
Enhancing Storage System Availability on Multi-Core

Architectures with Recovery-Conscious Scheduling

Sangeetha Seshadri∗ Lawrence Chiu† Cornel Constantinescu†

Subashini Balachandran† Clem Dickey† Ling Liu∗ Paul Muench†

∗Georgia Institute of Technology †IBM Almaden Research Center
801 Atlantic Drive GA-30332 650 Harry Road CA-95120

{sangeeta,lingliu}@cc.gatech.edu {lchiu, cornel, sbalach, pmuench}@us.ibm.com

Abstract

In this paper we develop a recovery conscious frame-
work for multi-core architectures and a suite of tech-
niques for improving the resiliency and recovery ef-
ficiency of highly concurrent embedded storage soft-
ware systems. Our techniques aim at providing con-
tinuous availability and performance during recov-
ery while minimizing the time to recovery and the
need for rearchitecting the system (legacy code). The
main contributions of our recovery conscious frame-
work include (1) a task-level recovery model, which
consists of mechanisms for classifying storage tasks
into recovery groups and dividing the overall system
resources into recovery-oriented resource pools, and
(2) the development of recovery-conscious schedul-
ing, which enforces some serializability of failure-
dependent tasks in order to reduce the ripple effect
of software failure and improve the availability of
the system. We present three alternative recovery-
conscious scheduling algorithms; each represents one
way to trade-off between recovery time and system
performance. We have implemented and evaluated
these recovery-conscious scheduling algorithms on a
real industry-standard storage system. Our exper-
imental evaluation results show that the proposed
recovery conscious scheduling algorithms are non-
intrusive and can significantly improve (throughput
by 16.3% and response time by 22.9%) the perfor-
mance of the system during failure recovery.

1 Introduction

Enterprise storage systems are the foundations of
most data centers today and extremely high avail-
ability is expected as a basic requirement from these
systems. With rapid and exponential growth of
digital information and the increasing popularity
of multi-core architectures, the demand for large
scale storage systems of extremely high availability
(moving close to 7 nines) continues to grow. On
the other hand, embedded storage software systems

(controllers) are becoming much more complex and
difficult to test especially given concurrent develop-
ment and quality assurance processes.

With software failures and bugs becoming an ac-
cepted fact, focusing on recovery and reducing time
to recovery has become essential in many modern
storage systems today. In current system architec-
tures, even with redundant controllers, most mi-
crocode failures trigger system-wide recovery [9, 10]
causing the system to lose availability for at least
a few seconds, and then wait for higher layers to
redrive the operation. This unavailability is visible
to customers as service outage and will only increase
as the platform continues to grow using the legacy
architecture.

In order to reduce the recovery time and more
importantly scale the recovery process with sys-
tem growth, it is essential to perform recovery at
a fine-grained level: recovering only failed compo-
nents and allowing the rest of the system to func-
tion uninterrupted. However, due to fuzzy compo-
nent interfaces, complex dependencies and involved
operational semantics of the system, implementing
such fine-grained recovery is challenging. Therefore,
firstly we must develop a mechanism to perform fine-
grained recovery taking into consideration interac-
tions between components and recovery semantics.
Secondly, since localized recovery spans multiple de-
pendent threads in reality, we must bound this local-
ized recovery process in time and resource consump-
tion in order to ensure that resources are available
for other normally operating tasks even during re-
covery. Finally, since we are dealing with a large
legacy architecture (> 2M loc), to ensure feasibility
in terms of development time and cost we should
minimize changes to the architecture.

In this paper we develop a recovery conscious
framework for multi-core architectures and a suite
of techniques for improving the resiliency and recov-
ery efficiency of highly concurrent embedded storage
software systems. Our techniques aim at providing

continuous availability and good performance even
during a recovery process by bounding the time to
recovery while minimizing the need for rearchitect-
ing the system.

The main contributions of our recovery conscious
framework include (1) a task-level recovery model,
which consists of mechanisms for classifying storage
tasks into recovery groups and dividing the over-
all system resources into recovery-oriented resource
pools; and (2) the development of recovery-conscious
scheduling, which enforces some serializability of
failure-dependent tasks in order to reduce the rip-
ple effect of software failures and improve the avail-
ability of the system. We present three alternative
recovery-conscious scheduling algorithms, each rep-
resenting one way to trade-off between recovery time
and system performance.

We have implemented and evaluated these
recovery-conscious scheduling algorithms on a real
industry-standard storage system. Our experimen-
tal evaluation results show that the proposed re-
covery conscious scheduling algorithms are non-
intrusive, involve minimal new code and can signifi-
cantly improve performance during failure recovery
thereby enhancing availability.

2 Problem Definition

In this section we motivate this research and illus-
trate the problem we address by considering the stor-
age controllers of some representative storage system
architecture. We focus on system recoverability from
software failures. Storage controllers are embedded
systems that add intelligence to storage and provide
functionalities such as RAID, I/O routing, error de-
tection and recovery. Failures in storage controllers
are typically more complex and more expensive to
recover if not handled appropriately. Although this
section discusses specifically about embedded soft-
ware failures in a storage controller, we believe that
most of the concepts may be applicable to other
highly concurrent system software too.

2.1 Motivation and Technical Challenges

Figure 1 gives a conceptual representation of a stor-
age subsystem. This is a single storage subsystem
node consisting of hosts, devices, a processor com-
plex and the interconnects. In practice, storage sys-
tems may be composed of one or more such nodes in
order to avoid single-points-of-failure. The proces-
sor complex provides the management functionali-
ties for the storage subsystem. The system memory
available within the processor complex serves as pro-
gram memory and may also serve as the data cache.
The memory is accessible to all the processors within
the complex and holds the job queues through which

N−way SMP

Device

. . . .

Persistent Memory

 Host

 Host
Complex

Processor
Complex

Device
Complex

JobQ

Data Cache/

Figure 1: Storage Subsystem Architecture

functional components dispatch work. As shown in
Figure 1, this processor complex has a single job
queue and is an N-way SMP node. Any of the N pro-
cessors may execute the jobs available in the queue.
Some storage systems may have more than one job
queue (e.g. multiple priority queues).

The storage controller software typically consists
of a number of interacting components each of which
performs work through a large number of asyn-
chronous, short-running threads (∼ µsecs). We re-
fer to each of these threads as a ‘task’. Examples of
components include SCSI command processor, cache
manager and device manager. Tasks (e.g., process-
ing a SCSI command, reading data into cache mem-
ory, discarding data from cache etc.) are enqueued
onto the job queues by the components and then
dispatched to run on one of the many available pro-
cessors each of which runs an independent scheduler.
Tasks interact both through shared data-structures
in memory as well as through message passing.

