
Process Mining by Measuring Process Block Similarity

Joonsoo Bae1, James Caverlee2, Ling Liu2, Bill Rouse2, Hua Yan2

1 Dept of Industrial & Sys. Eng., Chonbuk National Univ., South Korea

jsbae@chonbuk.ac.kr
2 College of Computing, Georgia Institute of Technology

{caverlee, lingliu, huayan}@cc.gatech.edu

Abstract. Mining, discovering, and integrating process-oriented services has
attracted growing attention in the recent year. Workflow precedence graph and
workflow block structures are two important factors for comparing and mining
processes based on distance similarity measure. Some existing work has done
on comparing workflow designs based on their precedence graphs. However,
there lacks of standard distance metrics for comparing workflows that contain
complex block structures such as parallel OR, parallel AND. In this paper we
present a quantitative approach to modeling and capturing the similarity and
dissimilarity between different workflow designs, focusing on similarity and
dissimilarity between the block structures of different workflow designs. We
derive the distance-based similarity measures by analyzing the workflow block
structure of the participating workflow processes in four consecutive phases.
We first convert each workflow dependency graph into a block tree by using
our block detection algorithm. Second, we transform the block tree into a binary
tree to provide a normalized reference structure for distance based similarity
analysis. Third, we construct a binary branch vector by encoding the binary tree.
Finally, we calculate the distance metric between two binary branch vectors.
Our initial experience shows that this distance measure can be used as a
quantitative and qualitative tool for understanding and detecting block structure
similarity and dissimilarity between two workflow designs. It can be effectively
combined with a workflow precedence based similarity analysis tool in process
mining, process merging, and process clustering, and ultimately it can reduce or
minimize the costs involved in design, analysis, and evolution of workflow
systems.

Keywords: Process Mining, Block Structure, Similarity
Topics: Process Discovery
Submission Category: Regular Paper

1 Introduction

Business process management has continued to attract attentions of both academics
and industry. With the increasing interest and wide deployment of BPML, we see a
growing demand for efficient business process management architectures and
technologies that support enterprise transformation [7]. Effective enterprise
transformation refers to strategic business agility in terms of how efficiently an
enterprise can respond to its competitors and how timely an enterprise can anticipate

new opportunities that may arise in the future. In the increasingly globalized
economy, enterprises face complex challenges that require rapid and possibly
continual transformations. As a result, more and more enterprises are focused on the
strategic management of fundamental changes with respect to markets, products, and
services [8]. Such transformation typically has a direct impact on the business
processes of an enterprise.
Fundamental to enabling the transformation of an enterprise is the development of
novel tools and techniques for transforming the business processes of an enterprise. In
this paper, we present a critical component to the problem of process transformation
from a business process management point-of-view. Workflow precedence graph and
workflow block structures are two important factors for comparing and mining
business processes based on distance similarity measures. Although some existing
work has done in comparing workflow designs based on their precedence graphs [GT
tech report], there lacks of formal distance metrics for comparing workflows that
contain complex block structures such as parallel OR, parallel AND. In this paper, we
present a novel process difference analysis method using distance measures between
block structure of two business processes. We present a quantitative approach to
derive the distance-based similarity measures in four consecutive phases. We first
convert each workflow dependency graph into a block tree by using our block
detection algorithm. Then, we transform the block tree into a binary tree to provide a
normalized reference structure for distance based similarity analysis. In the third
phase, we construct a binary branch vector by encoding the binary tree. Finally, we
calculate the distance metric between two binary branch vectors. The proposed
difference analysis method achieves three distinct goals. First, by analyzing the block
structures of process models, we present a quantitative process similarity metric to
determine the relative distance between two process designs in terms of their block
structure similarity. This similarity analysis facilitates not only the comparison of
existing process models with each other, but also provides the flexibility to adapt to
changes in existing business workflow processes. Second, the proposed method is
quick and flexible, which reduces the cost of both the analysis and design phases of
web service processes. Third, the proposed method enables the flexible deployment of
process mining, discovery, and integration – all key features that are necessary for
effective transformation of an enterprise. We argue that the block structure based
distance measure can be effectively combined with a workflow precedence based
similarity analysis tool [4] in process mining, process merging, and process
clustering, and ultimately it can help to reduce or minimize the costs involved in
design, analysis, and evolution of workflow systems.

