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Abstract

Web search is one of the most critical applications for
managing the massive amount of distributed Web content.
Due to the overwhelming reliance on Web search, there is
a rise in efforts to manipulate (or spam) Web search en-
gines. In this paper, we develop a spam-resilient rank-
ing model that promotes a source-based view of the Web.
One of the most salient features of our spam-resilient rank-
ing algorithm is the concept of influence throttling. We
show how to utilize influence throttling to counter Web spam
that aims at manipulating link-based ranking systems, espe-
cially PageRank-like systems. Through formal analysis and
experimental evaluation, we show the effectiveness and ro-
bustness of our spam-resilient ranking model in comparison
with existing Web algorithms such as PageRank.

1. Introduction

The Web is arguably the most massive and successful
distributed computing application today. Millions of Web
servers support the autonomous sharing of billions of Web
pages. Web search provides some of the most critical func-
tionality for distributing, sharing, and managing the grow-
ing amount of content. As Web search becomes more and
more popular for being the first and last resort of informa-
tion, more and more incidents of Web spam are observed,
experienced, and reported [1, 17, 21, 26].

The rise in efforts to manipulate (or spam) how users
view and interact with the Web degrades the quality of infor-
mation on the Web and places the user at great risk for ma-
licious exploitation by a Web spammer. For example, Web
spammers often construct illegitimate copies of legitimate
Web sites (like eBay) to support identity theft. Spammer-
controlled Web sites often host various types of malware
– be it adware, spyware, or keyloggers – on sites intended
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to have a “look-and-feel” that is similar to legitimate sites
[29]. Recent studies suggest that 8% of pages [17] and 18%
of sites [22] are specifically engineered to manipulate the
underlying algorithms that drive Web search engines.

In this paper, we focus on three prominent types of link-
based vulnerabilities we have identified in Web ranking sys-
tems: hijacking, honeypots, andcollusion. Each of these
link-based vulnerabilities subverts the credibility of tradi-
tional link-based ranking approaches and undermines the
quality of information offered through ranking systems. For
example, in January 2006, a reputable computer science de-
partment’s web page for new PhD students washijackedby
a Web spammer, and over 50 links to pornography-related
Web sites were added to the page. This type of link-based
vulnerability corrupts link-based ranking algorithms like
HITS [24] and PageRank [28] by making it appear that a
reputable page is endorsing the Web spam target pages.

To defend against these important types of link-based
vulnerabilities, we introduce a new ranking model that pro-
motes a source-level view of the Web and a novel notion of
influence throttling for countering the influence of promi-
nent attacks used by spammers to manipulate link-based
ranking systems. We present theSpam-Resilient Source-
Rank algorithm for assessing the quality of Web sources
through a random walk over Web sources. Analytically,
we provide a formal discussion on the effectiveness of the
ranking model against link-based vulnerabilities. We show
how it provides strong resistance to manipulation and raises
the cost of rank manipulation to a Web spammer. Experi-
mentally, we study the spam resilience of the ranking model
over three large real-world datasets. We show how Spam-
Resilient SourceRank counters the vulnerabilities inherent
in PageRank, making it harder for adversaries to abuse.

2. Background

Link-based ranking approaches like HITS [24] and Page-
Rank [28] are core algorithms used by search engines to as-
sess the relative importance of Web pages by analyzing the
inherent hyperlink structure of the Web. In the rest of this
section, we discuss the Web graph model, briefly illustrate



link-based ranking through the popular PageRank approach,
and identify several link-based vulnerabilities.
Web Graph Model: Link-based algorithms consider the
Web as a graphGP = 〈P,LP〉, where the vertexes inP cor-
respond to Web pages and the directed edges inLP corre-
spond to hyperlinks between pages. A hyperlink from page
pi to pagepj is denoted as the directed edge(pi, pj) ∈ LP ,
wherepi, pj ∈ P. We denote the number of hyperlinks
pointing out from pagepi aso(pi). GP can be represented
by a |P| × |P| transition matrixM where a non-zeroijth

entry indicates a link from pagepi to pagepj :

Mij =


1

o(pi)
if (pi, pj) ∈ LP

0 otherwise

PageRank: PageRank provides a global authority score to
each page on the Web based on the linkage structure of
the entire Web. PageRank assesses the importance of a
page by recursively considering the authority of the pages
that point to it via hyperlinks. Forn Web pages we can
denote the PageRank authority scores as the vectorπ =
(π1, π2, ..., πn). The PageRank calculation considers the
page-level transition matrixM as well as ann-length static
score vectore, which is typically taken to be the uniform
vectore =

(
1
n , 1

n , ..., 1
n

)
. We can write the PageRank equa-

tion as a combination of these two factors according to a
mixing parameterα:

π = αMT π + (1− α)e (1)

which can be solved using a stationary iterative method like
Jacobi iterations [18].
Link-Based Vulnerabilities: We illustrate three categories
of vulnerabilities in link-based ranking algorithms. These
vulnerabilities can be exploited by spammers to subvert
link-based ranking algorithms like PageRank, which typi-
cally rely on a fundamental assumption that a link from one
page to another is an authentic conferral of authority by the
pointing page to the target page. The three types are:
1. Hijacking,whereby spammers insert links into legitimate
pages that point to a spammer-controlled page. There are a
number of avenues for hijacking legitimate pages, includ-
ing the insertion of spam-links into public message boards,
openly editable wikis, and legitimate weblogs.
2. Honeypots,whereby spammers create quality sites to
collect legitimate links that are then passed on to spammer-
controlled pages. Rather than risking exposure by hijacking
a link, ahoneypotinduces links, so that it can pass along its
accumulated authority by linking to a spam target page.
3. Collusion,whereby a spammer constructs specialized
linking structures across one or more spammer-controlled
pages. In alink exchange, multiple spammers trade links to
pool their collective resources for mutual page promotion.
Another example is alink farm, in which a Web spammer

generates a large number of colluding pages that point to a
single target page.

In practice, Web spammers rely on combinations of these
basic strategies to create more complex attacks on link-
based ranking systems. This complexity can make the to-
tal attack both more effective (since multiple attack vec-
tors are combined) and more difficult to detect (since simple
pattern-based arrangements are masked).

3. Spam-Resilient SourceRank
To counter the strong influence of link-based manipu-

lation, we introduce a spam-resilient ranking model called
Spam-Resilient SourceRank. In the following sections we
present the detailed derivation of the proposed ranking
model, including three key components: (1) the source view
of the Web; (2) source-based influence flow; and (3) influ-
ence throttling. In concert, these three components provide
strong resistance to manipulation and significantly raise the
costs of link-based manipulation.

3.1. Source View of the Web
The first component of Spam-Resilient SourceRank is a

hierarchical source view of the Web that departs from Page-
Rank’s fundamentally flat view of the Web, in which all
pages are treated as equal nodes in a Web graph. In this
complementary view, pages are grouped into logical collec-
tions of Web pages that we callsources. The source view is
motivated by recent work that has studied the link-locality
structure of the Web (e.g., [7, 13, 14, 23]) to organize Web
pages into logical groups of pages based on the strong ten-
dency of pages within a source to link to other pages within
the same source. Intuitively, a source could be defined using
the host or domain information associated with each Web
page, or it could be augmented with expert knowledge [11].
We use the termsource edgeto refer to the notion of source-
based citation. A sources1 has a source edge to another
sources2 if one page ins1 has a hyperlink to a page ins2.

Just as the page graphGP = 〈P,LP〉 models the Web as
a directed graph where the nodes correspond to Web pages
P and the set of directed edgesLP correspond to hyper-
links between pages, thesource graphGS = 〈S,LS〉 is a
directed graph where the nodes of the graph correspond to
Web sources inS and the set of directed edgesLS corre-
sponds to source edges. We can represent the source graph
GS with an|S| × |S| transition matrixT where theijth en-
try indicates the edge strength for an edge from sourcesi to
sourcesj :

Tij =


1

o(si)
if (si, sj) ∈ LS

0 otherwise

where we denote the number of edges pointing out from
sourcesi aso(si), meaning that this initial transition matrix
relies on uniform transition probabilities.
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It would be natural to determine the rank of each source
using a PageRank-style iterative calculation over the Web
source transition matrix, much like in Equation 1 (and sug-
gested in [4, 16]). In such a ranking model, the source view
provides a first step towards mitigating the influence of a
Web spammer. In the ideal scenario, all of the pages under
the control of a Web spammer would be mapped to a single
source (and all legitimate pages would be mapped to their
appropriate source, as well), meaning that collusion among
Web spammers could be muted entirely by discounting the
links within each source. If spam sourcei is assigned a tran-
sition probabilityTii = 0, then all link exchanges and link
farms within the source will have no influence over the rank
of the source. In practice, spammers can never be perfectly
identified, and they can still rely on hijacking and honey-
pots to collect links from legitimate pages. Hence, we next
introduce the second layer of defense.

