Distributed Query Sampling:
A Quality-Conscious Approach”

Joonsoo BaeT

James Caverlee Ling Liu
Georgia Institute of Georgia Institute of Chonbuk National University
Technology Technology Jeonju, Jeonbuk, 561-756,

Atlanta, GA, 30332, USA
caverlee@cc.gatech.edu

ABSTRACT

We present an adaptive distributed query-sampling framework that
is quality-conscious for extracting high-quality text database sam-
ples. The framework divides the query-based sampling process into
an initial seed sampling phase and a quality-aware iterative sam-
pling phase. In the second phase the sampling process is dynam-
ically scheduled based on estimated database size and quality pa-
rameters derived during the previous sampling process. The unique
characteristic of our adaptive query-based sampling framework is
its self-learning and self-configuring ability based on the overall
quality of all text databases under consideration. We introduce
three quality-conscious sampling schemes for estimating database
quality, and our initial results show that the proposed framework
supports higher-quality document sampling than existing approaches.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]; H.3.1 [Content Analysis and Indexing]

General Terms: Algorithms, Experimentation

Keywords: adaptive, sampling, quality, distributed IR

1. INTRODUCTION

In a variety of contexts, from digital libraries to Web databases,
there are a large number of distributed text databases for which
query-based access is the primary means of interaction. Since many
databases are autonomous, offer limited query capability, and may
be unwilling to allow complete access to their entire archives, query-
based sampling mechanisms have become a popular approach for

*This research is partially supported by NSF CNS, NSF ITR, IBM
SUR grant, and HP Equipment Grant. Any opinions, findings, and
conclusions or recommendations expressed in the project material
are those of the authors and do not necessarily reflect the views of
the sponsors.

T\work performed while visiting Georgia Tech.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SGIR 06, August 6-10, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

Atlanta, GA, 30332, USA
lingliu@cc.gatech.edu

South Korea

jsbae@chonbuk.ac.kr

collecting document samples. The sampling-based approach has
garnered previous research attention and shown success in several
contexts, including distributed information retrieval, database se-
lection, database categorization, and peer-to-peer information re-
trieval (e.g., [5, 15, 18, 25]).

There are three key challenges for using a sampling-based ap-
proach to analyze distributed text databases. First, the approach
must understand the query interface of each database for effectively
sampling from the space of all documents available at the database
[how to sample]. This entails parsing the query interface, auto-
matically filling out the query interface, and selecting appropriate
queries to probe the target databases. Second, given the rate of
change and evolution of many distributed text databases, we need
to consider the appropriate sampling schedule to maintain sample
freshness [when to sample]. Finally, given realistic network con-
straints and the size and growth rate of distributed text databases,
we require an approach for knowing what to sample from each
database [what to sample].

While there have been some previous efforts to study how to
sample (e.g., [4, 24]) and when to schedule such samples (e.g.,
[13]), we provide the first comprehensive investigation of the prob-
lem of what to sample from each text database. Concretely, given
a set of n distributed databases, each of which provides access
primarily through a query-based mechanism, and given limited re-
sources for sampling all » databases, can we identify an effective
strategy for extracting high-quality samples from the n databases?
We refer to this as the distributed query-sampling problem.

In this paper, we present an adaptive distributed query-sampling

framework that is quality-conscious for extracting high-quality database

samples. The framework divides the query-based sampling process
into an initial seed sampling phase and a quality-aware iterative
sampling phase. In the second phase the sampling process is dy-
namically scheduled based on estimated database size and quality
parameters derived during the previous sampling process.

2. BASIC REFERENCE MODEL

Before introducing the distributed query-sampling framework,
we first describe the basic reference model used in this paper.

We consider a text database to be a database that is composed
primarily of text documents and that provides query-based access
to these documents either through keyword search or more ad-
vanced search operators. Examples of text databases include Deep
Web data sources, digital libraries, and legacy databases searchable
only through query-based mechanisms.

We consider a universe of discourse I/ consisting of n text databases:

U = {D1,Do,...,Dy,} where each database produces a set of

documents in response to a query. A text database D is described
by the set of documents it contains: D = {doci,docs, - --}. We
denote the number of documents in D as |D|. We denote the set of
terms in D as the vocabulary V' of D. The number of unique terms,
denoted by |V, is referred to as the vocabulary size of the database
D. We also track the following statistics: c¢(¢, D) denotes the count
of documents in D each term ¢ occurs in; and f (¢, D) denotes the
frequency of occurrence of each term ¢ across all documents in D
(i.e., how many times the term appears in the text database).

A document sample from database D, denoted by D, consists
of a set of documents from D. We use |D,| to denote the num-
ber of documents in the sample D, where typically |Ds| < |D|.
We refer to the set of terms in D as the sample vocabulary V; of
D,. The number of unique terms |V;| is referred to as the sam-
ple vocabulary size. We also track the following statistics for each
sample D;: c(t, D) denotes the count of documents in D, each
term ¢ occurs in; and f (¢, Ds) denotes the frequency of occurrence
of each term ¢ across the sampled documents in D;.

2.1 Query-Based Sampling

To support database sampling, Callan and his colleagues [4, 3]
have previously introduced the query-based sampling approach for
generating estimates of text databases by examining only a fraction
of the total documents. The query-based sampling algorithm works
by repeatedly sending one-term keyword queries to a text database
and extracting the response documents:

Steps of Query-Based Sampling from a Database D

: Initialize a query dictionary Q.

: Select a one-term query ¢ from Q.

> Issue the query g to the database D.

: Retrieve the top-m documents from D in response to q.

: [Optional] Update @ with the terms in the retrieved documents.
: Goto Step 2, until a stopping condition is met.