2. Process Definition Model

The business process reference model (process model for short in the rest of the
paper) consists of business process definitions and the specification of workflows
among the processes with respect to data flow, control flow, and operational views
[9]. We define a business process in terms of business activity patterns. An activity
pattern consists of objects, messages, message exchange constraints, preconditions
and postconditions [10], and is designed to specify the service actions and execution
dependencies of the business process. We consider two types of activity patterns –

elementary activity patterns and composite activity patterns [1, 5]. An elementary
activity pattern is an atomic unit. A composite activity pattern consists of a one or
more elementary activity patterns or other composite activity patterns.

We define a business workflow as a collection of business activities connected by
data flow and control flow, where each represents a business process. We use data
flow among processes to define the data dependencies among processes within a
given business workflow. We use control flow to capture the operational structure of
the business workflow service, including the process execution ordering, the
transactional semantics and dependencies of the workflow.

Formally, each workflow service is specified in terms of process definitions. We
can model each process definition using a directed graph, in which the nodes of the
graph are activities. The process dependency graph captures information about how
activities share information and how data flows from one activity to another. Due to
the space constraint, in this paper we focus our discussion only on the dependency
graph.

Definition 1 (Dependency Graph, DG) A dependency graph DG is defined by a
binary tuple <DN, DE>, where
• 1 2{ , , ..., }nDN nd nd nd= is a finite set of activity nodes where 1n ≥ .

• 1 2{ , , ..., }mDE e e e= is a set of edges, 0m ≥ . Each edge is of the form

i jnd nd→ .
Note that in the dependency graph formulation, self-edges are disallowed since

edges are intended to denote data flow dependencies between different activities
(nodes). Additionally, a dependency graph must be a connected graph. Unconnected
nodes and isolated groups of nodes are disallowed in the graph, as isolated nodes or
groups of nodes are considered a separate service process in our reference model.
Two dependency graphs are said identical if the two graphs have the same set of
nodes and the same set of edges.

Given two workflow processes and their respective dependency graphs, there are
numerous ways these two graphs may differ. Typically, it makes more sense to
compare only those graphs that have sufficient similarity in terms of their dependency
graphs. Consider two extreme cases: one is when the two dependency graphs have the
same set of nodes and the other is when there is no common node between two
graphs. By assigning 1 for the first case and 0 for the latter case, we define a
comparability measure that indicates the ratio of common nodes in two graphs. One
way to measure the extent of comparability between two graphs is to use a user-
controlled threshold, called δ-Comparability, which is set to be between 0 and 1.
Because this value represents the ratio of common nodes over the union of all nodes
in two graphs, the larger the value is, the greater degree of comparability between the
two graphs. Note that δ value can not be 0 since δ = 0 means that there is no common
node between two graphs, i.e., 1 2DN DN∩ ≠ ∅ .

Definition 2 (δ-Comparability of DG)
Let 1 1 1(,)DG DN DE= and 2 2 2(,)DG DN DE= be two dependency graphs, and δ
be a user-defined control threshold. We say that DG1 and DG2 are δ-comparable if the

condition 1 2

1 2

DN DN

DN DN
δ

∩
≥

∪
holds, where 0 1δ< ≤

If we apply the δ-Comparability to the example graphs shown in Fig. 1 with δ=0.5,
g0 and f1 are not comparable because there is no common node in the two graphs, and
also g0 and f2 are not comparable because the number of common nodes is only one
but the number of total
nodes is 7, that is

1 2

1 2

1
0.5

7

DN DN

DN DN

∩
= <

∪
. On the other hand, g0
and g1 are δ-
comparable because all
of the nodes in both
graphs are common
nodes. g0 and g2 are δ-comparable because there are 3 common nodes and the total
number of nodes is 5, thus the two graphs satisfy the δ-comparability condition

1 2

1 2

3
0.5

5

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5.