3.2. Source-Based Influence Flow

The second component of Spam-Resilient SourceRank
is source-based influence flowfor determining the edge
strength from one source to another. Given the directed
source graphGS = 〈S,LS〉, letw(si, sj) denote the weight
assigned to the source edge(si, sj) ∈ LS . Unlike the
straightforward notion of linkage in the page graph, source
edges are derived from the page edges in the underlying
page graph. Rather than a simple uniform edge strength for
each outgoing edge, we propose asource consensusedge
weighting that counts the number of unique pages within an
originating source that point to a target source:

w(si, sj) =
∑

pi|s(pi)=si

( ∨
pj |s(pj)=sj

I [(pi, pj) ∈ LP ]

)
Since, source-based influence flow is a scalar value in

the range[0, 1], where the outgoing edge weights for any
source sum to 1, we require an additional normalization of
the raw edge weights. We can represent the source graph
GS with an |S| × |S| transition matrixT′ where the entries
indicate source consensus edge weights:

T ′
ij =

{
w(si, sj) if (si, sj) ∈ LS

0 otherwise

If we consider a PageRank-style calculation over the
source transition matrixT′, we observe a key spam-
resilience characteristic. The source consensus edge
weighting scheme places the burden on the hijacker (or hon-
eypot) to capturemanypages within a legitimate source to
exert any influence over the spam target pages. Hijacking a
few pages in sourcei will have little impact over the source-
level influence flow to a spammer sourcej; that isw(si, sj)
is less subject to manipulation in the presence of many other
pages within a source, since it is aggregated over the link
characteristics of all pages in the source.

3.3. Influence Throttling
The source view of the Web and the source-based influ-

ence flow provide a foundation towards mitigating the influ-
ence of link-based manipulation, but there are still open vul-
nerabilities. First, a spammer may control pages in multiple
colluding sources, meaning that the spammer can construct
a linking arrangement to ensure any arbitrary edge weight
between colluding sources. Second, although the proposed
spam-resilient components have some benefit, they are still
subject to hijacking and honeypot attacks by a determined
Web spammer (e.g., a spammer may have to hijack many
more pages than in the page-level ranking model, but there
is still room for manipulation in the source-level ranking
model). As a result, we next present the final component
of Spam-Resilient SourceRank for managing the impact of
spammer-controlled links –influence throttling– so that a
spammer cannot take unfair advantage of the ranking sys-
tem, even in the presence of large-scale link manipulation.

First, we augment the original source graphGS =
〈S,LS〉 to require that all sources have a self-edge, regard-
less of the characteristics of the underlying page graph, i.e.,
∀si ∈ S, (si, si) ∈ LS holds. Including self-edges in the
source graph is a sharp departure from the classic PageRank
perspective and may initially seem counter-intuitive – since
it allows a source to have a direct influence over its own rank
– but we will see how it is a critical feature of the Spam-
Resilient SourceRank approach.

For each sourcesi ∈ S, we associate a throttling factor
κi ∈ [0, 1], such that the self-edge weightw(si, si) ≥ κi.
We refer to this|S|-length vectorκ as thethrottling vec-
tor. By requiring a source to direct some minimum amount
of influence (κi) on itself, we throttle the influence it can
pass along to other sources. In the extreme, a source’s influ-
ence is completely throttled whenκi = 1, meaning that all
edges to other sources are completely ignored (and hence,
the throttled source’s influence on other sources is dimin-
ished). Conversely, a source’s influence is not throttled at all
whenκi = 0. Based on the throttling vectorκ, we can con-
struct a new influence-throttled transition matrixT′′ where
the transition probabilities inT′ are:

T ′′
ij =



κi if T ′
ij < κi

andi = j
T ′

ij∑
i 6=k T ′

ik

· (1− κi) if T ′
ij < κi

andi 6= j
T ′

ij otherwise

For a source that does not meet its minimum throttling
threshold (i.e.,T ′

ii < κi), the self-edge weight in the trans-
formed transition matrix is tuned upward (i.e.,T ′′

ii = κi),
and the remaining edge weights are re-scaled such that∑

i 6=j T ′′
ij = 1− κi.
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Many factors may impact the specific choice ofκ, in-
cluding the size of the Web dataset, the number of pages
considered, the link density, and other link characteris-
tics. In Section 5 we discuss one approach based onspam-
proximity. The key insight is to tuneκi higher for known
spam sources and those sources that link to known spam
sources (e.g., through hijacking, honeypots, or collusion).

3.4. Putting it All Together
Given the three key components introduced in the previ-

ous sections, we can now construct the final Spam-Resilient
SourceRank ranking model. Similar in spirit to the “random
surfer” model often used to describe PageRank, we adopt a
source-based random walk model. Intuitively, each source’s
“authority” (or “importance”) is determined by the long-
term probability of a random walker visiting each source.
Unlike the PageRank random walker, the Spam-Resilient
SourceRank random walker can be interpreted as aselec-
tive random walk, whereby a random walker arrives at a
source, and flips a source-specific biased coin. The random
walk proceeds as follows. For sourcesi ∈ S:

• With probabilityακi, the random walker follows source
si’s self-edge;

• With probabilityα(1 − κi), the random walker follows
one of sourcesi’s out-edges;

• With probability1 − α, the random walker teleports to
a randomly selected source.