Critical factors impacting the performance of Query-Based Sam-
pling algorithms include the choice of the query dictionary @, the
query selection algorithm, and the stopping condition. The optional
step 5 allows the algorithm to learn a database-specific query dic-
tionary as a source of queries after the first successful query from
the initial query dictionary. Previous research [4, 3] has shown
that document samples extracted by Query-Based Sampling can be
of high quality based on a number of quality metrics. Concretely,
these studies show that document samples consisting of a fairly
small number of documents (e.g., 300) are of high quality over text
databases consisting of millions of unique documents.

SOOI WN B

2.2 Sampling From Distributed Text Databases

The problem of distributed query sampling is to determine what
to sample from each of the n text databases under a given sam-
pling resource constraint. To simplify the discussion, we assume
that there are uniform sampling costs from each database, and that
the distributed query sampling algorithm may sample at most a to-
tal of S documents from the n databases. Hence, the goal of the
distributed query-sampling framework is to identify the optimal al-
location of the .S documents to the n databases.

Naive Solution — Uniform Sampling: The simplest sampling frame-
work is to uniformly allocate the S sample documents to each
database, meaning that for each database an equal number of docu-
ments will be sampled, i.e. | S/n]. The uniform approach is fairly
standard and has been widely adopted, e.g., [12, 14, 20, 25]. Such a
uniform allocation is indifferent to the relative size of each database
or the relative quality of the document samples. We argue that the
uniform approach misses the relative quality of each database sam-
ple with respect to the entire space of sampled databases.

Table 1: Sampling Notation

S total number of sample documents

Sseed total number of sample documents for Seed Sampling
Sdyn total number of sample documents for Dynamic Sampling
Sseed(Di) number of sample documents allocated for Seed Sampling

of database D;

number of sample documents allocated for Dynamic
Sampling of database D in iteration j

Sseed(Di) + E;nzl sd’yn(Div 7)

estimated total number of sample documents that should
be allocated to database D;

sdyn(Diyj)

stot(D;)
5(Dy)

3. ADAPTIVE ARCHITECTURE FOR
DISTRIBUTED QUERY-SAMPLING

In this section we introduce a distributed and adaptive query-
sampling framework and examine three quality-conscious sampling
schemes that estimate critical database size and vocabulary param-
eters for guiding the sampling process. The proposed adaptive sam-
pling framework dynamically determines the amount of sampling
at each text database based on an analysis of the relative merits of
each database sample during the sampling process.

3.1 Adaptive Sampling Steps: An Overview

The adaptive sampling approach to the distributed query sam-
pling problem divides the sampling process into three steps:
1. Seed Sampling: In this step, we collect an initial seed sam-
ple from each database to bootstrap the iterative distributed query-
sampling process. A portion of the total sample documents S is
allocated for seed sampling, denoted by Sseeq. One simple ap-
proach to selecting a seed sample is to use the uniform allocation
of S to n databases under consideration, such that each database
D; (i = 1,...,n) is sampled using Query-Based Sampling until
Sseed(Di) = Sseea/n documents are extracted.*
2. Dynamic Sampling Allocation: This step utilizes the seed
samples collected from each database to estimate various size and
quality parameters of each participating database. The remaining
number of sample documents is denoted by Sy, where Sqy, =
S — Sseea. The adaptive sampling can be conducted in m iter-
ations and in each iteration, Sg,,/m sample documents are dy-
namically allocated to n databases based on a quality-conscious
sampling scheme. We denote the number of sample documents al-
located to database D; in iteration j as sqyn(Ds, 7).
3. Dynamic Sampling Execution: In this step, the n databases
are sampled according to the documents allocated by the Dynamic
Sampling Allocation step using Query-Based Sampling. In the case
of m > 1, steps 2 and 3 will be iterated m times. At the end of the
Dynamic Sampling Execution step, we will have sampled for each
database D; a total number of documents, denoted by s¢0:(D;),
such that Stot(Di) = Sseed(Di) + z;nzl de7L(D’i7j)-

Table 1 summarizes the notation introduced in this section.

3.2 Quality-Conscious Sampling Schemes

In this section, we describe three quality-conscious sampling
schemes. Each scheme recommends for each D; a total number
of documents to sample, denoted by §(D;), which is designed to
be a close approximation of what would be recommended if com-
plete information about each database were available, denoted by
s(Ds). We then discuss how to find the dynamic sampling alloca-
tion sayn (Ds, j) for each database based on §(D;).

twe require that all sample sizes be integers since they correspond to the
number of documents to be sampled from each database. In the rest of the
paper, we shall omit the rounding of sample sizes for presentation purposes.

3.21 Schemel: Proportional Document Ratio [PD]

The first proposed quality-conscious sampling scheme is based
on the relative size of each database. Instead of simply collecting
the same number of documents, this scheme seeks to collect the
same proportion of documents from each database, say 5% of the
documents at D+, 5% of the documents at D-, and so on.