With this architecture, when one thread encoun-
ters an exception that causes the system to enter an
unknown or incorrect state, the common way to re-
turn the system to an acceptable, functional state
is by restarting and reinitializing the entire system.
Since the system state may either be lost, or can-
not be trusted to be consistent, some higher layer
must now redrive operations after the system has
performed basic consistency checks of non-volatile
metadata and data. While the system reinitializes
and waits for the operations to be redriven by a host,
access to the system is lost contributing to the down-
time. This recovery process is widely recognized as a
barrier to achieving high(er) availability. Moreover,
as the system scales to larger number of cores and as
the size of the in-memory structures increase, such
system-wide recovery will no longer scale.

The necessity to embark on system-wide recovery
to deal with software failures is mainly due to the
complex interactions between the tasks which may

belong to different components. Due to the high vol-
ume of tasks (more than 20 million/minute in a typi-
cal workload), their short-running nature and the in-
volved semantics of each task, it becomes infeasible
to maintain logs or perform database-style recovery
actions in the presence of software failures. Often
such software failures need to be explicitly handled
by the developer. However, the number of scenarios
are so large, especially in embedded systems, that
the programmer cannot realistically anticipate ev-
ery possible failure. Also, an individual developer
may only be aware of the clean-up routines for the
limited scope being handled by them. This knowl-
edge is insufficient to recover the entire system from
failures, given that often interactions among tasks
and execution paths are determined dynamically.

Many software systems, especially legacy systems,
do not satisfy the conditions outlined as essential
for micro-rebootable software [3]. For instance, even
though the storage software may be reasonably mod-
ular, component boundaries, if they exist, are very
loosely defined. In addition, the scenario where com-
ponents are stateful and interact with other com-
ponents through globally shared structures (data-
structures, metadata), often leads to components
modifying each other’s state irreversibly. Moreover,
resources such as hardware and software locks, de-
vices and metadata are shared across components.
Under these circumstances, the scope of a recovery
action is not limited to a single component.

The discussion above highlights some key prob-
lems that need to be addressed in order to im-
prove system availability and provide scalable re-
covery from software failures. Concretely, we must
answer the following questions:

• How do we implement fine-grained recovery in
a highly concurrent storage system?

• Can we identify recovery dependencies across
tasks and construct efficient recovery scopes?

• How do we ensure availability of the system dur-
ing a recovery process? What are important
factors that will impact the recovery efficiency?

In addition to maintaining system performance
while reducing the time to recovery, another key
challenge in developing a scalable solution is to en-
sure that the recovery-conscious framework is non-
intrusive and thus minimize re-architecting of the
legacy application code. We will describe our solu-
tion to the first two problems − how to implement lo-
calized recovery and how to discover efficient recov-
ery scopes in Section 3. We will dedicate Section 4
to address the third problem: how do we bound the
recovery process and ensure system availability even
during localized recovery?

2.2 Taxonomy of Failures

Studies classify software faults as both permanent
and transient. Gray [6] classifies software faults into
Bohrbugs and Heisenbugs. Bohrbugs are essentially
deterministic bugs that may be caused due to per-
manent design failures. Such bugs are usually easily
identified during the testing phases and are weeded
out early in the software life cycle. On the other
hand, ‘heisenbugs’ which are transient or intermit-
tent faults that occur only under certain conditions
are not easily identifiable and may not even be re-
producible. Such faults are often due to reasons such
as the system entering an unexpected state, insuffi-
cient exception handling, boundary conditions, tim-
ing/concurrency issues or due to other external fac-
tors. Many studies have shown that most software
failures occurring in production systems are due to
transient faults that disappear when the system is
restarted [6, 3, 15].

Our work is targeted at dealing with such tran-
sient failures in a storage software system and in par-
ticular the embedded storage controller’s microcode.
Below, we provide a classification of transient fail-
ures which we intend to deal with through localized
recovery.

In complex systems, often code paths are dynamic
and input parameters are determined at runtime. As
a result many faults are not caught at compile time.
On pure functions, faults may be classified as:

• Domain errors: are caused by bad input ar-
guments, such as a divide by zero error or when
each individual input is correct, but the combi-
nation is wrong (e.g. negative number raised to a
non-integral power in a real arithmetic system).

• Range errors: are caused when input argu-
ments are correct, but the result cannot be com-
puted (such as a result which would cause an
overflow).

With actions based on system state there are ad-
ditional complexities. For example, a configuration
issue that appeared early in the installation process
may have been fixed by trying various combinations
of actions that were not correctly undone. As a
result the system finds itself in an unknown state
which manifests as a failure after some period of nor-
mal operation. Such errors are very difficult to trace,
and although transient may continue to appear ev-
ery so often. We classify such system state based
errors as:

• State error: where the input arguments are
wrong for the current state of the object.

• Internal logic error: where the system has
unexpectedly entered an incorrect or unknown
state. Such an error often triggers further state

errors.

Each of the above error types can lead to tran-
sient failures. Some of the transient failures can
be fixed through appropriate recovery actions which
may range from dropping the current request to
retrying the operation or performing a set of actions
that take the system to a known consistent state.
For example, some of such transient faults that oc-
cur in storage controller code are:

• Unsolicited response from adapter: An adapter
(a hardware component not controlled by our mi-
crocode) sends a response to a message which we
did not send - or do not remember sending. This
is an example of a state error.

• Incorrect Linear Redundancy Code (LRC): A
control block has the wrong LRC check bytes,
for instance, due to an undetected memory er-
ror; an example of an internal logic error.

• Queue full: An adapter refuses to accept more
work due to a queue full condition; an example
of both an internal logic error and state error.

In addition, there are other error scenarios such as
violation of a storage system or application service
level agreements. The ‘time-out’ conditions are also
very common in large scale embedded storage sys-
tems. While the legacy system grows along multiple
dimensions, the growth is not proportional along all
dimensions. As a result hard-coded constant time-
out values distributed in the code base often create
unexpected artificial violations.

2.3 Recovery Models

Intuitively we can see that localized recovery may
be possible for many of the failure scenarios outlined
above, and thus system-wide software reboots can be
avoided. Sometimes even for situations of resolving
deadlock or livelock, it may be sufficient if a minimal
subset of tasks or components of the system undergo
restarts (e.g., deadlock resolution in transactional
databases [7]). Of course there are scenarios, such
as severe memory corruption, where the only high-
confidence way of repairing the fault is to perform
system-wide clean-up.