3. Motivating Scenarios

Given the process reference model, we consider two motivating scenarios that benefit
from the difference analysis methodology introduced in this paper. Consider a
scenario where a company has maintained a warehouse of existing processes used in
various business locations. Process mining[2, 3]of the process warehouse can help the
enterprise to discover interesting associations or classifications among business
processes running at different locations or branches of the company.

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9
A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9
A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9

A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9
A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9 A1 A2

A3

A4

A11

A8 A10

A7

A6 A9

A1 A2

A3

A4

A11

A8

A7

A6

A5

g1 g2

g3 g5
g4

Process Warehouse of South Korea

A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9
A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9

δ- Value

Query Process

A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9

Selected Process

g3

A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9
A1 A2

A3

A4

A11

A8 A10

A7

A6

A5

A9

Selected Process

g3

Fig. 2. Process mining example

In Fig. 2, we show a process warehouse that contains many types of processes (for
example, g1, g2, g3, g4, g5). A typical process mining scenario is the identification of

A C B D A B C E A
B

D

A B C D

g0

A B C D

g0

g1 g2 g3

C

F G H I

f1

F G H I

f1

A G H I

f2

A G H I

f2

Fig. 1 Examples of δ-Comparability

the processes most similar to a baseline process template in the process warehouse.
Given a query process and a comparability threshold δ-value, the process mining will
identify (g3) the process that is most similar based on the comparability criterion. It is
obvious that the concept of process similarity (or distance) is critical to the
effectiveness of process mining.

4. Block Structure in Workflow

The first task in block structure based similarity analysis is to identify and extract
structural patterns between two business processes. We assume that each business
process and their process steps are described in terms of workflow and its activities in
a precedence dependency graph. Our similarity comparison algorithm takes two
workflow activity dependency graphs that satisfy δ-Comparability criteria as input
and produces a block structure-based distance measure. Below we first introduce the
concept of block types and then discuss the design of our block detection algorithm.

4.1 Block Types

If we use dependency graph in the process definition, the precedence relationships
and existence of activities can be represented well. However, if there are splits in
workflow (workflow denoting a parallel relationship), the dependency graph does not
include the meaning completely. Thus, we need another representation method to
measure parallel relationships. In this section the structure information that can be
found in the dependency graph is used to define the distance measure between
processes.

A1 A2

A3

A4

A11

A8 A10

A7

A5

A9

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9

g1 g2

Fig. 3 Two example business processes represented in terms of workflow activities

Fig. 3 provides an example of a parallel relationship in the process definition, in
which there are properties other than precedence relationship. One of other properties
is parallel relationship and this parallel relationship comprises the structure of a
process by using a nested relationship. In order to compare the structure properties, it
is necessary to define how a process is composed of basic structures.

In order to represent the parallel relationship, the concept of block is introduced in
this paper. A block is a unit of representation that can minimally specify the
behavioral pattern of process flow. The behavioral patterns found in process models
are classified into iterative, serial and parallel ones, each of which is illustrated in Fig.
4. Our discussion in this paper is confined to such networks that can be built by

combining those patterns. In this paper, the iterative block is not dealt with because it
has less meaning in similarity of dependency and structure than serial and parallel. A
serial pattern is shown in
Fig. 4 (b). This pattern is
simple in that it involves
no iteration and has no
split or merge in its task
flow. But the serial
block is related with the
dependency measure
which is discussed in the
previous section. In this
section, the parallel
block is investigated in more detail.

