
A Fault-Tolerant Middleware Architecture for High-Availability Storage Services

Sangeetha Seshadri, Ling Liu, Brian F. Cooper
Georgia Institute of Technology

801 Atlantic Drive, Atlanta GA-30332
{sangeeta,lingliu,cooperb}@cc.gatech.edu

Lawrence Chiu, Karan Gupta, Paul Muench
IBM Almaden Research Center

650 Harry Road, San Jose CA-95062
{lchiu,guptaka,pmuench}@us.ibm.com

Abstract

Today organizations and business enterprises of all sizes
need to deal with unprecedented amounts of digital infor-
mation, creating challenging demands for mass storage and
on-demand storage services. The current trend of clustered
scale-out storage systems use symmetric active replication
based clustering middleware to provide continuous avail-
ability and high throughput. Such architectures provides
significant gains in terms of cost, scalability and perfor-
mance of mass storage and storage services. However, a
fundamental limitation of such an architecture is its vulner-
ability to application-induced massive dependent failures of
the clustering middleware. In this paper, we propose hier-
archical middleware architectures that improve availability
and reliability in scale-out storage systems while continu-
ing to deliver the cost and performance advantages and a
single system image (SSI). Hierarchical middleware archi-
tectures organize critical cluster management services into
an overlay network that provides application fault isola-
tion and eliminates symmetric clustering middleware as a
single-point-of-failure. We present an in-depth evaluation
of hierarchical middlewares based on an industry-strength
storage system. Our results show that hierarchical architec-
tures can significantly improve availability and reliability of
scale-out storage clusters.

1. Introduction

With rapid advances in network computing and com-
munication technology and the continued decrease in dig-
ital storage cost, the amount of digital information contin-
ues to grow at an astonishing pace. Many organizations
and enterprises today are facing the challenge of dealing
with data storage ranging from terabytes and petabytes to
exabytes, zettabytes, yottabytes and beyond. Such trends
create continuous high demands for massive storage and
storage services. High-availability scale-out storage clus-
ters combine smaller units of storage to provide a scalable
and cost-effective storage solution [1, 2, 10]. The scale-out

clustered storage architectures allow enterprises to gain sig-
nificantly in terms of cost, scalability and performance.

Current scale-out storage systems use active replica-
tion [16] based middleware to ensure consistent access to
shared resources in the absence of centralized control and at
the same time provide high throughput and a single system
image (SSI). In order to guarantee high-availability to appli-
cations, the middleware typically maintains critical applica-
tion state and check-point information persistently across
nodes through active replication. Active replication based
models are not only used in clustered storage systems, but
are also common in distributed locking services [7] and
high-performance computing [9].

However, though the use of symmetric active replication
models removes hardware as both single-points-of-control
and single-points-of-failure, it causes the storage middle-
ware itself to now become a single-point-of-failure. In some
instances, unavailability of a highly-available, active repli-
cation based service due to network outages and software
errors can cause as much as 0.0326% unavailability [7, 8].
This is equivalent to three days of downtime over a period of
100 days and intolerable for many applications that demand
above99.99% uptime from storage services. Moreover, the
current scale-out storage architecture is also vulnerable to
application-induced failures of the middleware, in addition
to other issues like application-level non-determinism [18]
and middleware bugs themselves. By application-induced
middleware failure, we mean that a single cluster applica-
tion can cause an error which leads to unavailability of the
cluster middleware for all other applications concurrently
running over the cluster. For example, the highly avail-
able Chubby locking service reports that the failure of ap-
plication developers to take availability into consideration
“magnified the consequence of a single failure by a factor
of a hundred, both in time and the number of machines af-
fected” [7].

One obvious approach to improving availability and re-
liability in such systems is to provide application fault iso-
lation and eliminate symmetric clustering middleware as
a single-point-of-failure. While application fault isolation
can be achieved through partitioning of a single storage

cluster into smaller independent clusters [4, 3], without
care, one may lose the SSI and the flexibility to access stor-
age from anywhere within the system. The key challenge,
therefore, is to provide fault-boundaries while continuing to
deliver SSI and flexible accessibility. In this paper we in-
troduce the notion of hierarchical middleware architectures.
We organize critical cluster management services into a hi-
erarchical overlay network, which separates persistent ap-
plication state from global system control state. This clean
separation, on one hand, allows the cluster to maintain SSI
by communicating control state to all nodes in the network,
and on the other hand, provides fault isolation by replicating
application state within only a subset of nodes.