Such a random walk may be modelled by a Markov
Chain and written in terms of the transition matrixT̂:

T̂ = α ·T′′ + (1− α) · 1 · cT (2)

The teleportation factor is included as a “fix” to guar-
antee that the transition matrix associated with the Markov
chain be both aperiodic and irreducible, which ensures con-
vergence to a stationary distribution. The stationary dis-
tribution of the random walk corresponds to the principal
eigenvector of̂T, and it encodes the long-term probability
of a random walker being at each particular source. The sta-
tionary distribution is exactly the Spam-Resilient Source-
Rank vectorσ. The eigenvector version:

σT = σT (α ·T′′ + (1− α) · 1 · cT )

may be rewritten in a convenient linear form as:

σT = α · σT ·T′′ + (1− α) · cT (3)

Coupled with the normalizationσ/||σ||, this linear for-
mulation results in exactly the same Spam-Resilient Source-
Rank vector as the eigenvector problem, but with the added
property that the score for any source may be written as a
linear combination of the scores of the sources that point to
it. For more discussion of this linear formulation, we refer
the reader to two recent studies: [8, 25].

w(s0,s0)
1-w(s0,s0)-T0 z1

w(s1,s1)

T0 T1
1-w(s1,s1)-T1

z0

0 1

w(s_t,s_t)

1 - w(s_t,s_t)z

a) Single Source b) Two Sources

t

Figure 1: What is the optimal source configuration?

4. Spam Resilience Analysis
In this section, we analyze the spam resilience properties

of the proposed ranking model and compare it to PageRank.
We consider a Web spammer whose goal is to maximize his
influence over a singletarget sourcethrough the manipula-
tion of links (both from within the source and from other
sources), which corresponds to the vulnerabilities identified
in Section 2.

4.1. Link Manipulation Within a Source

We begin by studying link manipulation that is confined
to a single source, which would correspond to collusive ar-
rangements among spammer-controlled Web pages like link
farms and link exchanges. In the source view of the Web, all
intra-source page links are reflected in a single self-edge to
the source, and all page links to others sources are reflected
in source edges to external sources.

How should the Web spammer configure the target
source st to maximize its Spam-Resilient SourceRank
score, which in turn will have the greatest impact on the
target source’s rank relative to all other sources? In Fig-
ure 1(a), we consider a generic source configuration for
st. The target has a self-edge weight ofw(st, st), leaving
1 − w(st, st) for all source edges to external sources. Let
z denote the aggregate incoming score to the target source
from sources beyond the control of the Web spammer. Here,
the Web spammer has direct influence over its own links
(reflected inw(st, st)) but no influence over the incoming
links from other sources. As prescribed in Equation 3, we
can write the target source’s score:

σt = αz + α · w(st, st) · σt +
1− α

|S|

σt =
αz + 1−α

|S|

1− α · w(st, st)

which is maximized whenw(st, st) = 1. The optimal con-
figuration is for the source toeliminate all out edgesand
retain only a self-edge.Hence, the optimalσ∗t is:

σ∗t =
αz + 1−α

|S|

1− α
(4)
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Figure 2: Change in Spam-Resilient SourceRank Score By
Tuningκ from a baseline value to 1

Impact of Influence Throttling: Given that the target
source has an initial throttling factorκ < 1 and that
w(st, st) = κ, the next question to consider is by how
much may a source improve its score by adopting a self-
edge weight even higher than its throttling factor (i.e., by in-
creasingw(st, st) beyond the mandated minimumκ throt-
tling value)? Examining the relative SourceRank score for
st, we have:

σ∗t
σt

=
αz+ 1−α

|S|
1−α

αz+ 1−α
|S|

1−ακ

=
1− ακ

1− α

For a source with an initial baseline throttling value of
κ = 0, a source may increase its SourceRank score by1

1−α
by increasing itsw(st, st) to 1. For typical values ofα –
from 0.80 to 0.90 – this means a source may increase its
score from 5 to 10 times. For sources that are more throttled
there is less room for manipulation. In Figure 2, we show
for increasing values of a baselineκ, the maximum factor
change in Spam-Resilient SourceRank score by tuning the
κ value closer to 1. A highly-throttled source may tune its
SourceRank score upward by a factor of 2 for an initialκ =
0.80, a factor of 1.57 times forκ = 0.90, and not at all for
a fully-throttled source.

By including self-edges in the source graph and the throt-
tling factorκ, we allow a Web spammer some room for ma-
nipulating the score of its sources; however, the manipula-
tion is for aone-timeincrease only and it may be limited by
tuning theκ throttling factor higher. No such limit is pro-
vided under PageRank, meaning that a Web spammer may
arbitrarily increase the score of a series of target pages by a
factor even larger than we see for SourceRank.