A parallel pattern is such a flow that a node splits into two or more branches, the
branches proceed in parallel, and merge into a node. Fig. 4 (c) is an illustration of this
kind of pattern. The pattern is further subdivided into four types: AND-, XOR-, and
SOR-parallel. Although all the parallel patterns are different in terms of their
semantics, they have the same graphical structure. This is because the graphical
objects of nodes and arcs deal only with the split-and-merge relations of tasks. The
semantics distinguishing the parallel patterns are usually specified on the split or
merge nodes.

4.2 Block Detection Algorithm

Since a component task of a process can be a nested process, the structure relation can
be represented as a block structure. So in this paper, a block detection algorithm is
used in order to
generate blocks in
the process and
the generated
blocks are used in
the development
of distance
measure. The
block detection
algorithm[5]
searches serial
block and parallel
block alternately
and modifies the
original network
to construct a
block tree from a
process
definition.

(a) Iterative block

A1 A2

A4

A3

A7

A6

A5

A9

A11

A8 A10

Start node

End node

A12

(b) Branch-water and parallel block

A1 A2

A4

A3

A7

A6

A5

A9

A11

A8 A10

A12

1.0 1.0

0.5

0.5 0.5 0.5

0.17

0.17

0.17

0.5

1.0 1.0

(c) Serial block

A1 A2

A4

A3 A9

A11

A8 A10

A12

1.0 1.0

0.5

0.5 0.5 0.5

0.5

1.0 1.0
B1

0.5

(d) Parallel block

A1 A2 A11 A12

1.0 1.0

0.5

1.0 1.0B2

0.5

B3

(e)Serial block

A1 A2 A11 A12

1.0 1.0 1.0 1.0
B4

1.0

(f) Final

B5

Fig. 5 Example of block generation

(c) Parallel block

...

(b) Serial block

. . .

(a) Iterative block

.

Fig. 4. Block types

In reference [5], the block detection algorithm finds a cycle in the process network
but these cycles are not used in the distance measure because the cycle does not affect
the structure of a process. After serial blocks and parallel blocks are found alternately,
this algorithm finally ends with a single node that means the uppermost block in the
block tree. Fig. 5 provides an example of transforming a process network into block
structure by using the block detection algorithm. In the example, the cycle block is
removed at first, and then serial block, AND-parallel block, serial block, XOR-
parallel block and serial block are generated. Since these blocks have hierarchy
information, a tree can be made by combining the found blocks.

Definition 3 (Block Tree)
Let 1 1 1(,)DG DN DE= be the input and T=(N, E, Root(T), label) be the output of
block detection algorithm respectively. The output is called block tree N is a finite set
of nodes, which include the DN1 and detected blocks. E is a binary relation on N
where each pair (u,v)�E represents the parent-child relationship between two nodes u,
v∈N. Node u is the parent of node v and v is one of the child nodes of u. Parent is
nesting block and children are the nested components of the super block. There exists
only one root note, denoted as Root(T)∈N, which has no parent. The root node is
always serial block. Every other node of the tree has exactly one parent and it can be
reached through a path of edges from the root. The nodes which have a common
parent u (i.e., all the children of u) are siblings. |T| is the number of nodes in tree T, or
the size of T.

B5

A3

A5 A6 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

B5

A3

A5 A6 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

B5

A3

A5 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

A8

B5

A3

A5 A7

A9 A4 A10

A1 A2 A11B4 A12

Serial Block

B2 B3

AND–Parallel Block

Serial Block Serial Block

B1

OR-Parallel Block

A8

Tree1 Tree2
Fig. 6 Block Trees of Fig. 3

The block tree in Fig. 6 has a serial block B5 as root node, which has 5 components,
A1, A2, B4, A11, and A12. These 5 components comprise first depth in the tree. Again a
parallel block B4 has two components, B2 and B3, which are serial blocks and second
depth in the tree. At third depth, a serial block B2 has three components, A3, B1, A9
and a serial block B3 has three components, A4, A8, A10. Finally, three components A5,
A6, A7 are at the fourth depth as children of a parallel block B1.