If we assume that the sampling framework has access to the total
number of documents |D;| in each database D;, ¢ = 1, ..., n, then
the proportion of documents to be sampled from each database is
governed by the total documents available for sampling and the to-
tal size of the databases to be sampled: ratiopp = S/ Y ., | D

Hence, the goal of the Proportional Document Ratio (PD) scheme
is to sample the same fraction ratiop p from each database. So, the
total number of documents to be extracted from database D; is:

5
Z;L:1 |DJ'|

Of course, the actual number of documents in each database may
not be known a priori. As a result, the PD scheme will typically
rely on an estimate |D;| of the number of documents in database
D;, instead of the actual size |D;|. Hence, we must estimate the
fraction of documents to be extracted from each database with:

SPD(DZ') = ratiopp - |D7,| = . |D7,|

ratio S
PD = <, =&
Z?:1 |D2|

As a result, we may approximate spp (D;) with the estimate:

— ~ S
s D;) = ratio -|D;| = ——— -
po(Di) o - |Dil SR

To find $pp (D;), we estimate the database size by analyzing the
document samples extracted in the Seed Sampling step and in pre-
vious iterations of the Dynamic Sampling step. There have been
two previous efforts to estimate the number of documents in a text
database: (1) the capture-recapture algorithm in [17]; and (2) the
sample-resample algorithm in [26]. Both approaches rely on ana-
lyzing a document sample, but the sample-resample approach has
been shown to be more accurate and less expensive in terms of
queries and the number of documents necessary to sample.

The sample-resample technique assumes that the database re-
sponds to queries by indicating the total number of documents in
which the query occurs (although only a fraction of this total will
be available for download by the client). The “sample” phase col-
lects a document sample, then the “resample” phase issues a hand-
ful of additional queries and collects the c(¢, D) statistics for these
queries. The driving assumption of this technique is that the frac-
tion of sampled documents that contain a term is the same as the
fraction of all documents in the database that contain the same
term, i.e., c(t, Ds)/|Ds| = ¢(t, D)/|D|, where the database pro-
vides ¢(t, D) or a reasonable approximation. Hence, |D| = | D] -
c(t, D)/c(t, Ds). This database size estimate may be further re-
fined by considering a set of probe terms and taking the average. In
practice, we use a weighted random selection of resample probes
based on the term frequency in the sampled documents and collect
c(t, D) statistics for all queries.

3.22 Scheme?2: Proportional Vocabulary Ratio[PV]

Instead of collecting the same proportion of documents from
each database, the Proportional Vocabulary Ratio (PV) scheme seeks
to sample the same vocabulary proportion from each database, say
10% of the vocabulary terms at D, 10% at D5, and so on. Unlike

| D

the first scheme, the PV scheme is intuitively more closely linked
to the quality of the database samples, since it emphasizes the pres-
ence of unique terms, and not just document quantity.

According to Heaps Law [2], a text of n words will have a vo-
cabulary size of Kn®, where K and 3 are free parameters and typ-
ically 0.4 < 8 < 0.6. In the context of distributed text databases,
documents sampled earlier in the sampling process will tend to con-
tribute more new vocabulary terms than will documents that are
sampled later in the process.

Suppose we randomly examine documents in a database and then
plot the number of documents examined versus the vocabulary size,
yielding a Heaps Law curve. To identify the number of sample
documents spy (D;) necessary to extract ratiopyv - |V;| vocabu-
lary terms, we need only consult the Heaps Law curve to identify
spv(D;). Due to the inherently random nature of the sampling
process, this technique provides an average-case estimate of the
number of documents necessary to achieve a particular fraction of
all vocabulary terms.

In practice, the sampling framework must rely only on the previ-
ously sampled documents to estimate the vocabulary fraction and
the corresponding number of documents necessary to achieve the
fraction ratiopv - |V;]. To estimate the number of documents nec-
essary requires that we carefully inspect the previously sampled
documents. We may begin by approximating the total size of the
vocabulary |V'| of D based on a sample of documents D by relying
on a version of Heaps Law adapted to the distributed text database
domain: |V| = K (f(D))? where f(D) = > ey f(t, D) refers
to the total frequency of all terms in D. The key for the vocabulary
estimation is to identify the appropriate values for K, 3, and f(D)
based on the sample documents only. Hence, we will find K, s,
and f(D) respectively by analyzing the sample documents only.

Estimating f(D): If we let |d|..4 denote the average number of
terms per document for the entire database, then we may write
f(D) as a product of |d|..y and the total number of documents
in the database: f(D) = |d|avg - |D]. Since we showed how to
approximate | D| with | D| in the previous section, we need only ap-
proximate |d|4., in order to find (D). We can estimate the aver-
age number of terms per document |d|..4 for the entire database by
examining the seed sample: |d|avy = f(Ds)/|Ds|, where f(D;)
refers to the total frequency of all terms in the document sample
D,. Hence, we have f(D) = |d|auvg - |D|.

Estimating K and 3: To approximate K and 3 with K and 3s,
respectively, we consider increasingly larger sub-samples of the to-
tal set of sampled documents. In particular, we randomly select
a document (without replacement) from the set of sampled docu-
ments D and add it to the sub-sample Ds. For each sub-sample
D, we plot the total term frequency (i.e. text size) f(Ds.) versus
the actual vocabulary size |Vss| of the sub-sample. This process
repeats until all documents in the sample have been selected. As a
result, we will have | D,| points consisting of the text size and the
corresponding vocabulary size. We may then estimate K5 and 3
by using a curve fitting tool to fit the best function that conforms to
Heaps Law to these | D| points.

With these estimated parameters, the total vocabulary size |V/|
of the database may be approximated with the estimate |f/| by cal-
culating: |V| = K.(|f(D)|)?s. Hence, by analyzing only the
documents sampled in earlier steps, we may estimate the total vo-
cabulary size for each of the n text databases. To find the sample
size 5pv (D) that should yield ratiopy - |V | vocabulary terms at a
database, we can rely on the estimates |V|, K, 3s, and |d| 4., for

each database to yield n vocabulary ratio equations, where each is
of the form:

ratiopy - |V| = Ks(|d|avg - 8pv (D))"
Solving for §py (D) yields:

Inratiopy |V|—In Kg
spv(D) =e s

Given the n equations for $pv (D;) (one for each database), we

need to determine the appropriate choice of ratiopy such that the

total documents to be sampled is S = >"7 §pv(D;), where 0 <

ratiopy < 1. Since each equation is monotonically increasing

with respect to the choice of ratiopy, we may solve the non-linear

optimization problem using a simple search of the space [0, 1] to
find ratiopy such that S = Z’f §pv(Di).