4.2. Cross-Source Link Manipulation
We now study link manipulation across two or more

sources, which corresponds to hijacking and honeypots sce-

narios, as well as collusive arrangements that span multiple
sources. For this analysis, the spammer wishes to maxi-
mize the score for the single target source by manipulating
the links available in one or morecolludingsources.

In Figure 1(b), we show a generic source configuration
for a single target sources0 and single colluding source
s1. If we let θ0 andθ1 denote the edge weighting for each
source to sources outside the sphere of influence of the Web
spammer. Hence, sources0 has1 − w(s0, s0) − θ0 edge
weighting available for the edge to sources1. The cor-
responding edge weight holds for the edge froms1 to s0.
Let z0 and z1 denote the incoming score to each source,
respectively, from other sources beyond the control of the
Web spammer. Hence, we may describe the Spam-Resilient
SourceRank for the two sources with a system of equa-
tions, where the Web spammer may manipulatew(s0, s0),
w(s1, s1), θ0, andθ1:

σ0 = αz0 + αw(s0, s0)σ0 +
1− α

|S|
+ α(1− w(s1, s1)− θ1)σ1

σ1 = αz1 + αw(s1, s1)σ1 +
1− α

|S|
+ α(1− w(s0, s0)− θ0)σ0

Solving and taking the partial derivative with respect to
the four parameters, we find that the optimal scenario for
a Web spammer who wishes to maximize the SourceRank
score for sources0 is to setθ0 = θ1 = 0, meaning that
there are no source edges to sources outside of the Web
spammer’s sphere of influence;w(s0, s0) = 1, meaning
that the target source points only to itself and not at all
to the colluding source;w(s1, s1) = 0, meaning that the
colluding source points only to the target source. With the
κ1 throttling factor requirement this means that the best the
colluding source can do is meet the minimum requirement
w(s1, s1) = κ1 and direct the rest (1− κ1) to the target.

If we extend this analysis to considerx colluding sources
(labelleds1, ...sx) all in service to a single target source,
then the system of equations is:

σ0 = αz0 + αw(s0, s0)σ0 +
1− α

|S|

+ α
x∑

i=1

(1− w(si, si))
αzi + 1−α

|S|

1− αw(si, si)

σi = αzi + αw(si, si)σi +
1− α

|S|
+ α(1− w(s0, s0)− θ0)σ0

The optimal configuration is for all colluding sources to
setθi = 0, meaning that there are no source edges from
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colluding sources to sources outside of the Web spammer’s
sphere of influence;w(s0, s0) = 1, meaning that the target
source points only to itself and not at all to the colluding
source;w(si, si) = κi, meaning that the colluding source
directs the minimum edge weight to itself and the remainder
(1 − κi) to the target source. Hence, each colluding source
si contributes some SourceRank∆σi(σ0) to the targets0:

∆σi
(σ0) =

α

1− α

x∑
i=1

(1− κi)
αzi + 1−α

|S|

1− ακi
(5)

Clearly, tuning theκ throttling factor for each source closer
to 1 (meaning that the majority of the colluding source’s
edge weight is directed to itself) results in a smaller change
to the score of the target source. Hence, the introduction of
the self-edge and the use of the throttling factor limits the
impact of inter-source link manipulation.
Impact of Influence Throttling: To further understand the
importance of theκ throttling factor on muting the impact
of a Web spammer across sources, we consider a scenario
in which a Web spammer controlsx colluding sources, that
each source has the same throttling factor ofκ, and that the
sources are configured optimally (as described above). Now
suppose the throttling factor is raised toκ′ for each source,
meaning that each colluding source has less influence on the
target source. How many sourcesx′ are needed to achieve
the same score as in the original case? I.e., what impact
does raising the throttling factor have on the Web spammer?

If we let zi = 0, we may write the original Spam-
Resilient SourceRank score withx colluding sources and
an initial throttling factorκ as well as the Spam-Resilient
SourceRank score under the higher throttling factor (κ′)
scenario:

σ0(x, κ) =
(α(1−κ)x

1−ακ + 1) 1−α
|S|

1− α

σ0(x′, κ′) =
(α(1−κ′)x′

1−ακ′ + 1) 1−α
|S|

1− α

Letting σ0(x, κ) = σ0(x′, κ′), we may find a relation-
ship between the number of original colluding sourcesx
and the number of colluding sourcesx′ necessary under the
higher throttling factor:

x′

x
=

1− ακ′

1− ακ
· 1− κ

1− κ′

In Figure 3, we plot the percentage of additional sources
(x′

x − 1) needed for a choice ofκ′ to equal the same influ-
ence on the score of the target page as under an initial choice
κ = 0. For example, whenα = 0.85 andκ′ = 0.6, there
are 23% more sources necessary to achieve the same score
as in the case whenκ = 0. Whenκ′ = 0.8, the Web spam-
mer needs to add 60% more sources to achieve the same

Figure 3: Additional Sources Needed Under the Throttling Factor
κ′ to Equal the Impact whenκ = 0

influence; forκ′ = 0.9, he needs 135% more sources; and
for κ′ = 0.99, he needs 1485% more sources. Tuning the
throttling factor higher considerably increases the cost of
inter-source manipulation.