5. Structural Similarity in Tree Format

We have seen that block tree has two block types alternating serial and parallel as the
depth increases in the previous section. So we can compare two block trees with the
same block type (serial or parallel) in the same depth if we start from root node. We
can define structural comparison by restricting the comparable depth in both block
trees.

Definition 4 (Structural Comparison by Depth d)
If we have block trees T1=(N1, E1, Root(T1), label1), T2=(N2, E2, Root(T2), label2), the
structural comparison by depth d is the block tree comparison from root node to depth
d.

5.1 Structural Similarity Measure

The measure of similarity between two trees T1 and T2 has been well studied in
combinatorial pattern matching. Most studies use edit distance to measure the
dissimilarity between trees (notice that similarity computation is the dual problem of
distance computation). [12]

5.2 Binary Tree Representation of Forests (or Trees)

Our proposed
mapping of tree
structures into a
numeric vector
space is based on
the binary tree
representation of
rooted ordered
labeled trees[11]:

Definition 5
(Binary Tree)
A binary tree
consists of a
finite set of
nodes. It is:
1. an empty set.

Or
2. a structure

constructed by
a root node, the left subtree and the right subtree of the root. Both subtrees are
binary trees, too.

B5

A3

A5

A7

A9

A4 A8

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

ε

A10ε

B5

A3

A5

A7

A9

A4 A8

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

ε

A10ε

BIN(Tree2)BIN(Tree1)

A6

A7

ε

ε

B5

A3

A4 A10

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

A5 A9

A6

A7

ε

ε

B5

A3

A4 A10

A1

A2

A11

B4

A12

Serial

B2

B3

AND

Serial

Serial

B1 OR

ε

ε

ε

ε

ε

A5 A9

Fig. 6. Normalized Binary Tree Representation

There is a natural correspondence between forests and binary trees. The standard
algorithm to transform a forest (or a tree) to its corresponding binary tree is through
the left-child, right-sibling representation of the forest (tree):
(i) Link all the siblings in the tree with edges.
(ii) Delete all the edges between each node and its children in the tree except

those edges which connect it with its first child.

Note that the transformation does not change the labels of vertices in the tree. We

can transform T1 and T2 of Fig. 6 into BIN(T1) and BIN(T2) shown in Fig 7,
respectively. The binary tree representation is denoted as BIN(T) = (N, El, Er, Root(T),
label) in our paper.

A binary tree corresponding to a forest retains all the structure information of the
forest. Particularly, in the binary tree representation, the original parent-child
relationships between nodes, except the ones between each inner nodes and its first
child, are removed. The removed parent-child relationships are replaced by the link
edges between the original siblings. This property makes the transformed binary tree
representation appropriate for highlighting the effect of the edit-based operations on
original trees.

6. A Structural Similarity Measure

The key element of our algorithm is to transform rooted, ordered, labeled trees to a
numeric multi-dimensional vector space equipped with the norm L1 distance. The
mapping of a tree T to its numeric vector ensures that the features of the vector
representation retain the structural information of the original tree. Furthermore, the
tree-edit distance can be lower bounded by the L1 distance of the corresponding
vectors. In this section, we present the transformation methods to get structural
similarity measure.

6.1 Vector Representation of Trees

To encode the structural information we normalize the transformed binary tree
representation BIN(T) of T. In BIN(T), for any node u, if u has no right (or left) child,
we append a ε node (i.e., nodes labeled as ε do not exist in T) as u’s right (or left)
child. Thus we make T a full binary tree in which all the original nodes have two
children and all the leaves are labeled as ε (as in Fig. 7). The normalized binary tree
representation is defined as () ({ }, , , (()),)l rBIN T N E E Root BIN T labelε= U , where ε
denotes the appended nodes as well as their labels. To simplify the notation, in this
paper u∈N represents the node as well as its label where no confusion arises. In order
to quantify change detection in a binary tree, we define the binary branch on
normalized binary trees:

Definition 6 (Binary Branch)
Binary branch (or branch for short) is the branch structure of one level in the binary
tree. For a tree T, ∀u∈N there is a binary branch BiB(u) in BIN(T) such that

() (, , , ())
l ru u u uBiB u N E E Root T= , where 1 2{ , , }uN u u u= (; { }, 1,2iu N u N iε∈ ∈ =U),

1{ , }
lu lE u u= 〈 〉 , 2{ , }

ru rE u u= 〈 〉 and ()uRoot T u= in the normalized BIN(T).

Assume that the universe of binary branches BiB() of all trees in the dataset

composes alphabet Γ and the symbols in the alphabet are sorted lexicographically
on the string uu1u2.

BBV(Tree1)

BBV(Tree2)

B1
A5
A9

.

.

.

B2
A3
B3

.

.

.

B3
A4
A8

.

.

.

B4
B2
A11

.

.

.

B5
A1
ε

.

.

.

A1
ε

A2

.

.

.

A2
ε

B4

.

.

.

A3
ε

B1

.

.

.

A5
ε

A6

.

.

.

A6
ε

A7

.

.

.

1 1 1 1 1 1

111111

A8
ε

A10

.

.

.

A11
ε

A12

.

.

.

1 1

1 1 1

1

1

1

B3
A4
A10

.

.

.

A5
ε

A7

.

.

.

1

1

Tree2

Tree1

1 1 1 1 1 1......0 1 1 1 ...

0111111 1 10 ...

0 1...... ...0 1 ...

101 1 ...

(a) Inverted File

(b) Binary Branch Vectors
Fig. 7 Binary Branch Vector Representation

Definition 7 (Binary Branch Vector)
The binary branch vector BBV(T) of a tree T is a vector 1 2 | |(, ,...,)b b bΓ , with each
element bi representing the number of occurrences of the ith binary branch in the tree.
|Γ | is the size of the binary branch space of the dataset.

We can first build an inverted file for all binary branches, as shown in Fig. 7 (a).

An inverted file has two main parts: a vocabulary which stores all distinct values
being indexed, and an inverted list for each distinct value which stores the identifiers
of the records containing the value. The vocabulary here consists of all existing binary
branches in the datasets. The inverted list of each component records the number of
occurrences of it in the corresponding trees. The resulting vectors of our
transformation for the block trees in Fig. 6 and the normalized binary trees in Fig. 7
are shown in Fig. 7 (b).

Based on the vector representation, we define a new distance of the tree structure
as the L1 distance between the vector images of two trees:

Definition 8 (Structural Distance)
Let 1 1 2 | |() (, ,...,)BBV T b b bΓ= , 2 1 2 | |() (' , ' ,..., ')BBV T b b b Γ= be the binary branch vectors
of trees T1 and T2 respectively. The structural distance of T1 and T2 is

| |
1 2 1

(,) | ' |i ii
BDist T T b b

Γ

=
= −∑

This structural distance has been proved that the distance properties met in

reference [11]. And we can get the structural distance at depth 4 of Fig. 8 is 6.

In this part, we analyze the time and space complexities of our vector construction
method. In order to calculate running time complexity, we consider each step of the
algorithm. Assume that the size of the dataset, i.e., the total number of tree data
objects, is |D|. For record Ti, there are |Ti| nodes in it. The vocabulary of inverted file
IFI is implemented by one hashing function. In order to traverse each node and insert
the binary branch information of the current node into IFI, recursive function is called.
Each time the new entries are appended at the end of the inverted list. So each update
of IFI is of constant time complexity. Thus, the IFI construction is of linear
complexity. As we store in IFI only the existing vocabulary of the dataset, the worst
case is that all the nodes in the datasets have got different binary branches. Thus, the
size of the vocabulary is at most | |

1
| |

D
ii

T
=∑ . In addition, each node in each tree has

one corresponding entry in the inverted list. In total, the space complexity of IFI is
also | |

1
(| |)

D
ii

O T
=∑ . To build the vector representation, the whole IFI has to be scanned

once. So the time and space complexities of the whole vector construction algorithm
are both | |

1
(| |)

D
ii

O T
=∑ .