3.2.3 Scheme3: Vocabulary Growth [VG]

The final sampling scheme is based on the vocabulary growth
rate at each database. The goal of the Vocabulary Growth (VG)
scheme is to extract the most vocabulary terms from across the
space of distributed text databases.

This scheme relies on the Heaps Law parameter estimates x
and 3s for each database, as we presented in the previous section.
By analyzing how fast each database “produces” new vocabulary
terms as more documents are sampled, our goal is to extract the
“cheapest” vocabulary terms first. Some databases may have a
very slow growing vocabulary, meaning that many more documents
must be sampled to equal the same number of vocabulary terms as
a database with a fast growing vocabulary. At some point the ad-
ditional vocabulary terms for each sampled document may slow to
a point that additional sampling is not worthwhile in the context of
many distributed text databases.

To guide the VG sampling scheme, we first estimate the growth
rate of the vocabulary size of each database by considering the in-
cremental vocabulary terms that each additional sampled document
may be expected to yield. If we let = denote the number of docu-
ments sampled from a database, then we can write the estimated
vocabulary size for the = documents as |V (z)|:

*ln“z‘aug

|V (@)| = Ks(|d|avg - 2)

To determine the incremental vocabulary terms — denoted by
A(|V (z)]) — available by sampling = documents versus sampling
x — 1 documents, we take the difference between the expected vo-
cabulary size for a sample of size = documents and for a sample of
sizex — 1:

AV (@)]) = Ks(|dlavg - 2)** = Ks(|d|avg - (z — 1))

Hence, we may determine the expected incremental vocabulary

terms of each successive sampled document. For each of the databases,

we may calculate the incremental vocabulary terms A(|V (x)|) for
all documents available at the database. If we consider the “price”
of each additional vocabulary term extracted from a database as
the number of documents per new vocabulary term, then we may

choose to sample from each database based on the “cheapest” database

for extracting new vocabulary terms. Equivalently, we choose from
which database to sample based on how many additional vocab-
ulary terms it is expected to yield per document sampled. With a
total number of documents to sample of .S, we select the top-.S doc-
uments from across all databases as scored by A(|V (x)]). We then
allocate to each database $v ¢ (D;) documents based on the total
number of D;’s documents in the top-S.

3.3 Dynamic Sampling Allocation

We have described three quality-conscious sampling schemes,

and have seen how each recommends a total number of documents
to allocate to each database. Now we need to determine the num-
ber of documents to be sampled from each of the n databases for
dynamic sampling in iteration k& — sqy.(D;, k) — such that the
total documents sampled from each database closely matches the
number of documents prescribed by the sampling scheme, that is:
3(D;) = stot(D;). There are two cases to consider:
Case 1. If for all databases, the Seed Sampling step and the previ-
ous k — 1 iterations of the Dynamic Sampling have extracted fewer
documents than the scheme recommends in total (i.e., §(D;) >
Sseed (D) + Z?;ll Sayn(Ds, 7)), then we let the Dynamic Execu-
tion step sample for the k-th iteration:

8(Di) = sseca(Di) = 571 sayn(Di, 4)
m—k+1

In the case of a single round of dynamic sampling, then sqy» (D;,

is simply the leftover documents to be sampled: sqyn(D;, 1) =
§(DL) - Sseed(Di)-
Case 2. However, it may be the case that a database has already
been oversampled in the Seed Sampling step and previous k& — 1
iterations of the Dynamic Sampling with respect to the sampling
recommendation by the quality-conscious sampling scheme, i.e.,
8(Di) < sscea(Di) + 52} sayn(Diy j). This oversampling
requires two corrections. First, any database that has been sam-
pled sufficiently is dropped from this Dynamic Sampling Execution
step. Second, the documents allocated to the remaining databases
must be re-scaled to reflect the additional documents available as a
result of dropping the oversampled databases from this round.

den(Di7 k) =

—_

4. EXPERIMENTS

In this section, we present three sets of experiments designed to
test the distributed query-sampling framework. The experiments
rely on data drawn from two standard TREC information retrieval
datasets summarized in Table 2.

Table 2: Overall TREC Dataset Summary Information
Name Size (GB) | Documents | Total Terms
TREC123 3.2 1,078,166 | 258,212,077
TREC4 2.0 567,529 | 155,575,164

TREC123: This set consists of 100 databases created from TREC
CDs 1, 2, and 3. The databases are organized by source and publi-
cation date as described in [23].

TREC4: This set consists of 100 databases drawn from TREC
4 data. The databases correspond to documents that have been
clustered by a k-means clustering algorithm using a KL-divergence
based distance measure as described in [28].

In addition, we created six large databases to further test the
distributed query-sampling framework. The large databases were
created from TREC123 data and are listed in Table 3. The large
database AP is composed of all 24 databases of Associated Press
articles in the TREC123 dataset. Similarly, WSJ is composed of
the 16 Wall Street Journal databases; FR the 13 Federal Register
databases; and DOE the six Department of Energy databases. The
two other databases — Rand1 and Rand2 — are each combinations of
20 non-overlapping randomly selected databases from TREC123.
Based on these large databases, we created three additional datasets
designed to test the sampling framework in the presence of more
skewed datasets.