We present baseline availability analysis in flat and hier-
archical clusters with varying storage nodes. Our analysis
shows two important results. First, we show that simply
increasing the number of hardware nodes in a symmetric
system will not improve availability or reliability as long as
the middleware is vulnerable to simultaneous failures. Sec-
ond, we show that by trading some symmetry for better fault
isolation, hierarchical overlay storage architectures can sig-
nificantly improve system availability and reliability.

We conducted a thorough experimental evaluation of the
availability and reliability of our proposed solution. Utiliz-
ing the relationship between workload and software failure
rate [19, 25, 12], we quantitatively show that hierarchical
middleware architectures can provide significant improve-
ments in reliability and availability of mass storage systems.
For example, organizing a 32 node system into a hierarchi-
cal cluster can reduce downtime by nearly 94% and improve
Mean-time-to-failure (MTTF) by approximately 16 times.

The rest of this paper is organized as follows. We first
present the problem statement and describe our approach
in Section 2. We develop probabilistic markov models for
analyzing the availability and reliability of the proposed ar-
chitectures in Section 3. In Section 4 we present an in-
depth experimental evaluation of availability and reliability
in both flat and hierarchical architectures. We compare and
contrast the two models in Section 5, and conclude in Sec-
tion 6 with related work and a summary.

2. Overview

Before presenting an overview of the proposed hierarchi-
cal overlay architecture, we first describe the conventional
approach, its flat cluster architecture, and the potential prob-
lems with respect to application-induced failures.

2.1 Conventional Approach

High availability scale-out storage clusters are composed
of nodes, a network that connects the nodes, and middle-
ware that provides a highly available environment for ap-
plications that operate in the cluster. The back-end storage

H/W

H/W

H/W …

Replicated State-m/c Middleware

Database

Storage

E-mail Web
Server

Figure 1. Traditional flat storage cluster.

Replicated State-m/c
Middleware

Super-clusters

Database

Storage

Replicated State-m/c Middleware
Virtual
Node

Replicated State-m/c
Middleware

Replicated State-m/c
Middleware

Sub-clusters

Bridge
mw

Virtual
Node

Bridge
mw

Virtual
Node

Bridge
mw E-mail Web Server

HW …

HW

HW

HW

HW

HW … … … …

… …

Figure 2. Hierarchical cluster.

is shared by all nodes in the cluster. All nodes within the
cluster are peers with no single-point-of-control. In this pa-
per, we will refer to this ubiquitous form of clusters as aflat
cluster (Figure 1). Examples of such systems exist in both
research [4, 24, 9] and commercial [10, 1] settings.

In such systems, the middleware must ensure consistent
access to the shared storage and provide a highly available
environment to applications in the absence of centralized
control. Typically this is achieved through active replica-
tion based on replicated state machines (RSMs) [16]. RSMs
maintain consistent state on every node by applying an iden-
tical ordered set of requests, referred to asevents, on each
instance of the state machine. Since consistent state is main-
tained on all nodes, applications may failover to any node
when the node currently serving the application fails.

Events belong to two categories - global or setup events
used for liveness, node joins, departures, resource alloca-
tions etc., and application events that are used to maintain
application state globally. Typically, middleware generated
setup events belong to a (usually well-tested) pre-defined
set. On the other hand, application events such as check-
points and persistent state are generated by the applications

and passed on to the middleware through interfaces pro-
vided by the middleware. This potentially opens up the
middleware to faulty application generated events which
when processed synchronously will cause all instances of
the middleware to fail simultaneously, bringing down the
whole cluster. The goal of this paper is to eliminate or re-
duce such application-induced dependent middleware fail-
ures in scale-out storage systems while maintaining the pro-
vision of SSI, scalability and high-availability of scale-out
storage systems and services.

2.2 Hierarchical Middleware Architec-
tures: Our Approach

We first present an outline of the design of hierarchical
middleware architectures. The key idea for improving sys-
tem availability and reliability is to define application-fault
boundaries by separating global control state from persis-
tent application state. Concretely, in order to prevent the
symmetric middleware from becoming a single-point-of-
failure, hierarchical architectures organize cluster manage-
ment services into an overlay such that global control events
are communicated to all nodes and application generated
events are processed by only a subset of nodes. Note that,
the hierarchy is only used to regulate control messages and
does not interfere with the actual data path.