In production environments, techniques for fault-
tolerance, i.e., coping with the existence and mani-
festation of software faults can be classified into two
primary categories with respect to the fault repair-
ing methods: (1) those that provide fault treatment,
such as restarts of the software, rebooting of the
system and utilizing process pair redundancy; and
(2) those that provide error recovery, such as check-
pointing and log-based recovery. Alternatively, one
can categorize the recovery models based on the
granularity of the recovery scopes. All the above-

mentioned techniques could be applied to any recov-
ery scope. In our context, we consider the following
three types of recovery scopes:

• System level: Performing fault treatment at
this level has proven to be an effective high-
confidence way of recovering the system from
transient faults [2], but has a high cost in terms
of recovery time and the resulting system down-
time. On the other hand performing error re-
covery at the system level through checkpointing
and recovery can be prohibitively expensive for
systems with very high volumes of workload and
complex semantics.

• Component level: Both fault treatment and
error recovery are more scalable and cost effective
at this granularity. For fault treatment, the main
challenge is identifying these ‘component bound-
aries’ especially in systems that do not have well
defined interfaces. Again, the difficult hurdle to
performing checkpoint/log-based error recovery
at this level is understanding the semantics of
operations.

• Task level: At this very fine-grained level,
the issue of operational semantics still remains.
However, performing fault treatment at this level
is efficient both in terms of cost and system avail-
ability.

The main advantage of performing error recovery
or fault-treatment at the task-level as compared to
the component-level, is that it allows us to accommo-
date cross-component interactions and define ‘recov-
ery boundaries’ in place of ‘component boundaries’.
Our goal is to handle most of the failures and ex-
ceptions through task-level (localized) recovery, and
avoid resorting to system-wide recovery unless it is
absolutely necessary.

3 Task-level Recovery Framework

Transactional recovery in relational DBMSs is a suc-
cess story of fine-grained error recovery, where the
set of operations, their corresponding recovery ac-
tions and their recovery scopes are well-defined in
the context of database transactions. However, this
is not the case in many legacy storage systems.
For example, consider the embedded storage con-
troller in which tasks executed by the system are in-
volved in more complex operational semantics, such
as dynamic execution paths and complex interac-
tions with other tasks. Under these circumstances,
in order to implement task-level recovery, we have
to deal with both the semantics of recovery and the
identification of recovery scopes.

Recovery from a software failure involves choos-
ing an appropriate strategy to treat/recover from
the failure. The choice of recovery strategy depends

��WriteToCache

•� startSCSICmd()

•� processRead()

• getTrack()

• getTempResource()

….

PANIC(error_code)

….

CB-0sets

sets CB-1 Clean -up func�

User-�specified �context�

sets� CB-2
RB� RB� RB�

(error_code)�

CB Clean-�Up Block

RB Resource Block

Figure 2: Framework for Task Level Recovery

on the nature of the task, the context of the failure,
and the type of failure. For example, within a single
system, the recovery strategy could range from con-
tinuing the operations (ignoring the error), retrying
the operation (fault treatment using environmental
diversity) or propagating the fault to a higher layer.
In general, with every failure context and type, we
could associate a recovery action. In addition, to en-
sure that the system will return to a consistent state,
we must also avoid deadlock or resource hold-up sit-
uations by relinquishing resources such as hardware
or software locks, devices or data sets that are in the
possession of the task.

Bearing these design principles in mind, we de-
velop a two-tier framework for performing task-level
recovery through a set of non-intrusive recovery
strategies. The top tier provides the capabilities of
defining the recovery scope at task level through a
careful combination of both the programmer’s speci-
fication at much coarser granularity and the system-
determined recovery scope at finer-granularity. The
bottom tier provides the recovery-conscious schedul-
ing algorithms that balance the performance and the
recovery efficiency.

In this framework, we refer to the context of a fail-
ure as a recovery point and provide mechanisms
for developers to define clean-up blocks which are
recovery procedures and re-drive strategies. A clean-
up block is associated with a recovery point and en-
capsulates failure codes, the associated recovery ac-
tions, and resource information. The specification of
the actual recovery actions in each of the clean-up
blocks is left to the developers due to their task-
specific semantics.

In our implementation, the recovery-conscious
scheduler alone was implemented in approximately
1000 lines of code. A naive coding and the design
effort for task level recovery would be directly pro-

portional to the number of “panics” or failures in
the code that are intended to be handled using our
framework. In general, the coding effort for a sin-
gle recovery action is small and is estimated to be
around a few tens of lines of code (using semicolons
as the definition of lines of code) per recovery action
on average. Note that, the clean-up block does not
involve any logging or complex book-keeping and is
intended to be light-weight. A more efficient han-
dling of clean-up blocks would involve classifying
common error/failure situations and then addressing
the handling of the errors in a hierarchical fashion.
For example, recoveries may be nested and we could
re-throw an error and recover with the next higher
clean-up block defined in the stack. This would in-
volve design effort towards the classification of error
codes into classes and sub-classes and identification
of common error handling situations. Finally, if we
are unable to address an error using our framework,
existing error handling mechanisms would be used as
default. The point of recovery in the stack may be
determined by factors such as access to data struc-
tures and possibilities of recovery strategies such as
retrying, termination or ignoring the error.

Figure 2 shows a schematic diagram of the re-
covery framework using the call stack of a single
task. As the task moves through its execution path,
it passes through multiple recovery points and ac-
cumulates clean-up blocks. When the task leaves
a context, the clean-up actions associated with the
context go out of scope. On the other hand, nesting
of contexts results in the nesting of the correspond-
ing clean-up blocks and the framework keeps track
of necessary clean-up blocks.

The clean-up blocks are gathered and carried
along during task execution but are not invoked un-
less a failure occurs. Resource information can also
be gathered passively. Such a framework allows a
choice of recovery strategy based on task require-
ments and requires minimal rearchitecting of the sys-
tem.

Example : We describe the selection of recovery
strategy and design of clean-up blocks using an ex-
ample from our storage controller implementation.
Consider the error described in Figure 2 which de-
picts relevant portions of the call stack. The fail-
ure situation described in this example is similar to
the commonly used ‘assert’ programming construct.
The error is encountered when a task has run out of
a temporary cache data structure known as a ‘con-
trol block’ which is not expected to occur normally
and hence results in a ‘panic’.