Table 3: Large Databases

Name | Documents | Vocab Size | Total Terms
AP 242,918 347,762 | 61,381,800
WSJ 173,252 314,791 | 43,542,976
FR 45,820 503,774 | 34,588,476
DOE 226,087 206,653 | 16,874,516
Rand1 232,031 544,558 | 50,129,684
Rand2 228,701 553,007 | 50,152,660

TREC123-A: This dataset consists of the large AP and WSJ
databases, plus the 60 other TREC123 databases (excluding the AP
and WSJ databases), for a total of 62 databases. The AP and WSJ
databases are much larger than the other databases and contain a
disproportionate share of relevant documents for the tested query
mix for the database selection application scenario.

TREC123-B: This dataset consists of the large FR and DOE
databases, plus the 81 other TREC123 databases (excluding the FR
and DOE databases), for a total of 83 databases. The FR and DOE
databases are much larger than the other databases, but contain very
few relevant documents for the tested query mix.

TREC123-C: This dataset consists of the large Rand1 and Rand2
datasets, plus the 60 other TREC123 databases, for a total of 62
databases. The Randl and Rand2 datasets contain approximately
the same proportion of relevant docs as all the other databases.

All database sampling and selection code was written in Java.
The curve fitting necessary for parameter estimation was performed
with Mathematica via the Java interface J/Link. Each dataset was
indexed and searched using the open source Lucene search engine.
The search engine indexes and database samples do not include
a list of standard stopwords; the terms have been stemmed using
the standard Porter’s Stemmer [22]. In all cases the Query-Based
Sampling component relied on a weighted random prober (by term
frequency) that drew probe terms initially from the standard UNIX
dictionary and subsequently from the sampled documents; a maxi-
mum of four documents were retrieved for each query.

4.1 Estimation Error

In the first set of experiments, we study how effectively the sam-
pling framework may estimate the database size parameters neces-
sary to drive the three sampling schemes. Depending on the sam-
pling scheme, the seed sample is used to estimate either the number
of documents at each database [for the PD scheme], or the total vo-
cabulary size of each database and vocabulary-related parameters
 and 3 [for the PV and VG schemes]. We measure the relative
error for the database size as Ep = (|D| — |D|)/| D], and the rela-
tive vocabulary size error as Ev = (|V| — [V[)/[V|. We measure
the error rates across the 100 TREC4 databases, the 100 TREC123
database, and the six large databases of Table 3. For each database,
we extracted from 50 to 500 documents and calculated the error
rate. We repeated this process five times and report the average.

We begin by reporting the database size error Ep. Across the
TREC4 and TREC123 databases, as the sample size increases from
50 documents to 500, the estimation error quickly becomes reason-
able. For TRECA4, the relative error ranges from 13% to 18%. Sim-
ilarly, for TREC123, the relative error ranges from 14% to 18%.
For the large databases, the database size error ranges from 20% to
30%, on average. These results validate the results from the orig-
inal sample-resample paper [26] and provide strong evidence that
the database size may be estimated for large database by examining
only a small fraction of the documents.

The vocabulary size estimation is significantly more difficult since
it relies on estimating multiple parameters, including the « and 3

3.5

_ 30 -O- TREC123

o

b - TREC4

S 25

2 -/~ TREC123 (Large)

£

=20

w

>

2 15

; N

3

g 10 X

®

g D%\N—&HW

8 05 g e e .

< H\B:S:fﬂ:ﬁ:ﬁ:@:@%
0.0 : : :

50 100 150 200 250 300 350 400 450 500
Sample Size Used for Estimate (in docs)

Figure 1: Vocabulary Estimation Error

parameters for the Heaps Law curve, as well as the average size of
each document in the database. In Figure 1 we report the average
vocabulary estimation error for the 100 TREC4 databases, the 100
TREC123 databases, and the six large databases. Since the vocab-
ulary size estimation relies on knowing the number of documents
in a database, we report the vocabulary error in the realistic case
when the database size must be estimated. The results are encour-
aging. In all cases, the error falls quickly, requiring sample sizes
of fewer than 200 documents for reasonably accurate quality esti-
mates. Both the TREC4 and TREC123 estimates are within 50%
of the actual after examining only 150 documents. For the large
databases, the error is within a factor of 2 after only 100 documents.

4.2 Database Sample Quality

We next study the impact on the overall sample quality of the
three quality-conscious sampling schemes — Proportional Docu-
ment Ratio (P D), Proportional Vocabulary Ratio (PV), and Vo-
cabulary Growth (VG) — versus the uniform approach.

Since previous research efforts have claimed that 300 documents
are reasonable for extracting high-quality database samples from
databases ranging in size from thousands of documents to millions
(e.g., [4, 3]), for each of the datasets we assumed a total document
budget of S = 300 - n, where n is the number of databases in
the dataset. So, the total budget for TREC123 (100 databases) is
30,000 documents, for TREC4 (100 databases) 30,000, and so on
for TREC123-A, TREC123-B, and TREC123-C.

For each of the datasets, we collected baseline document sam-
ples using the Uniform sampling approach (U), meaning that 300
documents were sampled from each database. For the three quality-
conscious sampling schemes we allocated half of the total budget
for the Seed Sampling step (i.e., 150 documents per database). We
then allocated the remaining half of the total budget based on the
specific sampling scheme. In this first set of sample quality exper-
iments we consider a single round of dynamic sampling. To min-
imize the randomness inherent in any sampling-based approach,
we report the average results based on repeating the sampling five
times for all tested schemes.

4.2.1 Sample Quality Metrics

To assess the quality of the database samples produced by each
sampling scheme, we consider a suite of three distinct quality met-
rics. Each metric compares a database sample D, to the database
D from which it is drawn. For each of the three quality metrics, we
measure the overall quality of the collected database samples for a
dataset by calculating the average quality metric weighted by the
actual size of each database: """, Q(D;s, Ds)/|Ds.