Figure 2 shows a two level hierarchical cluster that uti-
lizes a hierarchical middleware architecture. Clusters at
the upper level are called super-clusters and clusters at the
lower level are called sub-clusters. Sub-clusters and super-
clusters are flat clusters connected together by a bridging
middleware. The bridging middleware is a cluster appli-
cation that runs over a sub-cluster. It is essentially state-
less and serves two main purposes: first, it creates a virtual
node environment which emulates a hardware node by uti-
lizing underlying resources; second, it provides a channel
between sub-clusters and super-clusters for communicating
global events. It also serves as a channel for communicating
application-specific processing requests from super-clusters
to sub-clusters.

Nodes in the super-cluster are called virtual nodes. Each
virtual node represents a sub-cluster. Super-clusters pro-
vide SSI and manage the communication of global control
state across sub-clusters. The construction of such a hierar-
chical model and the decision on critical hierarchical para-
meters such as sub-cluster size and number of hierarchical
levels will rely on a number of system-supplied parameters,
such as known or historical failure rates, lease timers (heart-
beats required among the nodes for better response times),
load skew per node and load skew per sub-cluster or per ap-
plication category. Due to space constraints, we delay the
discussion on issues regarding hierarchical cluster overlay
construction to Section 5. Below, we focus more on the
availability and reliability properties of our hierarchical or-

ganization.
Since the bridging middleware is a cluster application

that runs over a sub-cluster, if the underlying node fails, the
bridge application itself would instantaneously failover to
another node within the sub-cluster. In the event of either a
virtual node dropping out of the super-cluster or the corre-
sponding node dropping out of the underlying sub-cluster,
the bridge middleware will instantiate another virtual node
over its underlying sub-cluster to participate in the super-
cluster. The bridge middleware relies on the underlying
sub-clusters to provide actual storage services.

In the hierarchical clustering paradigm, applications may
be deployed on a cluster at any level in the hierarchy. Appli-
cations that are deployed at the higher levels distribute work
to sub-clusters at the lower level according to the current
system state. Typically, load balancing and resource man-
agement applications are placed at upper levels as they are
shared across a number of sub-clusters. While global events
are communicated to all nodes in the hierarchical cluster
through the bridge middleware and super-clusters, applica-
tion events are processed only by the nodes within the cur-
rent sub-cluster in which the application is processed. As a
result, the total application-generated middleware workload
is partitioned amongst sub-clusters.

Storage cluster applications may have global or local ac-
cess points for accepting external requests. Global access
points will be owned by a virtual node at the top of the hier-
archical cluster. External requests received at the global ac-
cess point are decomposed and propagated along the cluster
hierarchy to the appropriate sub-clusters at the lowest level.
Local access points are provided for services specific to a
part of the hierarchical cluster. This allows some cluster ser-
vices to continue even if the hierarchical cluster is not fully
connected momentarily. We next illustrate the partitioning
of middleware workload in a hierarchical cluster.

2.3. Example Application: Data Migration

Moving data from one location to another to change its
retention cost, availability, or performance is a well known
strategy for managing data. With clustered storage it is pos-
sible for data movement to be managed internally to the
cluster. The cluster middleware provides the persistent stor-
age to track a data movement operation, which would at
least include the source data location, the target data loca-
tion, and a current copy location. The current copy location
is kept to minimize the amount of duplicate data copied af-
ter recovery from a cluster transition.

For example, if the current copy location is updated for
every 1GB of data moved, moving 300GB of data would re-
sult in 300 application-generated update events to the clus-
ter middleware. In a flat cluster the middleware workload
(number of events) per node for this data movement re-
quest would include the setup (control) events in addition

Availability Fraction of time an application provides
service to its users.

Reliability Probability of failure-free operation
over a specified period of time.

MTTF Mean-time-to-failure
MTTR Mean-time-to-restore
λhw Hardware failure rate =1/MTTFhw

µhw Hardware repair rate =1/MTTRhw

λmw -Middleware failure rate =1/MTTFmw

µmw Middleware repair rate =1/MTTRmw

λvn Virtual node failure rate =1/MTTFvn

µvn Virtual node repair rate =1/MTTRvn

λvn app Bridge middleware failure rate =1/MTTFvn app

µvn app Bridge middleware repair rate =1/MTTRvn app

Table 1. List of Terms

0, 0
Down

2�hw

µhw

2µhw

2, 1
Up

2, 0
Down

1, 1
Up

1, 0
Down

�hw

µhw

2�hw

 �mw

µmw

 �hw

2µhw

µmw
 �mw

 - Unavailable

 - Available

Figure 3. Availability of a 2 node cluster.

to 300 application-generated events. In a hierarchical clus-
ter a data movement operation can be initiated between any
two storage nodes in the cluster at the expense of a setup
cost. Also since super-clusters distribute work among its
underlying sub-clusters, not all sub-clusters perform work
per hierarchical cluster request. Thus for a two level hi-
erarchy, while the setup messages would be propagated to
and processed by all instances of the middleware, the actual
application-generated requests will only be processed in the
sub-cluster(s) handling the application.

