected blocks. E is a binary relation on N 
where each pair (u,v)�E represents the parent-child relationship between two nodes u, 
v∈N. Node u is the parent of node v and v is one of the child nodes of u. Parent is 
nesting block and children are the nested components of the super block. There exists 
only one root note, denoted as Root(T)∈N, which has no parent. The root node is 
always serial block. Every other node of the tree has exactly one parent and it can be 
reached through a path of edges from the root. The nodes which have a common 
parent u (i.e., all the children of u) are siblings. |T| is the number of nodes in tree T, or 
the size of T.  
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Fig. 6 Block Trees of Fig. 3 

The block tree in Fig. 6 has a serial block B5 as root node, which has 5 components, 
A1, A2, B4, A11, and A12. These 5 components comprise first depth in the tree. Again a 
parallel block B4 has two components, B2 and B3, which are serial blocks and second 
depth in the tree. At third depth, a serial block B2 has three components, A3, B1, A9 
and a serial block B3 has three components, A4, A8, A10. Finally, three components A5, 
A6, A7 are at the fourth depth as children of a parallel block B1. 



5. Structural Similarity in Tree Format 

We have seen that block tree has two block types alternating serial and parallel as the 
depth increases in the previous section. So we can compare two block trees with the 
same block type (serial or parallel) in the same depth if we start from root node. We 
can define structural comparison by restricting the comparable depth in both block 
trees. 

Definition 4 (Structural Comparison by Depth d) 
If we have block trees T1=(N1, E1, Root(T1), label1), T2=(N2, E2, Root(T2), label2), the 
structural comparison by depth d is the block tree comparison from root node to depth 
d.  

5.1 Structural Similarity Measure 

The measure of similarity between two trees T1 and T2 has been well studied in 
combinatorial pattern matching. Most studies use edit distance to measure the 
dissimilarity between trees (notice that similarity computation is the dual problem of 
distance computation). [12] 

5.2 Binary Tree Representation of Forests (or Trees) 

Our proposed 
mapping of tree 
structures into a 
numeric vector 
space is based on 
the binary tree 
representation of 
rooted ordered 
labeled trees[11]: 

Definition 5 
(Binary Tree) 
A binary tree 
consists of a 
finite set of 
nodes. It is: 
1. an empty set. 

Or 
2. a structure 

constructed by 
a root node, the left subtree and the right subtree of the root. Both subtrees are 
binary trees, too.  
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Fig. 6. Normalized Binary Tree Representation 



There is a natural correspondence between forests and binary trees. The standard 
algorithm to transform a forest (or a tree) to its corresponding binary tree is through 
the left-child, right-sibling representation of the forest (tree): 
(i) Link all the siblings in the tree with edges.  
(ii) Delete all the edges between each node and its children in the tree except 

those edges which connect it with its first child.  
 
Note that the transformation does not change the labels of vertices in the tree. We 

can transform T1 and T2 of Fig. 6 into BIN(T1) and BIN(T2) shown in Fig 7, 
respectively. The binary tree representation is denoted as BIN(T) = (N, El, Er, Root(T), 
label) in our paper. 

A binary tree corresponding to a forest retains all the structure information of the 
forest. Particularly, in the binary tree representation, the original parent-child 
relationships between nodes, except the ones between each inner nodes and its first 
child, are removed. The removed parent-child relationships are replaced by the link 
edges between the original siblings. This property makes the transformed binary tree 
representation appropriate for highlighting the effect of the edit-based operations on 
original trees. 

6. A Structural Similarity Measure 

The key element of our algorithm is to transform rooted, ordered, labeled trees to a 
numeric multi-dimensional vector space equipped with the norm L1 distance. The 
mapping of a tree T to its numeric vector ensures that the features of the vector 
representation retain the structural information of the original tree. Furthermore, the 
tree-edit distance can be lower bounded by the L1 distance of the corresponding 
vectors. In this section, we present the transformation methods to get structural 
similarity measure. 

6.1 Vector Representation of Trees 

To encode the structural information we normalize the transformed binary tree 
representation BIN(T) of T. In BIN(T), for any node u, if u has no right (or left) child, 
we append a ε node (i.e., nodes labeled as ε do not exist in T) as u’s right (or left) 
child. Thus we make T a full binary tree in which all the original nodes have two 
children and all the leaves are labeled as ε (as in Fig. 7). The normalized binary tree 
representation is defined as ( ) ( { }, , , ( ( )), )l rBIN T N E E Root BIN T labelε= U , where ε 
denotes the appended nodes as well as their labels. To simplify the notation, in this 
paper u∈N represents the node as well as its label where no confusion arises. In order 
to quantify change detection in a binary tree, we define the binary branch on 
normalized binary trees: 

Definition 6 (Binary Branch)  
Binary branch (or branch for short) is the branch structure of one level in the binary 
tree. For a tree T, ∀u∈N there is a binary branch BiB(u) in BIN(T) such that 



( ) ( , , , ( ))
l ru u u uBiB u N E E Root T= , where 1 2{ , , }uN u u u= ( ; { }, 1,2iu N u N iε∈ ∈ =U ), 

1{ , }
lu lE u u= 〈 〉 , 2{ , }

ru rE u u= 〈 〉  and ( )uRoot T u=  in the normalized BIN(T).  
 