In this particular situation, ignoring the error is
not a possible recovery strategy since the task would
be unable to complete until a control block is avail-
able. One possible strategy is to search the list of

��������

�	
����
��� �	
�����
��

��
��������������

��
����������������

��
����������

��
������

��
����������

� ���������

Figure 3: Implicit recovery scopes

control blocks to identify any instances that are not
currently in use, but have not been freed correctly
(for example, due to incorrect flags). If any such
instances exist, they could be made available to the
stalled task. An alternative strategy would be to
retry the operation beginning at the ‘WriteToCache’
routine at a later time in order to work around con-
currency issues. Retrying the operation may involve
rolling back the resource and state setup along this
call path to their original state. Resource blocks are
used to carry the information required to success-
fully execute this strategy. Finally, in the case of
less critical tasks, aborting the task may also be an
option. Alternatively, consider a situation where an
error is encountered due to a component releasing
access to a track to which it did not have access in
the first place. The error was caused due to a mis-
match in the number of active users as perceived
by the component. In this case, a possible recovery
strategy would be to correctly set the count for the
number of active users and proceed with the execu-
tion, effectively ignoring the error.

Note that, it is important we ensure that the
interfaces with the recovery code and the recovery
code itself are reliable. The most important issue
in the tier one design is how to adequately identify
the recovery scopes or boundaries, and how to con-
cretely determine what are the set of tasks that need
to undergo recovery upon a failure?

3.1 Identifying fine-grained recovery scopes

Tasks interact with each other in complex ways.
When a single task encounters an exception, more
than one task may need to initiate recovery proce-
dures in order to avoid deadlocks and return the sys-
tem to a consistent state. In order to identify the
necessary and yet sufficient scope of a recovery ac-
tion, we need to characterize dependencies between
tasks.

Dependencies between tasks may be explicit as
in the case of functional dependencies or implicit
such as those arising from shared access to state-
ful structures (e.g., data structures, metadata) or

devices. For example, tasks belonging to the same
user request may be identified as having the same re-
covery scope. Likewise, identical tasks belonging to
the same functional component may also be marked
with the same recovery scope. Explicit dependencies
can be specified by the programmer.

However, explicit dependencies specified by the
programmer may be very coarse. For example, an
‘adapter queue full’ error should only affect tasks at-
tempting to write to that adapter and should not ini-
tiate recovery across the component. Likewise, some
dependencies may have been overlooked due to their
dynamic nature and the immense complexity of the
system. Therefore one way to refine explicit depen-
dencies is to identify implicit dependencies continu-
ously and utilize them to refine the developer-defined
recovery scopes over time. For example, one ap-
proach to identifying implicit dependencies at run-
time is by observing patterns of hardware and soft-
ware lock acquisitions. We can group the tasks that
share locks into the same recovery scope, since shar-
ing locks typically implies that they have shared ac-
cess to a stateful global object. Figure 3 illustrates
this approach through an example. It shows five
tasks and their respective lock acquisition patterns.
Tasks T1, T2 and T4 are accessing overlapping sets
of locks during their execution and thus are grouped
into one recovery scope. Similarly, tasks T3 and T5
are grouped into another recovery scope. Clearly,
this approach further refines the developer-specified
recovery scope at task level into smaller recovery
scopes based on runtime characterization of the de-
pendencies with respect to lock acquisition.

Due to the space limit of this paper, we will omit
the detailed development of recovery scope refine-
ment mechanisms. In the remaining part of this pa-
per, we assume that tasks are organized into disjoint
recovery scopes refined based on implicit dependen-
cies identified dynamically at runtime. In addition
to recovery scopes, we argue that recovery-conscious
resource management can be critical for improving
system availability during localized recovery.

3.2 Ensuring resource availability

Multi-core processors are delivering huge system-
level benefits to embedded applications. Both SMP-
based and multi-core systems are very popular in
this segment. With the number of processing cores
increasing continuously, we argue that the storage
software needs to scale both in terms of performance
and recoverability to take advantage of the system
resources.

An important goal for providing fine-grained re-
covery (task or component level) is to improve re-
coverability and make efficient use of resources on
the multi-core architectures. This ensures that re-

� �������� � 	�
����
�

Job Queue

R1

R1 R2 R2 R3 R3 R3R2 R2R2

R1R1 R1

CPU1� CPU2 CPU3 CPU4�

Figure 4: Current Scheduler

sources are available for normal system operation in
spite of some localized recovery being underway and
that the recovery process is bounded both in time
and in resource consumption. Without careful de-
sign, it is possible that more dependent tasks are
dispatched before a recovery process can complete,
resulting in an expansion of the recovery scope or
an inconsistent system state. This problem is aggra-
vated by the fact that recovery takes orders of mag-
nitude longer (ranging from milliseconds to seconds)
compared to normal operation (∼ µ secs). Also a
dangerous situation may arise where it is possible
that many or all of the threads that are concurrently
executing are dependent, especially since tasks often
arrive in batches. Then the recovery process could
consume all system resources essentially stalling the
entire system.

Ideally we would like to “fence” the failed and
recovering tasks until the recovery is complete. In
order to do so we must control the number of de-
pendent tasks that are scheduled concurrently, both
during normal operation and during recovery. In
the next section we discuss how to design a recovery
conscious scheduler that can control how many de-
pendent tasks are dispatched concurrently and what
measures should be taken in the event of a failure.

4 Recovery-Conscious Scheduling

The goal of recovery-conscious scheduling (RCS) is
to ensure system availability even during localized
recovery. By recovery-consciousness, we mean that
the scheduler must assure availability of resources
for normal operation even during a localized recov-
ery process. One way to achieve this objective is to
intelligently isolate the recovery process by bound-
ing the amount of resources that will be consumed
by the recovering tasks.

Figure 4 shows a performance-oriented scheduling
algorithm that does not take recovery dependencies
into consideration while scheduling tasks. The dia-
gram shows a 4-way SMP system where each pro-
cessor independently schedules tasks from the same

job queue. This scheduling algorithm aims at maxi-
mizing the throughput and minimizing the response
time of user requests, which are internally trans-
lated by the system into numerous tasks of three
types R1, R2, R3. The ovals represent tasks and
the same shading scheme is used to denote tasks
that are dependent in terms of recoverability. As
shown in Figure 4, when all CPU resources are uti-
lized for concurrently executing the tasks that have
failure/recovery dependencies, then failure and sub-
sequent recovery can consume all the resources of
the system, stalling other tasks that could have pro-
ceeded with normal operation. Moreover, contin-
uing to dispatch additional dependent tasks before
the localized recovery process can be completed only
further aggravates the problem of unavailability.