3 Availability and Reliability Analysis

In this section we develop probabilistic markov mod-
els [20] for the analysis of availability and reliability of flat
and hierarchical clustering architectures. Our models were
generated using an automated tool developed by us. System
states are represented as states in a Markov chain and fail-
ure and repair rates are represented by the transition rates
between the states in a Markov chain. Failure and repair
are treated as stochastic processes and Markov chains are
the standard way to model stochastic processes in order to
determine the average probability of being in a particular
state. We assume that the time to failure and repair are ex-
ponentially distributed.

An application becomes unavailable when failure of the
hardware or middleware occurs in a combination such that
the application is no longer running and has to be restarted

after restoration of the underlying components. We assume
that there is sufficient redundancy in network connectivity
and that it is not a limiting factor. Each node runs an identi-
cal instance of the middleware.

We assume that hardware failures are independent while
middleware failures are correlated. Our aim is to concen-
trate on the effect of correlated middleware failures and
study the effectiveness of our proposed hierarchical archi-
tectures in eliminating such failures. Therefore, without
loss of generality, we do not consider independent middle-
ware failures or correlated hardware failures in this study.
Note that independent middleware failures typically will not
cause a marked difference in our comparison.

Dependent middleware failures cause all instances of the
middleware to crash simultaneously. Middleware repair is
also assumed to be simultaneous. Middleware repair in-
volves restarting of the failed components, synchronization
of state and isolation of the failure inducing request (most
often, the last event processed by the cluster). Since the
middleware already makes critical application state avail-
able to all nodes within a single cluster, we assume that
failover of an application, when it occurs, is instantaneous.

Table 1 gives a list of important parameters and terms
used in the paper and their definitions, including Mean-
time-to-failure (MTTF), mean-time-to-restore (MTTR),
failure rate (λ) and repair rate (µ) of hardware, middle-
ware, virtual node, and bridge middleware. Each state in
the Markov diagram is given by a pair of values indicating
the number of instances of hardware and middleware that
are functional, and the status of the application. The tran-
sitions between states represent failure and repair rates. We
illustrate our modeling methodology on two node flat clus-
ters, sub-clusters and super-clusters. Extending this model
to an N node cluster is straightforward.

3.1 Availability Modeling

Figure 3 shows the Markov model for availability of a
flat two node cluster. Note that, since we consider only de-
pendent failures of the middleware, only a single instance
of the middleware is considered to be running on the entire
cluster. The system is considered available if at least one
instance of the hardware and the middleware are functional.

For the hierarchical system, the model in Figure 3 now
represents the Markov model for applications deployed over
the sub-clusters at the lowest level. At that level, the mid-
dleware instances are run over the actual hardware nodes.
At higher levels, middleware instances are run over virtual
nodes. In order to simplify our analysis, we consider the
same middleware to be running at all levels in the hierar-
chy. We can represent the availability at a level running
over virtual nodes by replacingλhw andµhw with λvn and
µvn respectively in Figure 3. We next describe the reliabil-
ity modeling and computation of virtual node failure rates.

Down

2�hw

µhw +µmw

2, 1
Up

1, 1
Up

�hw
 �mw

 �mw

(a)

 �vn_app

Down

2�hw
µhw + µmw

2, 1
Up

1, 1
Up

�hw

 �mw

 �mw

 �vn_app

 - Unavailable

 - Available
(b)

Figure 4. Reliability models: (a) Flat clusters
(b) Virtual Node

3.2 Reliability Modeling

We analyze the reliability of clustering architectures us-
ing Markov models with absorbing states [20]. Figure 4(a)
shows the Markov model for a two node system. The model
for the flat architecture shown in Figure 4(a) also represents
the reliability model for the lowest level sub-clusters in the
hierarchical architecture. Again, the model can be extended
to a sub-cluster of any size. As in the case of availability, we
can obtain the Markov model for reliability of virtual node
clusters (super-clusters), by replacing hardware failure and
repair rates in Figure 4(a) by virtual node failure and repair
rates.