4.3. Comparison with PageRank

Now that we have studied Spam-Resilient SourceRank
and seen how influence throttling can be used to signifi-
cantly increase the cost of manipulation to a Web spammer,
we next compare Spam-Resilient SourceRank to PageRank.
Since PageRank provides page-level rankings, we consider
a Web spammer whose goal is to maximize his influence
over a singletarget pagewithin a target source. Extending
the framework from the previous section, we consider three
scenarios:
1. The target page and all colluding pages belong to the
same source.
2. The target page belongs to one source, and all colluding
pages belong to one colluding source.
3. The target page belongs to one source, and the colluding
pages are distributed across many colluding sources.

For each scenario, the colluding pages are structured
with a single link to the target page. We consider the impact
of an increasing number of colluding pages (τ ). Adopting
a linear formulation of PageRank that is similar in spirit to
Equation 3, we may denote the PageRank scoreπ0 for the
target page in terms of the PageRank due to pages outside of
the sphere of influence of the Web spammer, the PageRank
due to the teleportation component, and the PageRank due
to theτ colluding pages:

π0 = z +
1− α

|P|
+ τα

1− α

|P|

whereα refers to the teleportation probability and|P| refers
to the total number of pages in the page graph. The con-
tribution of theτ colluding pages to the overall PageRank
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score of the target page is:

∆τ (π0) = τα
1− α

|P|

For Scenario 1, the Web spammer configures the target
source optimally (as we presented in Equation 4), meaning
that the colluding pages’ intra-source links to the target page
have no impact on the Spam-Resilient SourceRank score
(other than perhaps a one-time increase due to tuning the
self-edge weight up fromκ to 1). PageRank, however, is
extremely susceptible, as illustrated in Figure 4(a), where
the PageRank score (PR) of the target page jumps by a fac-
tor of nearly 100 times with only 100 colluding pages.

For Scenario 2, the Web spammer adopts the optimal
(worst-case) two-source configuration discussed in the pre-
vious section. In this configuration, the target source points
only to itself, and the colluding source that contains the col-
luding pages directsκ edge weight to itself and the rest to
the target source. In Figure 4(b), we see how PageRank
is again extremely susceptible to such collusion, whereas
the maximum influence over Spam-Resilient SourceRank is
capped at 2 times the original score for several values ofκ.
Since PageRank has no notion of a source, makes no effort
to regulate the addition of new pages to the Web graph, and
has no notion of influence throttling, all three spam scenar-
ios under consideration will have the same extreme impact
on the PageRank score of the target page.

In Scenario 3, the Web spammer adopts the optimal con-
figuration forx colluding sources (as we established in the
previous section). Figure 4(c) plots the extreme impact on
PageRank. As the influence throttling factor is tuned higher
(up to 0.99), the Spam-Resilient SourceRank score of the
target source is less easily manipulated.

5. Spam-Proximity Throttling
Determining the level of influence throttling for each

source is an important component of Spam-Resilient
SourceRank. In this section, we discuss one alternative for
determiningκ using the notion ofspam proximity. Spam
proximity is intended to reflect the “closeness” of a source
to other spam sources in the source graph. A source is
“close” to spam sources if it is a spam source itself; if it
directly links to a spam source; or if the sources it directly
links to link to spam sources, and so on (recursively).

Given a small seed of known spam sources, we adopt a
propagation approach that relies on an inverse PageRank-
style model to assign a spam proximity value toevery
source in the Web graph, similar to the BadRank [30] ap-
proach for assigning in essence a “negative” PageRank
value to spam. First, we reverse the links in the original
source graphGS = 〈S,LS〉 so that we have a newin-
vertedsource graphG′S = 〈S,L′

S〉, where the source edge
(si, sj) ∈ LS ⇒ (sj , si) ∈ L′

S . A source that ispointed

to by many other sources in the original graph will now it-
self point to those sources in the inverted graph. We replace
the original transition matrix̂T with the inverse transition
matrix Û:

Û = β ·U + (1− β) · 1 · dT (6)

whereU is the transition matrix associated with the re-
versed source graphG′S , β is a mixing factor, andd is a
teleportation probability distribution derived from the set of
pre-labeled spam sources. An element ind is 1 if the cor-
responding source has been labeled as spam, and 0 other-
wise. By including the pre-labeled spam sources, the re-
sulting spam-proximity vector is biased towards spam and
sources “close” to spam.