4.1 Recovery Groups and Resource Pools

In order to deal with the problem illustrated in Fig-
ure 4, we infuse “recovery consciousness” into the
scheduler. Our recovery-conscious scheduler will en-
force some serialization of dependent tasks thereby
controlling the extent of a localized recovery oper-
ation that may occur at any time. To formally de-
scribe recovery conscious scheduling, we first define
two important concepts: recovery groups and re-
source pools.

Recovery Groups: A recovery group is defined
as the unit of a localized recovery operation i.e., the
set of tasks that will undergo recovery concurrently.
When clean-up procedures are initiated for any task
within a recovery group, all other tasks belonging to
the same recovery group that are executing concur-
rently will also initiate appropriate clean-up proce-
dures in order to maintain the system in a consistent
state. Note that recovery groups are determined
based on explicitly specified dependencies that are
further refined by the system based on observations
of implicit dependencies. By definition, every task
belongs to a single recovery group. Thus tasks in
the system can be partitioned into multiple disjoint
recovery groups.

Resource Pools: The concept of resource pools
is used as a method to partition the overall pro-
cessing resources into smaller independent resource
units, called resource pools. Although we restrict
resource pools in this paper to processors, the con-
cept can be extended to any pool of identical re-
sources such as replicas of metadata or data. Re-
covery conscious scheduling maps resource pools to
recovery groups, thereby confining a recovery oper-
ation to the resources available within the resource
pool assigned to it.

Job Queue

R1

R2 R2

R3 R3

R3R2

R2R2

R1 R1

R1 R1

CPU1 CPU2 CPU3� CPU4�

� �������� � 	�
����
�

Figure 5: Recovery Oriented Scheduling

4.2 Mapping of Resource Pools to
Recovery-Groups

The recovery-conscious scheduling (RCS) algorithms
implement the mapping between recovery groups
and resource pools. There are different ways that
one can map recovery groups to resource pools. The
choice of decision depends on the type of trade-offs
one would like to make between recovery time and
system availability and performance. Static schedul-
ing of resource pools to recovery groups is one end
of the spectrum and is only effective in situations
where task level dependencies with respect to recov-
erability are well understood and the workloads of
the system is stable. Dynamic scheduling of recov-
ery groups to resource pools represents another end
of the spectrum and may better adapt to the chang-
ing workload and more effectively utilize resources,
but it is more costly in terms of scheduling manage-
ment. Between the two ends of the spectrum are the
partially dynamic scheduling algorithms.

Figure 5 depicts a recovery-conscious scheduler
for the same set up as the one used for the
performance-oriented scheduler, where tasks are or-
ganized into recovery groups − R1 (shaded as fill),
R2 (horizontal lines) and R3 (downward diagonal).
The processing resources (four CPUs in this exam-
ple) are organized into three resource pools such that
recovery group R1 is mapped to a pool consisting of
two processors and recovery groups R2 and R3 are
each mapped to a pool consisting of one processor.
In case of a failure within group R1, the recover-
ing tasks are now restricted to two of the available
four processors so that the other two processors re-
main available for normal operation. Additionally,
the scheduler suspends further dispatching of tasks
belonging to group R1 until the localized recovery
process completes. This example highlights two as-
pects of a recovery-conscious scheduler: proactive
and reactive.

Proactive RCS comes into play during normal op-
eration and enhances availability by enforcing some

while true do
repeat

repeat
ScanDispatch(HighPriorityQueue)

until HighPriorityLoopCount
ScanDispatch(MediumPriorityQueue)

until MediumPriorityLoopCount
ScanDispatch(LowPriorityQueue)

end while

Figure 6: Qos-based scheduling

while true do
repeat

repeat
ScanDispatch(HighPriorityQueue for ρ1)

until HighPriorityLoopCount
ScanDispatch(MediumPriorityQueue for ρ1)

until MediumPriorityLoopCount
ScanDispatch(LowPriorityQueue for ρ1)

end while

Figure 7: Recovery conscious scheduling

degree of serialization of dependent tasks. The goal
of proactive scheduling is to reduce the impact of a
failure by trying to bound the number of outstand-
ing tasks per recovery group. Then in the event of
a failure within any recovery group, the number of
tasks belonging to that recovery group that are cur-
rently executing and need to undergo recovery are
also controlled. By limiting the extent of a recovery
process, proactive scheduling can help the system re-
cover sooner, and at the same time, it controls the
amount of resources dedicated to the recovery pro-
cess. Proactive RCS thereby ensures resource avail-
ability to normal operation even during a localized
recovery process.

The reactive aspect of recovery conscious schedul-
ing takes over after a failure has occurred. When
localized recovery is in progress, reactive RCS sus-
pends the dispatch of tasks belonging to the group
undergoing recovery until the recovery completes.
This ensures quick completion of recovery by pre-
venting transitive expansion of the recovery scope
and avoiding deadlocks.

4.3 System Considerations

The deployment of recovery conscious scheduling in
practice requires the design and implementation of
the scheduler to meet the stringent performance re-
quirements of the storage system, sustaining the de-
sired high throughput and low response time. Put
differently, recovery-conscious scheduling should of-
fer comparable efficiency in throughput and latency
as those provided by performance oriented schedul-
ing.

We outline below some factors that must be
taken into consideration while comparing recov-
ery conscious scheduling with performance oriented

scheduling in a multi-core/SMP environment.
Note that our scheduling algorithms are con-

cerned with partitioning resources between tasks be-
longing to different “components” of the same sys-
tem which adds a second orthogonal level to the
scheduling problem. We continue to respect the QoS
or priority considerations specified by the designer
at the level of user requests. For example, Figure 6
shows an existing QoS based scheduler using high,
medium and low priority queues. Figure 7 shows
how recovery-conscious scheduling used by a pool ρ1

dispatches jobs based on both priority and recovery-
consciousness (by picking jobs only from the recov-
ery groups assigned to it).

We use good-path and bad-path performance
as the two main metrics for comparison of the
recovery-conscious schedulers with performance ori-
ented schedulers. By ‘good-path’ performance we
mean the performance of the system during normal
operation. We use the term ‘bad-path’ performance
to refer to the performance of the system under lo-
calized failure/recovery.

Both good path and bad path performance can
be measured using end-to-end performance metrics
such as throughput and response time. In addition,
we can also measure the performance of a sched-
uler from system-level factors, including cpu utiliza-
tion, number of tasks dispatched over time, queue
lengths, the overall utilization of other resources
such as memory, and the ability to meet service level
agreements and QoS specifications.