The reliability of the virtual node presented by a lowest
level cluster that directly runs over the hardware is com-
puted using the model shown in Figure 4(b). The model
shows that a virtual node failure may be caused either due to
failure of all instances of the underlying hardware, the mid-
dleware or the bridge middleware. Restoring a virtual node
at a given level involves restoring the underlying hardware
and virtual nodes up to that level (for clusters that may be
running at a level> 2). We approximate virtual node repair
rates to be the same as that of the hardware since hardware
repair is orders of magnitude slower than that of software.

4 Evaluation of Clustering Architectures

In this section we evaluate the flat and hierarchical ar-
chitectures based on the models presented in the previous
section. We use failure and repair rates based on our expe-
riences with real deployments of commercial storage sys-
tems. Since actual failure and recovery rates are sensitive
information and held closely by vendors, we are unable to
disclose the identity of the system and can only state that the
numbers are representative of current deployments. Table 2
represents the failure and repair rates for the various compo-
nents in the system. Note that the middleware failure rate is
for the occurrence of correlated failures. Independent mid-
dleware failures are expected to occur more frequently [21].
We expect the bridge middleware to have failure and repair
rates close to that of the clustering middleware. We vali-

MTTFhw 2 years
MTTRhw 4 hours
MTTFmw 3 years
MTTRmw 15 minutes
MTTFvn app 3 years (expected)
MTTRvn app 15 minutes (expected)

Table 2. Component failure and repair rates

dated our availability and reliability models against num-
bers reported for current deployments. Accordingly, the er-
ror in the availability model is less than 0.00004% while
that for the reliability model is around 1.5%.

We have developed an automated tool to compose
Markov models from specifications and compute availabil-
ity and reliability. The tool, written in C++, uses the Math-
ematica package [23] for computations. The experiments
reported in this paper are based on a system with a clus-
ter size of up to 32 nodes. With the failure and repair rates
presented in Table 2, when considering only independent
failures of the components, a 2 node cluster was able to
achieve 6 nines of availability. Based on this we choose a
sub-cluster size of 2 for our experiments. Results with other
sub-cluster sizes and other configurations have been briefly
summarized in Section 4.3.3.

Our analysis reveals two interesting phenomena. First,
although it is common to focus on hardware solutions to
availability and reliability, our analysis (Section 4.1 and
4.2) show that middleware (software) failure rates are a
far bigger contributor to unavailability. Second, we show
that in the common case where increasing workload leads
to more software failures, the hierarchical approach pro-
vides significantly higher robustness by isolating applica-
tions from middleware failures.

4.1 Baseline Availability Analysis

Figure 5 shows the baseline availability in flat and hierar-
chical clusters with 4-32 storage nodes. In order to present
an apples-apples comparison, we compare only 2 level hi-
erarchical organizations of the nodes with the sub-cluster
size set to 2 nodes. As the graph shows, availability in the
two levels of hierarchical clusters are comparable to that of
the corresponding flat clusters. However, note that appli-
cations are now isolated from middleware failures in other
sub-clusters. Also note that, just increasing cluster size has
little effect on availability.

4.1.1 Sensitivity Analysis for Availability

Sensitivity analysis allows us to understand which parame-
ters have the most pronounced effect on availability and re-
liability. We choose a 32 node system and compare flat and
2 level hierarchical configurations with sub-cluster size set
to 2. Using this setup, we evaluate the sensitivity of avail-
ability and reliability to the parameters specified in Table 2.

0.99995

0.999955

0.99996

0.999965

0.99997

0.999975

0.99998

0.999985

0.99999

0.999995

4 8 16 32
Number of Nodes

 A
va

ila
bi

lit
y

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 5. Baseline availabil-
ity.

-0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006

VN_App MTTR

VN_App MTTF

H/W MTTR

H/W MTTF

M/W MTTR

M/W MTTF

P
ar

am
et

er
s

Change in % availability

 50% Decrease 25% Decrease Base Line Value
25% Increase 50% Increase

Figure 6. Sensitivity analysis
of availability.

0

5000

10000

15000

20000

25000

30000

4 8 16 32
Number of Nodes

M
TT

F
(in

 h
ou

rs
)

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 7. Baseline reliability.