0.95 0.80 08
OVG 0OU mEPV EPD gové 0u mrv IPD\ 0.7 1 OVG 0OU EPV EPD|
0.90
0.75 +— 0.6 —
0.85 0.5 s H
0.70 7 0.4
0.80 03
0.65 - 0.2
0.75
0.1
0.70 + 0.60 - 0.0 +
TREC4 TREC123 TREC123-A TREC123-B TREC123-C TREC4 TREC123 TREC123-A TREC123-B TREC123-C TREC4 TREC123 TREC123-A TREC123-B TREC123-C

(a) Weighted Common Terms

(b) Term Rankings (Spearman)

(c) JS-Divergence [Lower is Better]

Figure 2: Sample Quality: Comparing the Three Quality-Conscious Sampling Schemes to the Uniform Approach

Weighted Common Terms: This first metric measures the weighted
degree of term overlap between the sample and the database:

_ ZtEV/\VS f(t7 D)
wet(Ds, D) = —Ztevs 7@.D)

Term Rankings: To assess the quality of the relative frequency
of terms in the database sample, we rely on the Spearman rank
correlation coefficient as defined in [3]. The Spearman coefficient
measures the level of agreement between two rankings. In our case,
we compare the rankings induced by ordering the terms in the ac-
tual database by c(¢, D) with the rankings induced by ordering the
terms in the database sample by c(¢, D). The Spearman coeffi-
cient measures only the quality of the relative ranking assignment,
not the values assigned to each term. If both the database and the
sample rank every term in the same position, then the Spearman
coefficient is 1. Uncorrelated rankings result in a Spearman coeffi-
cient of 0; reverse rankings (i.e., the top-ranked term in the database
is the lowest-ranked term in the database sample) result in a Spear-
man coefficient of —1.

Distributional Similarity: To measure the distributional similar-
ity of the database sample and the actual database, we rely on the
Jensen-Shannon divergence (or JS-divergence) [16]. It is based on
the relative entropy measure (or KL-divergence), which measures
the difference between two probability distributions p and ¢ over
an event space X: KL(q,p) = > ¢ x P(x) - log(p(x)/q(x)). In-
tuitively, the KL-divergence indicates the inefficiency (in terms of
wasted bits) of using the ¢ distribution to encode the p distribu-
tion. Adopting a probabilistic interpretation, we can consider a text
database D as a source randomly emitting a term ¢ according to the
overall prevalence of ¢ in D: Pr(t|D) = f(t,D)/f(D). Hence,
kl(Ds, D) =,y Pr(t|D) - log(Pr(t|D)/Pr(t|Ds)). Unfor-
tunately, when evaluating a database sample that lacks a single term
from the actual database (which is almost always the case), the KL-
divergence will be unbounded and, hence, will provide little power
for evaluating database samples. In contrast, the Jensen-Shannon
divergence avoids these problems. The JS-divergence is defined as:

js$(Ds, D) = aq-kl(a1 D+a2Ds, D)+asz-kl(cn D+a2Ds, D)
where a1, a2 > 0and a; + a2 = 1. We consider oy = a2 = 0.5.
The lower the JS-divergence, the more similar the two distributions.
4.2.2 Sample Quality Results

In Figure 2, we compare the Uniform (U) sampling approach
to the three quality-conscious sampling schemes of the sampling

framework — PD, PV, and VG. We note several interesting re-
sults. First, even under the strong constraint that the sampling
schemes must rely solely on the seed samples for guiding the rest
of the sampling process, we see that the PV and P D schemes out-
perform the uniform sampling approach U over all five datasets
and all three quality metrics, validating the intuitive strengths of
the distributed query-sampling framework.

Second, the VG scheme significantly underperforms the U ap-
proach in all cases. On inspection, we discovered that the VG
scheme resulted in an overall collection vocabulary of from 1.5t0 3
times as many vocabulary terms versus the other approaches across
all settings. As we would expect, the VG scheme was very ef-
fective at extracting the most vocabulary terms of all the schemes
tested, since it focuses solely on sampling from the most efficient
databases in terms of vocabulary production. The VG scheme
tended to allocate all of the sampling documents to a few small
databases each with a fairly large vocabulary. These databases had
significantly steep vocabulary growth curves, and as a result, the
overall collection vocabulary for the VG approach was higher than
for the other approaches. But, since the sampling documents were
assigned to only a handful of small databases, the larger databases
(which tend to have slower growing vocabulary growth rates) were
undersampled. We are interested in further exploring the effective-
ness of the VG scheme in application scenarios that rely on rich
coverage of vocabulary terms.

Given the good results for the PD and PV schemes, we next
tweak several of the factors. First, we consider the impact of the
total number of sample documents S on the quality of the extracted
database samples. As the framework is able to sample more doc-
uments, we would expect to extract higher quality samples. We
consider three scenarios. In Scenario 1, we have total sample doc-
uments S = 100 - n, where n is the number of databases in the
dataset; in Scenario 2, we have S = 300 - n; and in Scenario 3, we
have S = 500-n. So, for example, the total sampling allocation for
TREC123 and its 100 databases is 10,000 documents in Scenario 1
up to 50,000 documents in Scenario 3.

In Figure 3, we show the impact of increasing .S over the Uni-
form sampling approach (U[100], U[300], and U[500]) as com-
pared to the Proportional Document sampling scheme (P D[100],
PD[300], and PDI[500]). For the PD cases, we allocate half the
documents available for seed sampling (meaning that in Scenario
1, we collect a seed sample of 50 documents from each database;
in Scenario 2, we collect a seed sample of 150 documents; in Sce-
nario 3, we collect a seed sample of 250 documents). We restrict
Figure 3 to results for two datasets and two quality metrics; note
that the general results hold for all datasets and quality metrics.