5 Classification of RCS Algorithms

We classify recovery conscious scheduling (RCS) al-
gorithms based on the method in which resource
pools are distributed across recovery groups. As
discussed in the previous section, we categorize
recovery-conscious scheduling algorithms into three
classes: static, partially dynamic, and fully dy-
namic. This classification represents varying de-
grees of trade-offs between fault isolation and per-
formance, ranging from static mappings which em-
phasize recoverability over performance, to different
ways of balancing between recoverability and per-
formance, to a completely dynamic mapping of re-
sources to recovery groups, which maximizes the uti-
lization of resources while trying to meet recovery
constraints.

In order to provide a better understanding of the
design philosophy of our recovery-conscious schedul-
ing, we devise a running example scenario that is
used to illustrate the design of all three classes of
RCS algorithms. This running example has five re-
source pools: ρ1, ρ2, ρ3, ρ4 and ρ5 and four recov-
ery groups: γ1, γ2, γ3 and γ4. We use σi to denote
the recoverability constraint for the recovery group

Recovery Groups γ1 γ2 γ3 γ4

% of Workload 40% 20% 20% 20%
Recoverability 2 1 1 1
constraints (σi)

Table 1: Recovery constraints

Recovery Groups γ1 γ2 γ3 γ4

Resource Pools ρ1, ρ2 ρ3 ρ4 ρ5

Table 2: Static mapping

γi. Constraint σi specifies the upper limit on the
amount of resources (processors in this case) that
can be dedicated to the recovery group γi (1 ≤ i ≤ 4
in our running example). Since we are concerned
with processing resources in this paper, it also in-
dicates the number of tasks belonging to a recov-
ery group that can be dispatched concurrently. The
recoverability constraint σi is determined based on
both the recovery group workload i.e., the number
of tasks dispatched, and the observed task-level re-
covery time. Although recoverability constraints are
specified from the availability standpoint, they must
take performance requirements into consideration in
order to be acceptable. Recoverability constraints
are primarily used for proactive RCS.

For ease of exposition we assume that all re-
source pools are of equal size (1 processor each). Ta-
ble 1 shows the workload distribution between the
recovery groups and the recoverability constraint per
group, where two processors are assigned to the re-
covery group γ1 and one processor is assigned to each
of the remaining three groups.

In contrast to the scenario in Table 1 where no
resource pools are shared by two or more recov-
ery groups, when more than one recovery group is
mapped to a resource pool the scheduler must en-
sure that the dispatching scheme does not result in
starvation. By avoiding starvation, it ensures that
the functional interactions between the components
are not disrupted. For example in our implementa-
tion we used a simple round-robin scheme for each
scheduler to choose the next task from different re-
covery groups sharing the same resource pool. Other
schemes such as those based on queue lengths or
task arrival time are also appropriate as long as they
avoid starvation.

5.1 Static RCS

Static recovery conscious scheduling algorithms con-
struct static mappings between recovery groups and
resource pools. The initial mapping is provided to
the system based on the observations of the work-
load and known recoverability constraints, such as
previously observed localized recovery times. The

mappings are static in the sense that they do not
continuously adapt to changes in resource demands
and workload distribution. Table 2 shows a mapping
between the pools ρ1 . . . ρ5 and the recovery groups
γ1 . . . γ4. This mapping assigns resource pools to
recovery groups based on the workload distribution
and the recoverability constraints given in Table 1.
Concretely, in this mapping recovery group γ1 is
mapped to two pools ρ1 and ρ2. Similarly groups
γ2, γ3 and γ4 are each assigned a single resource
pool. Each processor dispatches work only from its
assigned recovery group.

This approach aims at achieving strict recovery
isolation. As a result, it loses out on utilization of re-
sources, which in turn impacts both throughput and
response time. Although this is a naive approach to
performing recovery-conscious scheduling it helps us
in understanding issues related to the performance
and recoverability trade-off. Note that all our RCS
algorithms avoid starvation by using a round-robin
scheme to cycle between recovery groups sharing the
same resource pool. In systems where the workload
is well understood and sparse in terms of resource
utilization, static mappings offer a simple means of
achieving serialization of recovery dependent tasks.

Implementation Considerations: There are
two main data structures that are common to all
RCS algorithms: (1) the mapping tables and (2) the
job queues. Mapping table implementations keep
track of the list of recovery groups assigned to each
resource pool. They also keep track of groups that
are currently undergoing recovery for the purpose of
reactive scheduling. In our system we used a simple
array-based implementation for mapping tables.

There are a couple of options for implementing
job queues. Recall that recovery-consciousness is
built on top of the QoS or priority based scheduling.
We could use multiple QoS based job queues (for
example, high, medium and low priority queues) for
each pool or for each group. In our first prototype,
we chose the latter option and implemented multi-
ple QoS based job queues for each recovery group
for a number of reasons. Firstly, this choice easily
fits into the scenario where a single recovery group
is assigned to multiple resource pools. Secondly, it
offers greater flexibility to modify mappings at run-
time. Finally, reactive scheduling (i.e., suspending
dispatch of tasks belonging to a group undergoing
localized recovery) can be implemented more ele-
gantly as the resource scheduler can simply skip the
job queues for the recovering group. Enqueue and
dequeue operations on each queue are protected by a
lock. An additional advantage of a mapping imple-
mented using multiple independent queues is that it
reduces the degree of contention for queue locks.

Recovery Groups γ1 γ2 γ3 γ4

Resource Pools All All ρ4 ρ5

Table 3: Partial Dynamic RCS: Alternative mapping

. . .

repeat
workFound := false
for γi in current mapping do

workFound := ScanDispatch(HighQueue for γi)
if workFound then

break
end if

end for
if !workFound then

AcquireLease()
for γj in alternative mapping do

workFound := ScanDispatch(HighQueue for γj)
if leaseExpired() OR workFound then

break
end if

end for
end if

until HighPriorityLoopCount
//Similarly for Medium and Low Priority tasks

Figure 8: Partial Dynamic RCS

5.2 Partial dynamic RCS

The second class of algorithms are partially dynamic
and allow the recovery-conscious scheduler to react
(in a constrained fashion though) to sudden spikes
or bursty workload of a recovery group.

The main drawback of static RCS is that it results
in poor utilization of resources due to the strictly
fixed mapping. Partial dynamic RCS attempts to
alleviate this problem by using a relatively more
flexible mapping of resources to recovery groups, al-
lowing groups to utilize spare resources. Partially
dynamic RCS algorithms begin with a static map-
ping. However, when the utilization is low, the sys-
tem switches to an alternative mapping that redis-
tributes resources across recovery groups.