We present the results of our sensitivity analysis using a
tornado plot. Each bar represents the variation in availabil-
ity with changes to a single parameter while all other para-
meters are fixed at the baseline configurations. The length
of the bar is proportional to the sensitivity of the measure to
the particular parameter. The parameters are specified along
the y-axis and the x-axis shows the change in the measure
(availability in this case).

Figure 6 depicts the sensitivity of system availability to
component failure and repair rates in a hierarchical cluster.
The plot for a flat cluster is similar except for the absence
of the bridge middleware and has been omitted due to lack
of space. The graphs show that, availability is most sensi-
tive to middleware repair and failure rates as compared to
hardware. Also, note that the bridge middleware’s failure
and repair rates have minimal impact on the availability of
a super-cluster. From this analysis we conclude that depen-
dent failures of the middleware continue to be the limiting
factor in availability in both architectures. Also introduction
of independently failing components (bridge middleware)
impacts availability minimally.

4.2 Baseline Reliability Analysis

Figure 7 presents the variation in system reliability with
increasing cluster size using the setup described in Sec-
tion 4.1. The graph shows that reliability of both sub-
clusters and super-clusters in hierarchical architectures are
comparable to that of the corresponding flat clusters despite
inclusion of additional components (bridge middleware).
However, note that sub-clusters in hierarchical architectures
are units with independent failure modes unlike the flat ar-
chitecture. The graph also shows that increasing the number
of redundant hardware nodes does not improve reliability as
long as the middleware remains a single-point-of-failure.

4.2.1 Sensitivity Analysis for Reliability

Figure 8 depicts the sensitivity of reliability in super-
clusters using the same set-up as Section 4.1.1. The sen-
sitivity of reliability in sub-clusters and flat clusters (omit-
ted due to lack of space) is similar, except for the absence
of dependence on the bridge middleware component. The

graphs shows that reliability is most sensitive to middleware
failure rates. For example, a decrease of MTTFmw by 50%
causes as much as a 50% drop in system MTTF. Again, note
that bridge middleware failure rates hardly impact reliabil-
ity when compared to middleware failure rates.

4.3 Modeling the Middleware Workload

Although the merits of defining application fault bound-
aries can be qualitatively understood, it is still desirable to
quantify the availability and reliability of the resulting sys-
tem. In this section, we use the middleware “workload-
failure rate” relationship to characterize the benefits of
defining fault-boundaries.

A general formulation of software reliability as a linearly
increasing function of number of failures per encountered
error (s), error density (d) and the workload (w) is provided
in [19, 25]. Based on this formulation, we model the mid-
dleware failure rate as a linearly increasing function of mid-
dleware workload (number of events per unit time), assum-
ing that the parameterss andd are constant for a single im-
plementation. However, the relationship between software
failure rates and the workload may vary depending upon the
system, software and workload. Unfortunately, we do not
have sufficient data to precisely establish this relationship.

We define the middleware workload under which the
baseline failure and repair rates were observed as the stan-
dard workload (WLstd). We then introduce the notion of a
normalized workload (NWL) which is the ratio of the actual
observed workload to the standard workload. We consider
the average case where workload is uniformly partitioned
amongst the sub-clusters. The middleware workload in the
super-cluster of virtual nodes consists primarily of global
control and setup events. Based on observations in real sys-
tems, we expect this class of events to constitute around 5%
of the total workload.

Note that, in general we can model middleware failure
rate as ‘some increasing function’ of the middleware work-
load. In particular, we considered linear, sub-linear (square
root) and super-linear (exponential) increasing functions.
However, due to lack of space we present only the results
for a linear variation in this paper [17].

-100 -80 -60 -40 -20 0 20 40 60 80

M/W MTTR

 VN_App MTTR

 VN_App MTTF

H/W MTTR

H/W MTTF

M/W MTTF

P
ar

am
et

er
s

% Change in MTTF
 50% Decrease 25% Decrease Base Line Value
25% Increase 50% Increase

Figure 8. Sensitivity analysis
of reliability.

0.999950
0.999955
0.999960
0.999965
0.999970
0.999975
0.999980
0.999985
0.999990
0.999995
1.000000

1 2 3 4 5
Average Normalized Workload (NWL)

A
va

ila
bi

lit
y

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 9. Availability with lin-
ear function.

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5
Average Normalized Workload (NWL)

M
TT

F
(in

 h
ou

rs
)

Flat Hierarchical Level 1 (2 Nodes) Hierarchical Level 2 (16 Nodes)

Figure 10. Reliability with lin-
ear function.