7. Conclusion and Future work

We have presented a structural difference analysis methodology between process
definitions. Although there can be many difference attributes in process definitions,
structural characteristics as well as dependency information are most important
factors to discriminate processes. This paper focuses on the structural characteristic as
a distance measure. We first convert each workflow dependency graph into block tree
by using block detection algorithm. Second, the block tree is transformed into binary
tree to make a binary branch. Third, binary branch vector is generated by encoding
binary branch. Finally, we calculate the distance metric between the binary branch
vectors. The proposed difference analysis method achieves three distinct goals. First,
by analyzing the attributes of process models, we can present a quantitative process
similarity metric to determine the relative distance between process models. This
facilitates not only the comparison of existing process models with each other, but
also provides the flexibility to adapt to changes in processes. Second, the proposed
method is fast and flexible, which reduces the cost of both the analysis and design
phases of complex web service processes. Third, the proposed method enables the
flexible deployment of process mining, discovery, and integration – all desirable
functionality that are critical for fully supporting the effective transformation of an
enterprise. The next research issue is to integrate structural distance into dependency
distance in process definition. And we are interested in developing a prototype system
that provides efficient implementation of various similarity analysis methods,
including the dependency distance metric presented in this paper.

Acknowledgments. The first author was supported by the Korea Research Foundation Grant
(KRF-2004-003-D00477).

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros, “Workflow
Patterns,” Distributed and Parallel Databases, 14(3), pages 5-51, July 2003.

2. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G. & Weijters.
A.J.M.M. (2003). Workflow Mining: A Survey of Issues and Approaches, Data and
Knowledge Engineering. 47(2), 237-267, 2003

3. van der Aalst, W.M.P., Weijters, A.J.M.M., & Maruster, L. (2004). Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data
Engineering. 16(9), pp. 1128-1142, 2004

4. Bae, J., Caverlee J., Liu L., Rouse B., “Process Mining, Discovery, and
Integration using Distance Measures,” Technical Report GT-CSS-23-2006, Apr.
2006.

5. Bae, J., Bae, H., Kang, S., Kim, Y.: Automatic control of workflow process using ECA
rules. IEEE Trans. on Knowledge and Data Engineering, vol.16, no.8 (2004) 1010-1023.

6. Bunke, H., Shearer, K.: A Graph Distance Metric based on the Maximal Common
Subgraph. Pattern Recognition Letters, vol.19, issues 3-4, (1998) 255-259.

7. Hammouda, K.M., Kamel, M.S.: Efficient Phrase-Based Document Indexing for Web
Document Clustering. IEEE Transactions on Knowledge and Data Engineering, vol.16,
no.10 (2004) 1279-1296.

8. Rouse, W. B., “A Theory of Enterprise Transformation,” Systems Engineering, vol. 8, no. 4,
2005.

9. Rush, R., Wallace, W.A., “Elicitation of knowledge from multiple experts using network
inference,” IEEE Transactions on Knowledge and Data Engineering, vol. 9, no. 5 (1997)
688-698.

10. WfMC, Workflow Management Coalition Workflow Standard Process Definition Interface
-- XML Process Definition Language, Document Number WFMC-TC-1025 Version 1.13,
September 7, 2005

11. Yang, R., Kalnis, P, Tung, A., ”Similarity Evaluation on Tree-structured Data,” ACM
SIMOD 2005, June 14-16, 2005, pp. 754-765

12. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance between
Trees and Related Problems. SIAM Journal of Computing, vol.18, no.6 (1989)
1245-1262.