For example, with the static mapping of Table 2
with changing distribution of workloads, resources
allocated to recovery groups γ3 and γ4 may be un-
der utilized while groups γ1 and γ2 may be swamped
with work. Under these circumstances, the system
switches to an alternative mapping shown in Table 3.
Now groups γ1 and γ2 can utilize spare resources
across the system even if this may mean potentially
violating their recoverability constraints specified in
Table 1. Note that γ3 and γ4 still obey their re-
coverability constraints. In summary, partially dy-
namic mappings allows the flexibility of selectively
violating the recoverability constraints when there
are spare resources to be utilized, whereas static
mappings strictly obey recoverability constraints.

The aim of the partial dynamic mapping is to
improve utilization over static schemes by opening
up spare resources to recovery groups with heavy
workloads. With the above example although there

is a danger of a single recovery group (for e.g., γ1)
running concurrently across all resource pools, note
that this is highly unlikely if other groups have any
tasks enqueued for dispatching. There are multi-
ple combinatorial possibilities in designing alterna-
tive mappings for partially-dynamic schemes. The
choice of which components should continue to stay
within their recoverability bounds is to be made by
the system designer using prior information about
individual component vulnerabilities to failures.

Implementation Considerations: There are
two implementation considerations that are specific
to the partially dynamic scheduling schemes: (1) the
mechanism to switch between initial schedule and an
alternative schedule, and (2) the mapping of recov-
ery group tasks to the shared resource pools.

We use a lease expiry methodology to flexibly
switch between alternative mappings. Note that the
pool schedulers switch to the alternative mapping
based on the resource utilization of the current pool.
With the partially dynamic scheme, the alternative
mappings are acquired under a lease, which upon
expiry causes the scheduler to switch back to the
original schedule. The lease-timer is set based on
observed component workload trends (such as du-
ration of a burst or spike) and the cost of switch-
ing. For example, since our implementation had a
very low cost of switching between mappings, we
set the lease-timer to a single dispatch cycle. Fig-
ure 8 shows the pseudo-code for a partial dynamic
scheduling scheme using a lease expiry methodology.
For the sake of simplicity we do not show the track-
ing method (round-robin) used to avoid starvation
in the scheduler.

Recall from the implementation considerations
for the static mapping case that we chose to imple-
ment job queues on a per recovery group basis. This
allowed for easy switching between the current and
alternative mapping which only involves consulting
a different mapping table. Task enqueue operations
are unaffected by the switching between mappings.

5.3 Dynamic RCS

Dynamic recovery-conscious scheduling algorithms
assign recovery groups to resource pools at runtime.
In dynamic RCS, tasks are still organized into recov-
ery groups with recoverability bounds specified for
each group. However, all resource pools are mapped
to all recovery groups. The schedulers cycle through
all groups giving preference to groups that are still
within their recoverability bounds, i.e., occupying
fewer resources than specified by the bound. If no
such group is found, then tasks are dispatched while
trying to minimize the resource consumption by any
individual recovery group.

This class of algorithms aim at maximizing uti-
lization of resources at the cost of selectively vio-
lating the recoverability constraints. Note that all
recovery-conscious algorithms are still designed to
perform reactive scheduling, i.e., suspend the dis-
patching of tasks whose group is currently undergo-
ing localized recovery. The aspect that differentiates
the various mapping schemes is the proactive han-
dling of tasks to improve system availability. The
dynamic scheme can be thought of as trying to use
load balancing among recovery groups in order to
achieve both recovery isolation and good resource
utilization.

Implementation Considerations: A key im-
plementation consideration specific to dynamic RCS
is the problem of keeping track of the number of
outstanding tasks belonging to each recovery group.
We maintain this information in a per-processor data
structure that keeps track of the current job.

Recall that implementing job queues on the per
recovery-group basis helps us implement dynamic
mappings efficiently and flexibly. One of the critical
optimizations for dynamic RCS algorithms involves
understanding and mitigating the scheduling over-
head imposed by the dynamic dequeuing process. In
on going work we are conducting experiments with
different setups to characterize this overhead. How-
ever our results in this paper show that even with
the additional scheduling cost dynamic RCS schemes
perform very well both under good-path and bad-
path conditions.

6 Experiments

We have implemented our recovery-conscious
scheduling algorithms on a real industry-standard
storage system. Our implementation involved no
changes to the functional architecture. Our results
show that dynamic RCS can match performance ori-
ented scheduling under good path conditions while
significantly improving performance under failure re-
covery.

6.1 Experimental Setup

Our algorithms were implemented on a high-
capacity, high-performance and highly reliable enter-
prise storage system built on proprietary server tech-
nology due to which some of the setup and architec-
ture details presented in this paper have been desen-
sitized. The system is a storage facility that consists
of a storage unit with two redundant 8-way server
processor complexes (controllers), memory for I/O
caching, persistent memory (Non-Volatile Storage)
for write caching, multiple FCP, FICON or ESCON
adapters connected by a redundant high bandwidth
(2 GB) interconnect, fiber channel disk drives, and

�

�

�

�

�

�

�

�

�
�

�
�
��
�
��
�
�
��
�

��

��
�
��

��
��
�
�
��
�

�

�

 � � � � � � �� �� ��

!��
�� !��
��� !��
��� !��
���

!��
��� !��
��� !��
��� !��
�� �

	

�
�

��
�

"��
���� ���
�
��

Figure 9: Cache-Standard

�

�

��

��

��

��

��

��

� � � �� �� �� �	 �� �� �

���
��� ���
���� ����
����

�����������������

�
�
�
�
�

�
�
��
�
��
�
�
��

�
��

��
�
�!

�"
"�
�
�
��

Figure 10: Efficiency vs Recovery
groups

�

��

��

��

��

���

���

��	
��

	������

��������

��������

�	����

��������

�������

�	����

��	���!!��

��������

���

����������

"
#
	�

�
$
#
�
�
��

��
�

%
�&

�
�

Figure 11: Good path throughput

management consoles. The system is designed to
optimize both response time and throughput. The
basic strategy employed to support continuous avail-
ability is the use of redundancy and highly reliable
components.