4.3.1 Effect of Workload on Availability

Figure 9 shows the variation of availability with increasing
workload when the middleware failure rate is a linearly in-
creasing function (with constant of proportionality NWL)
of the middleware workload. The bars represent the avail-
ability in a flat cluster with 32 nodes and a 2 level hierar-
chical configuration of the same 32 nodes with sub-cluster
size of 2. The figure shows that the hierarchical config-
uration provides better availability at both the sub-cluster
level and the super-cluster level. At both levels, downtime
is reduced by 94% on average, over the flat clusters. Ex-
pressed as downtime minutes, when the workload is 5 times
the standard workload, the flat configuration translates to
an additional 23 minutes downtime annually, compared to a
sub-cluster in the hierarchical configuration.

4.3.2 Effect of Workload on Reliability

Figure 10 shows the variation of reliability with increasing
workload using the same setup described in Section 4.3.1.
As evident from the figure, all levels of the hierarchical con-
figuration offer better MTTF than the flat architecture. Our
results show that in a system withN nodes, compared to
flat architectures, hierarchical architectures can improve the
MTTF of the sub-cluster by nearlyP times, whereP is the
size of the super-cluster. (In our 32 node system, the super-
cluster size is 16, which means we get nearly 16 times im-
provement in MTTF).

4.3.3 Evaluation with other configurations

We repeated our experiments with other hierarchical set-
ups, varying both system size and sub-cluster size. How-
ever, due to lack of space, we present only a summary of
our results. In general, given a N node system, varying the
sub-cluster size resulted in a corresponding variation in par-
titioning of the workload. As shown in Section 4.1 and 4.2,
beyond a certain point the hardware is no longer the limit-
ing factor, availability and reliability vary according to the
partitioning of workload and are determined by the super-
cluster size,P . Our results from the sensitivity analysis
of availability (Section 4.1.1) and reliability (Section 4.2.1)

show that even at upper levels of the hierarchy, the middle-
ware failure and repair rates are the dominating factor in
availability and reliability. Likewise, organizing the nodes
into hierarchies with more than two levels indicate that the
availability and reliability are primarily indicative of only
the workload (and hence the middleware failure rates) at
those levels. Even under a ‘workload-failure rate’ indepen-
dence assumption, the availability and reliability at higher
levels vary only marginally compared to sub-clusters.

A number of parameters can determine the selection of
a particular hierarchical structure. Obviously, hardware and
middleware failure and repair rates and specified availabil-
ity and reliability targets are important factors for deter-
mining the appropriate sub-cluster sizes. For example, the
availability (Figure 5) and reliability (Figure 7) of the sys-
tem can help determine minimum sub-cluster sizes. In gen-
eral the guideline for choosing sub-cluster sizes is that the
size should represent the point in system growth where the
hardware reliability ceases to be a limiting factor.

5 Comparison of Clustering Architectures

The hierarchical architecture trades-off system symme-
try for application fault boundaries. As a consequence of
this, while application-induced middleware faults are con-
tained within sub-clusters, additional overhead in terms of
global event communication and structural complexity are
incurred. The disadvantage of decreased symmetry is that
although applications can be deployed anywhere within the
hierarchical cluster initially, failover is possible only within
the sub-cluster resulting in possible load skews. In order to
deal with this, techniques for dynamic workload based mi-
grations of application across sub-clusters are required. We
leave such directions to future work.

While the virtual node selection made by the bridge
middleware is susceptible to dependent failures, the inter-
cluster communication segments are expected to have inde-
pendent failure modes. In our experience, these primitives
tend to be well tested and unlike application-induced events,
are not a major-source of failures.

Flat clusters that utilize symmetric middleware archi-
tectures have limited scalability. The middleware main-

tains tight lease timers for better response times in detecting
failed nodes. The lease-time must increase with the num-
ber of nodes in the system and cannot be lesser than the
worst round trip time between any two nodes in the clus-
ter. Thus, in flat clusters, failure response times worsen
with geographic spread. Hierarchical clusters on the other
hand are a natural way to combine remote nodes. For ex-
ample, the local clusters can form one level of hierarchy
and remote clusters may maintain consistent state at another
level. The hierarchy allows the flexibility of using differ-
ent lease timers at different levels and thereby improves re-
sponse times for applications running over sub-clusters.