Based on these scores, we can assign a throttling value
to each source, such that sources that are “closer” to spam
sources are throttled more than more distant sources. There
are a number of possible ways to assign these throttling val-
ues. In this paper, we choose a simple heuristic such that
sources with a spam-proximity score in the top-k are throt-
tled completely (i.e.,κi = 1 for all si in the top-k), and all
other sources are not throttled at all. We are exploring this
topic in our ongoing research.

6. Experimental Evaluation
In this section, we provide experimental validation for

the Spam-Resilient SourceRank approach over a selection
of Web spam scenarios to supplement the more exhaustive
analysis of the previous section.

6.1. Data and Setup
We rely on three real-world Web datasets. The first

dataset –WB2001 – was originally collected by the Stan-
ford WebBase project [2] in 2001 and includes over 118
million pages from a wide variety of top-level-domains.
The second dataset –UK2002 – is derived from a 2002
crawl of the.uk top-level-domain by UbiCrawler [9] and
consists of over 18 million pages. The last dataset –IT2004
– is derived from a 2004 crawl of the.it top-level-domain,
again by UbiCrawler, and consists of over 40 million pages.

For each dataset we extracted the host information for
each page URL and assigned pages to sources based on this
host information. In Table 1, we present summary informa-
tion for each of the source graphs.

Table 1: Source Summary
Dataset Sources Edges

UK2002 98,221 1,625,097
IT2004 141,103 2,862,460
WB2001 738,626 12,554,332

All of the Spam-Resilient SourceRank code was writ-
ten in Java. The data management component was based
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Figure 4: Comparison with PageRank: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3

Figure 5: Rank Distribution of All Spam Sources

on the WebGraph compression framework described in [10]
for managing large Web graphs in memory. We measured
the convergence for PageRank and SourceRank calculations
using the L2-distance of successive iterations of the Power
Method and terminated the PageRank and SourceRank cal-
culations once the L2-distance dropped below a threshold
of 10e-9. For all calculations, we used a mixing parameter
of 0.85 (which is typical in the literature, e.g., [28]).

6.2. Influence Throttling Effectiveness

We begin by considering the impact of influence
throttling on the spam-resilience characteristics of Spam-
Resilient SourceRank. For the WB2001 dataset we manu-
ally identified 10,315 pornography-related sources, and la-
beled these as spam. It is unreasonable for a spam identi-
fication algorithm (whether manual or automated) to iden-
tify all spam sources with high precision. Hence, of these
10,315 spam sources, we randomly selected just 1,000
(fewer than 10%) to use as a seed set for the spam-proximity
calculation. We calculated the spam-proximity score for
each source using the approach described in Section 5.

Based on these scores, we assigned an appropriate throt-
tling value to each source, such that sources that are

“closer” to spam sources are throttled more than more dis-
tant sources. These spam proximity scores are propagated
to all sources in the dataset based only on the seed set of
1,000 identified spam sources. We assigned the top-20,000
spam-proximity sources a throttling value ofκ = 1, mean-
ing that their influence was completely throttled. For all
other sources we assigned a throttling value ofκ = 0, mean-
ing that these sources were throttled not at all. We then com-
puted the Spam-Resilient SourceRank ranking vector using
these throttling values. As a point of comparison, we also
computed the baseline SourceRank ranking vector using no
throttling information.

For each of the two ranking vectors, we sorted the
sources in decreasing order of scores and divided the
sources into 20 buckets of equal number of sources. Along
the x-axis of Figure 5 we consider these 20 buckets for the
WB2001 dataset, from the bucket of top-ranked sources
(bucket 1) to the bucket of the bottom-ranked sources
(bucket 20). Along the y-axis, we plot the number of ac-
tual spam sources (of the 10,315 total spam sources) in
each bucket. The Spam-Resilient SourceRank approach
using influence throttling penalizes spam sources consid-
erably more than the baseline SourceRank approach, even
when fewer than 10% of the spam sources have been explic-
itly marked as spam.

6.3. Comparison with PageRank

In our next set of experiments we compare Spam-
Resilient SourceRank to PageRank. As a baseline, we com-
puted the PageRank vector (π) over each page graph using
the parameters typically used in the literature (e.g., [28]).
We also computed the Spam-Resilient SourceRank vector
for each source graph, using the throttling values described
in the previous section. Our goal is to study a spammer’s
impact on the rank of a target page through increasing de-
grees of manipulation, both for manipulation in a single
source and across sources.
Link Manipulation Within a Source: We first aim to val-
idate the analysis in Section 4.1 by considering the impact
of page-level manipulationwithin a single source. We ran-
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Figure 6: PageRank vs. Spam-Resilient SourceRank: Intra-Source Manipulation

domly selected five sources from the bottom 50% of all
sources that have not been throttled by the spam-proximity
influence throttling approach. This corresponds to a worst-
case scenario for Spam-Resilient SourceRank, since these
sources are essentially “in the clear”. For each source, we
randomly selected a target page within the source and then
added a single new spam page within the same source with
a link to the target page. This is caseA. We repeated
this setup for 10 pages (caseB), 100 pages (caseC), and
1,000 pages (caseD). For each case, we constructed the
new spammed page graph and source graph for each of the
three Web datasets. We ran PageRank and Spam-Resilient
SourceRank for each of the four cases.