Of course, as we increase the total sample document allocation,

0.8

0.7 —
0.6
0.5

0.4 +
0.3 7

U [500]
U [500]
[500]

D [500]

U [T00]
PD [100]

0.2

PD [100]
PD [300]

PD [300]

0.0

TREC4 TREC123-A

Figure 3: Impact of Increasing Sample Documents .S [JS-Div]

both the uniform and quality-conscious sampling schemes result in
higher quality samples, since more of each database may be sam-
pled. We note that in all cases, the PD and PV schemes outper-
form the uniform approach, even when the total sample document
allocation is significantly limited and the sampling framework must
rely on even smaller seed samples for estimating the database size.

Second, we study the impact of the total allocation to the Seed
Sampling step (Sseeq) Vversus the dynamic sampling step (Sayn),
where recall that S = Ssceca + Sayn. Devoting too many sampling
documents for seed sampling may result in more precise estimates
for use by each quality-conscious sampling scheme, but leave too
few documents available for dynamic sampling. Conversely, de-
voting too few sampling documents for seed sampling may result
in less precise parameter estimates, and hence may lead to the sam-
pling scheme misallocating the remaining documents.

We consider three scenarios — in Scenario 1, we collect a seed
sample of 50 documents from each database (P D[50, 250]), leav-
ing 250 - n documents available for dynamic sampling; in Sce-
nario 2, we collect a seed sample of 150 documents from each
database, leaving 150 - n documents available for dynamic sam-
pling (PD[150, 150)); in Scenario 3, we collect a seed sample of
250 documents, leaving only 50 - n documents available for dy-
namic sampling (P D[250, 50]). For comparison, we also consider
the uniform sampling approach U. Interestingly, the PD and PV
schemes result in higher quality samples in all cases. As Sgccq in-
creases, the advantage of the quality-conscious schemes is dimin-
ished only slightly relative to the uniform approach. Even when
almost all of the total resources are allocated for seed sampling
(PD]250, 50]) and the dynamic sampling has only 1/6 of the total
resources, the adaptive sampling approach still significantly outper-
forms the uniform approach.

Finally, we have also studied the impact of the number of rounds
on the multiple iteration distributed query-sampling framework. In-
terestingly, we find that increasing the number of rounds from 1 to
10 results in slight improvements to the extracted database samples
primarily due to the refined parameter estimates made possible by
re-calculating the appropriate allocation after each round. Due to
the space constraint, we omit these results here.

4.3 Application Scenario: Database Selection

In this section, we evaluate the impact of our adaptive sampling
framework on the real-world application of database selection. Cur-
rent approaches for text database selection map queries to databases
based on previously acquired metadata for each database.

Typical database selection algorithms work in the context of a
query ¢ and a set of candidate databases /. For each database

D € U, agoodness (or quality) score is assigned in terms of query
relevance. The databases are ranked according to the relevance
score and the query is then routed to the top-k ranked databases.
We consider the popular CORI algorithm as introduced in [6] and
described in [9]. The quality of such an algorithm will be impacted
by the quality of the frequency and count estimates generated by
the document samples from the sampling process.

For the TREC123, A, B, and C datasets, we use queries drawn
from the TREC topics 51-100 title field. These queries are, on
average fairly short (ranging from 1 to 11 words, with an average
of 3.8), and resemble web-style keyword queries. For the TREC4
dataset, we use queries from the TREC topics 201-250 description
field (ranging from 8 to 33 words, with an average of 16 words).

To isolate the quality of database selection from the rest of the
distributed information retrieval problem (which also includes com-
ponents for results merging and ranking), we adopt a commonly
accepted criterion for measuring the database selection recall. The
database selection recall metric, denoted by R,,, evaluates the qual-
ity of the database selection algorithm’s ranked list of databases
versus a baseline ranking [11]. If we let rel(q, D) denote the num-
ber of relevant documents in database D to the query ¢, then for a
baseline ranking of n databases: B = (B4, ..., B») and a ranking
induced by the database selection algorithm £ = (Eq, ..., Ey), we
may define the recall for a particular query ¢ as:

Z{;:l Tel(Qy El)

iy rel(a, Bi)

where 0 < Ri(q) < 1. By evaluating Rx(q) for different values
of k, we may assess the recall at different levels (e.g., recall for the
top-5 databases, the top-10, and so on). A database selection algo-
rithm that induces a ranking that exactly matches the baseline (op-
timal) ranking, will result in Ry, values of 1 for all choices of k. We
adopt a commonly-accepted baseline ranking that ranks databases
by the number of query-relevant documents each has (note that the
TREC data includes relevance decisions).

Finally, we run experiments on the database samples using the
setup described in Section 4.2.2 to compare our adaptive sampling
framework with the uniform sample allocation scheme. For each
dataset, we evaluated the CORI algorithm over the extracted database
samples and the query mix discussed above. In Figure 4, we report
the database recall metric for the TREC123-A, B, and C datasets.
These results confirm that the higher quality PV and PD sam-
ples reported in the earlier set of experiments positively impact
the performance of database selection relative to the uniform ap-
proach, and again, the VG scheme significantly lags. We see simi-
lar, though less pronounced, results over the TREC4 and TREC123
datasets; due to the space constraint, we omit these results here.