Assume that the universe of binary branches BiB() of all trees in the dataset 

composes alphabet Γ  and the symbols in the alphabet are sorted lexicographically 
on the string uu1u2. 
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Definition 7 (Binary Branch Vector) 
The binary branch vector BBV(T) of a tree T is a vector 1 2 | |( , ,..., )b b bΓ , with each 
element bi representing the number of occurrences of the ith binary branch in the tree. 
|Γ | is the size of the binary branch space of the dataset.  

 
We can first build an inverted file for all binary branches, as shown in Fig. 7 (a). 

An inverted file has two main parts: a vocabulary which stores all distinct values 
being indexed, and an inverted list for each distinct value which stores the identifiers 
of the records containing the value. The vocabulary here consists of all existing binary 
branches in the datasets. The inverted list of each component records the number of 
occurrences of it in the corresponding trees. The resulting vectors of our 
transformation for the block trees in Fig. 6 and the normalized binary trees in Fig. 7 
are shown in Fig. 7 (b). 

Based on the vector representation, we define a new distance of the tree structure 
as the L1 distance between the vector images of two trees: 

Definition 8 (Structural Distance) 
Let 1 1 2 | |( ) ( , ,..., )BBV T b b bΓ= , 2 1 2 | |( ) ( ' , ' ,..., ' )BBV T b b b Γ=  be the binary branch vectors 
of trees T1 and T2 respectively. The structural distance of T1 and T2 is 

| |
1 2 1

( , ) | ' |i ii
BDist T T b b

Γ

=
= −∑     

 
This structural distance has been proved that the distance properties met in 

reference [11]. And we can get the structural distance at depth 4 of Fig. 8 is 6. 



In this part, we analyze the time and space complexities of our vector construction 
method. In order to calculate running time complexity, we consider each step of the 
algorithm. Assume that the size of the dataset, i.e., the total number of tree data 
objects, is |D|. For record Ti, there are |Ti| nodes in it. The vocabulary of inverted file 
IFI is implemented by one hashing function. In order to traverse each node and insert 
the binary branch information of the current node into IFI, recursive function is called. 
Each time the new entries are appended at the end of the inverted list. So each update 
of IFI is of constant time complexity. Thus, the IFI construction is of linear 
complexity. As we store in IFI only the existing vocabulary of the dataset, the worst 
case is that all the nodes in the datasets have got different binary branches. Thus, the 
size of the vocabulary is at most | |

1
| |

D
ii

T
=∑ . In addition, each node in each tree has 

one corresponding entry in the inverted list. In total, the space complexity of IFI is 
also | |

1
( | |)

D
ii

O T
=∑ . To build the vector representation, the whole IFI has to be scanned 

once. So the time and space complexities of the whole vector construction algorithm 
are both | |

1
( | |)

D
ii

O T
=∑ . 

7. Conclusion and Future work 

We have presented a structural difference analysis methodology between process 
definitions. Although there can be many difference attributes in process definitions, 
structural characteristics as well as dependency information are most important 
factors to discriminate processes. This paper focuses on the structural characteristic as 
a distance measure. We first convert each workflow dependency graph into block tree 
by using block detection algorithm. Second, the block tree is transformed into binary 
tree to make a binary branch. Third, binary branch vector is generated by encoding 
binary branch. Finally, we calculate the distance metric between the binary branch 
vectors. The proposed difference analysis method achieves three distinct goals. First, 
by analyzing the attributes of process models, we can present a quantitative process 
similarity metric to determine the relative distance between process models. This 
facilitates not only the comparison of existing process models with each other, but 
also provides the flexibility to adapt to changes in processes. Second, the proposed 
method is fast and flexible, which reduces the cost of both the analysis and design 
phases of complex web service processes. Third, the proposed method enables the 
flexible deployment of process mining, discovery, and integration – all desirable 
functionality that are critical for fully supporting the effective transformation of an 
enterprise. The next research issue is to integrate structural distance into dependency 
distance in process definition. And we are interested in developing a prototype system 
that provides efficient implementation of various similarity analysis methods, 
including the dependency distance metric presented in this paper. 
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