6 Related Work and Conclusion

A large body of existing research studies availability and
reliability from the view point of storage arrays [14, 22] and
controllers [15, 11]. Our work emphasizes the fact that in
large scale-out systems, middleware (software) reliability is
often the key determinant in system availability and relia-
bility. Our approach proposes to provide graceful isolation
of application-induced middleware failures, while retaining
SSI, by organizing cluster storage services into a hierarchi-
cal overlay. Note that, our approach is different from re-
silient overlay networks such as RON [5], which are de-
signed to improve connectivity in Internet environments.

While fault isolation can be achieved through partition-
ing of a single cluster into smaller independent clusters [4,
3], without care, SSI and the flexibility to access storage
from anywhere within the system will be lost in the process.
Our goal is to provide fault-boundaries while continuing to
provide these features. Although techniques like software
rejuvenation [21] through rolling restart can reset software
state, such techniques cannot deal with application-induced
failures which would be encountered irrespective of the age
of the software. Alternatively techniques like N-version
programming [6] can be utilized to decouple middleware in-
stance failures. However, this technique may be expensive
and different implementations based on the same specifica-
tion may still have common bugs [13].

This paper has presented our investigation on the avail-
ability and reliability of a fault-tolerant middleware archi-
tecture that uses a pre-determined hierarchical structure.
Determining application placements over the hierarchical
structure in order to minimize cross-cluster traffic and is-
sues relating to dynamic creation and maintenance of the
hierarchical structure are topics of ongoing research.

References

[1] Isilon systems.http://www.isilon.com.
[2] Veritas Foundation Suite.

http://www.veritas.com/us/products/foundation.

[3] Ceph: A scalable, high-performance distributed file system.
In OSDI, 2006.

[4] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. FARSITE: federated, available, and reliable
storage for an incompletely trusted environment. InOSDI,
2002.

[5] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient overlay networks. InSOSP, 2001.

[6] A. Avizienis. The N-version approach to fault-tolerant soft-
ware.IEEE Trans. Software Eng., 11(12):1491–1501, 1985.

[7] M. Burrows. The chubby lock service for loosely-coupled
distributed systems.OSDI, 2006.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
OSDI, 2006.

[9] C. Engelmann, S. L. Scott, C. Leangsuksun, and
X. He. Symmetric active/active high availability for high-
performance computing system services.Journal of Com-
puters (JCP), 1(8):43–54, 2006.

[10] J. S. Glider, C. F. Fuente, and W. J. Scales. The software
architecture of a SAN storage control system.IBM System
Journal, 42(2):232–249, 2003.

[11] S. W. Hunter and W. E. Smith. Availability modeling and
analysis of a two node cluster. In5th Intl. Conference on
Information Systems, Analysis and Synthesis, 1999.

[12] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement
and modeling of computer reliability as affected by system
activity. ACM Trans. Comput. Syst., 4(3), 1986.

[13] J. C. Knight and N. G. Leveson. An experimental evaluation
of the assumption of independence in multiversion program-
ming. IEEE Trans. Softw. Eng., 12(1):96–109, 1986.

[14] D. A. Patterson, G. Gibson, and R. H. Katz. A case for re-
dundant arrays of inexpensive disks RAID.SIGMOD Rec.,
17(3), 1988.

[15] K. K. Rao, J. L. Hafner, and R. A. Golding. Reliability for
networked storage nodes. InDSN ’06, 2006.

[16] F. B. Schneider. Replication management using the state-
machine approach.Distributed systems (2nd Ed.), 1993.

[17] S. Seshadri et al. A fault-tolerant middleware architec-
ture for high availability storage services (extended version).
http://www.cc.gatech.edu/˜sangeeta/S3Reliable.pdf.

[18] J. Slember and P. Narasimhan. Living with nondeterminism
in replicated middleware applications.Middleware, 2006.

[19] M. Trachtenberg. A general theory of software-reliability
modeling.IEEE Trans. on Reliability, 39(1):92–96, 1990.

[20] K. S. Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science Applications. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1982.

[21] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S.
Trivedi. Analysis and implementation of software rejuve-
nation in cluster systems. InSIGMETRICS ’01, 2001.

[22] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP
AutoRAID hierarchical storage system. InSOSP, 1995.

[23] I. Wolfram Research.Mathematica. Version 5.0 edition.
[24] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger,

H. Kiliçç öte, and P. K. Khosla. Survivable information stor-
age systems.Computer, 33(8), 2000.

[25] D. Zeitler. Realistic assumptions for software reliability
models. InIEEE Int’l Symp. Software Reliability Eng., 1991.