5. RELATED WORK

In addition to the related work cited elsewhere in this paper, there
have been a number of other studies that have relied on sampling a
database, including [7, 15, 19, 27]. The sampling approaches typi-
cally rely on interacting with the database through a query interface
and extracting sample data through a series of query probes. Query-
ing methods suggested include the use of random queries, queries
learned from a classifier, and queries based on a feedback cycle
between the query and the response. To assess the quality of query-
based database sampling techniques, others have developed a for-
mal reachability graph model [1]. In contrast to the sampling-based
approach, other researchers have studied the problem of download-
ing the entire contents of a Web-based text database using only a
query-based mechanism for extracting documents [21], which we

Ri(q) =

304
0.3 o

5 0.2 —VG u 02

0.2 e —
Ve v 0.1 --PD -O—-PV 01 Q@’gu VG u

0.1 - = PD) -O-pPV : PV -0-PD

0.0 0.0 0.0

12345678 91011121314151617 181920
Databases Selected

(a) TREC123-A

123456 7 8 9101112131415 16 17 18 19 20
Databases Selected

(b) TREC123-B

123456 7 8 9101112131415 16 17 18 19 20
Databases Selected

(c) TREC123-C

Figure 4: Database Selection Recall: Comparing the Three Quality-Conscious Sampling Schemes to the Uniform Approach

have noted may be infeasible or very expensive in many realistic
settings.

In the database and IR communities, considerable research has
been dedicated to the database (or resource) selection problem
(e.0.,[8,9,10, 11, 23, 26]). We are interested in testing the database
samples extracted through the adaptive framework over some of the
database selection algorithms previously introduced.

6. CONCLUSION

To the best of our knowledge, the proposed adaptive distributed
query-sampling framework is the first one for sampling that takes
into account both the overall quality of all text databases under
consideration and the presence of realistic resource constraints.
We have introduced three sample allocation schemes for estimat-
ing database quality, and have shown how the adaptive framework
supports higher-quality document sampling than existing solutions,
and how database selection may be improved.

Our research on distributed query sampling continues along a
number of directions. We are extending the framework to consider
sampling costs that may vary across databases, as well as incorpo-
rating utility-theoretic models for determining the total number of
possible sample documents S. We are also interested in alterna-
tive schemes that consider a richer set of database-specific quality
metrics like data freshness and topic-sensitive database coverage.

7. REFERENCES

[1] E. Agichtein, P. Ipeirotis, and L. Gravano. Modeling
query-based access to text databases. In WebDB, 2003.

[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval. ACM Press / Addison-Wesley, 1999.

[3] J. Callan and M. Connell. Query-based sampling of text
databases. Information Systems, 19(2):97-130, 2001.

[4] J. Callan, M. Connell, and A. Du. Automatic discovery of
language models for text databases. In SIGMOD, 1999.

[5] J. Callan et al. The effects of query-based sampling on
automatic database selection algorithms. Technical Report
CMU-LTI-00-162, CMU, 2000.

[6] J. Callan, Z. Lu, and W. B. Croft. Searching distributed
collections with inference networks. In SIGIR, 1995.

[71 W. W. Cohen and Y. Singer. Learning to query the Web. In
AAAI Workshop on Internet-Based Info. Systems. 1996.

[8] N. Craswell, P. Bailey, and D. Hawking. Server selection on
the World Wide Web. In Digital Libraries, 2000.

[9] J. C. French et al. Comparing the performance of database
selection algorithms. In SIGIR, 1999.

[10] N. Fuhr. A decision-theoretic approach to database selection
in networked IR. ACM TOIS, 17(3):229-229, 1999.

[11] L. Gravano and H. Garcia-Molina. Generalizing GIOSS to
vector-space databases and broker hierarchies. In VLDB,
1995.

[12] D. Hawking and P. Thomas. Server selection methods in
hybrid portal search. In SIGIR, 2005.

[13] P. Ipeirotis et al. Modeling and managing content changes in
text databases. In ICDE, 2005.

[14] P. Ipeirotis and L. Gravano. Improving text database
selection using shrinkage. In SIGMOD, 2004.

[15] P. Ipeirotis, L. Gravano, and M. Sahami. Probe, count, and
classify: Categorizing hidden-web databases. In SIGMOD,
2001.

[16] J. Lin. Divergence measures based on the shannon entropy.
IEEE Trans. on Inf. Theory, 37(1):145-151, 1991.

[17] K.-L. Liu, C. Yu, and W. Meng. Discovering the
representative of a search engine. In CIKM, 2001.

[18] J. Lu and J. Callan. Federated search of text-based digital
libraries hierarchical peer-to-peer networks. In SIGIR
Workshop on P2P Information Retrieval, 2004.

[19] W. Meng, C. T. Yu, and K.-L. Liu. Detection of
heterogeneities in a multiple text database environment. In
Coopls, 1999.

[20] H. Nottelmann and N. Fuhr. Evaluating different methods of
estimating retrieval quality for resource selection. In SIGIR,
2003.

[21] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual
hidden Web content through keyword queries. In JCDL,
2005.

[22] M. F. Porter. An algorithm for suffix stripping. Program,
14(3):130-137, 1980.

[23] A. L. Powell et al. The impact of database selection on
distributed searching. In SIGIR, 2000.

[24] S. Raghavan and H. Garcia-Molina. Crawling the hidden
Web. In VLDB, 2001.

[25] L. Siand J. Callan. Using sampled data and regression to
merge search engine results. In SIGIR, 2002.

[26] L. Siand J. Callan. Relevant document distribution
estimation method for resource selection. In SIGIR, 2003.

[27] W. Wang, W. Meng, and C. Yu. Concept hierarchy based text
database categorization in a metasearch engine. In WISE *00.

[28] J. Xu and J. Callan. Effective retrieval with distributed
collections. In SIGIR, 1998.