In Figure 6, we show the influence of the Web spam-
mer in manipulating the rank of the target page and the rank
of the target source through the average ranking percentile
increase. For WB2001, the PageRank of the target page
jumped 80 percentile points under caseC (from an average
rank in the 19th percentile to the 99th percentile), whereas
the Spam-Resilient SourceRank of the target source jumped
only 4 percentile points (from an average rank in the 27th
percentile to the 31st percentile).

We first note the dramatic increase in PageRank for
the target page across all three Web datasets, which con-
firms the analysis about the susceptibility of PageRank to
rank manipulation. Although PageRank has typically been
thought to provide fairly stable rankings (e.g., [27]), we can
see how link-based manipulation has a profound impact,
even in cases when the spammer expends very little effort
(as in casesA and B). The Spam-Resilient SourceRank
does increase some, but not nearly as much as PageRank,
and it requires considerably more spammer effort to yield
any significant rankings change (as in caseD). Even then,
the spammer’s impact is considerably less:∼20 percentile
points increase versus∼70 for PageRank.
Link Manipulation Across Sources: In the second Web
spam scenario, we consider the impact of manipulation
acrosssources, which corresponds to the analysis in Sec-
tion 4.2. For this scenario, the spam links are added to pages
in a colluding source that point to the target page in a differ-

ent source. We paired the randomly selected target sources
from the previous experiment with a randomly selected col-
luding source, again from the bottom 50% of all sources.
For each pair, we added a single spam page to the collud-
ing source with a single link to the randomly selected target
page within the target source. This is caseA. We repeated
this setup for 10 pages (caseB), 100 pages (caseC), and
1,000 pages (caseD). For each case, we then constructed
the new spammed page graph and source graph for each
of the three Web datasets. We ran PageRank and Spam-
Resilient SourceRank for each of the four cases.

In Figure 7, we show the influence of the Web spam-
mer in manipulating the rank of the target page and the
target source. Since the page-level view of the Web does
not differentiate between intra-source and inter-source page
links, we again see that the PageRank score dramatically
increases, whereas the Spam-Resilient SourceRank score is
impacted less. We witness this advantage using no addi-
tional influence throttling information for the sources un-
der consideration, meaning that the Spam-Resilient Source-
Rank advantage would be even greater with the addition of
more throttling information.

7. Related Work

As we have noted, several studies have identified large
portions of the Web to be subject to malicious rank manip-
ulation [17, 22], especially through the construction of spe-
cialized link structures for promoting certain Web pages.
In [21], a taxonomy of Web spam is proposed that cate-
gorizes various techniques to manipulate search engine re-
sults. Several researchers have studied collusive linking ar-
rangements with respect to PageRank, including [31] and
[5]. Link farms have been studied in [3]. Separately, opti-
mal link farms and the effectiveness of spam alliances have
been studied in [20].

There have been several previous efforts to handle Web
spam, beginning with Davison [12], who was the first to in-
vestigate the identification of so-called nepotistic links on
the Web. Other researchers have attempted to identify spam
pages based on a statistical analysis of common Web prop-
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Figure 7: PageRank vs. Spam-Resilient SourceRank: Inter-Source Manipulation

erties (like page length) [17]; many outliers in their analy-
sis were, indeed, spam Web pages. Similarly, there have
been some initial efforts to learn spam classifiers to dis-
tinguish between link farms and legitimate sites [15]. In a
similar vein, several researchers have suggested identifying
and penalizing pages that derive a large amount of ranking
benefit from spam links, e.g., [6], [19], and [30]. Rather
than identify spam pages outright, the TrustRank approach
propagates trust from a seed set of trusted Web pages [22].
Such a technique is still vulnerable to honeypot and hijack-
ing vulnerabilities, in which high-value trusted pages may
be especially targeted.

8. Conclusion
We have presented the Spam-Resilient SourceRank ap-

proach for Web spam resilient ranking of Web data sources,
and shown how it counters link-based vulnerabilities. In
our ongoing research we are developing a model of spam-
mer behavior, including new metrics for the effectiveness of
link-based manipulation. Our goal is to evaluate the relative
impact on thevalueof a spammer’s portfolio of sources due
to link-based manipulation.
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