The embedded storage controller software is simi-
lar to the model presented in Section 2. The software
is also highly-reliable with provisions for quick recov-
ery(under ∼6 seconds) at the system-level. The sys-
tem has a number of interacting components which
dispatch a large number of short running tasks. For
the experiments in this paper based on programmer
explicit recovery dependency specifications, we iden-
tified 16 recovery groups which roughly correspond
to functional components such as cache manager, de-
vice manager, SCSI command processor etc. How-
ever, some recovery groups may perform no work
in certain workloads possibly due to features being
turned off. We chose a pool size of 1 CPU which
resulted in 8 pools of equal size. The system al-
ready implements high, medium and low priority job
queues. Our recovery-conscious scheduling imple-
mentation therefore uses three priority based queues
per recovery group. For the partially dynamic case,
based on the workload we have identified two can-
didates for strict isolation - groups 4 and 5. For the
static mapping case each recovery group is mapped
to resource pools proportional to its ratio of the total
task workload.

6.2 Workload

We use the z/OS Cache-Standard workload [1, 14] to
evaluate our algorithms. The z/OS Cache-standard
workload is considered comparable to typical online
transaction processing in a z/OS environment. The
workload has a read/write ratio of 3, read hit ra-
tio of 0.735, destage rate of 11.6% and a 4K average
transfer size. The setup for the cache-standard work-
load was CPU-bound. Figure 9 shows the number of
tasks dispatched per-recovery group under the work-

load over 30 minutes. Group 4 has the highest task
workload (∼6.5M tasks/min) followed by group 5
(∼ 5M/min). Eight of the groups which have nearly
negligible workload are not visible in the graph. We
use this workload to measure throughput and re-
sponse times. While measuring cpu utilization we
only count time actually spent in task execution and
do not include time spent acquiring queue locks, de-
queuing jobs or polling for work.

6.3 Experimental Results

We compare RCS and performance oriented schedul-
ing algorithms using good-path (i.e. normal condi-
tion) and bad-path (under failure recovery) perfor-
mance.

6.3.1 Effect of additional job queues

We first performed some benchmarking experiments
to understand the effect of additional job queues
on the efficiency of the scheduler. Using the cache-
standard workload, we measured the aggregate num-
ber of dispatches per minute with varying number of
recovery groups - 16, 4 and 1 (which is identical to
performance-oriented scheduling) to measure sched-
uler efficiency with dynamic RCS. The four and one
recovery group cases were implemented by collaps-
ing multiple groups into a single larger group. Recall
that each recovery group results in three job queues
for high, medium and low priority jobs. Figure 10
shows the aggregate number of tasks dispatched per
minute with 1, 4 and 16 recovery groups. As the fig-
ure shows the number of dispatches are almost iden-
tical in the three cases (+/- 2%). Although more job
queues imply having to cycle through more queue
locks while dispatching work, increasing the number
of job queues reduces contention for queue locks both
when enqueuing and dequeuing tasks. For most of
the experiments in this paper we choose a configu-
ration with 16 recovery groups.

��

��

��

��

��

��

	

�
�
	�

�
��

�

�
��
��
	�
��

�
�
	�

�

�

��

��

�����

��������

�������

��
��!

"��#
	�

�������

��
��

"��#
	�

���������

�������

��

 �����
��

�
�
	

�

��
�

�

��

Figure 12: Good path latency

��

���

����

����

����

����

���	�
����

�����
���

����
����������

����������
��� ��
��� ��!"�#�$�%�����&

��
��� ��!"�#'�%�����& ������		����
��� ��!"

"���� ��!"

Figure 13: CPU utilization

��

��

��

���

���

�
	

�
�
�

�
�

�
��
�

��

�

��

��

��	���

�	������

������ �

!"#�

������ �

!"#�$��%��

	
� ��&��

��	���%%��

������ �

!"#

#���� �!"#

�
�
	

$�
�

Figure 14: Bad path throughput

6.3.2 Good-path Performance

Recovery-conscious scheduling can be an acceptable
solution only if it is able to meet the stringent perfor-
mance requirements of a high-end system. In this ex-
periment we compare the good-path (i.e. under nor-
mal operation) performance of our RCS algorithms
with the existing performance-oriented scheduler.

Figure 11 shows the good-path throughput for
the performance-oriented and recovery-conscious
scheduling algorithms. The average throughput for
the dynamic RCS case with 16 groups (105 KIOps)
and 4 groups (106 KIOps) was close to that for the
performance-oriented scheduler (107 KIOps). On
the other hand, with partially dynamic RCS, the
system throughput drops by nearly 34% (∼ 69.9
KIOps), and with static RCS by nearly 58% (∼ 44.6
KIOps) compared to performance oriented schedul-
ing.

Figure 12 compares the response time with differ-
ent RCS schemes and performance-oriented schedul-
ing. Again, the average response-time for the dy-
namic RCS case with 16 recovery groups (13.5 ms)
and 4 recovery groups (13.6 ms) is close to the
performance-oriented case (13.3 ms). However, with
the partially-dynamic RCS scheduling, the response
time increases by nearly 63% (21.7 ms) and by 156%
with static RCS (34.1ms).

Both the throughput and response time num-
bers can be explained using the next chart, Fig-
ure 13. The radar plot shows the relationship be-
tween throughput, response time and cpu-utilization
for each of the cases. As the figure shows, the cpu
utilization has dropped by about 19% with partially
dynamic RCS and by 63% with static RCS. The re-
duction in cpu utilization eventually translates to
reduced throughput and increased response time in
a cpu-bound workload intensive environment. These
numbers seem to indicate that in such an environ-
ment schemes that reduce the utilization can re-
sult in significant degradation of the overall per-
formance. However note that the normal operating

range of many customers may be only around 6-7000
IOps [22]. If that be the case, then partially-dynamic
schemes can more than meet the system requirement
even while ensuring some recovery isolation.

6.3.3 Bad-path Performance

Next, we compare RCS algorithms with
performance-oriented scheduling under bad-path
or failure conditions. In order to understand the
impact on system throughput and response time
when localized recovery is underway, we inject
faults into the cache standard workload. We choose
a candidate task belonging to recovery group 5 and
introduce faults at a fixed rate (1 for each 10000
dispatches). Recovery was emulated and recovery
from each fault was set to take approximately 20 ms.
On an average this introduces an overhead of 5%
to aggregate execution time per minute of the task.
During localized recovery, all tasks belonging to the
same recovery group that are currently executing
in the system and that are dispatched during the
recovery process also experience a recovery time of
20 ms each. We measured performance (throughput
and latency) averaged over a 30 minute run.

In the case of recovery-conscious scheduling algo-
rithms, reactive scheduling kicks in when any group
is undergoing recovery. Under those circumstances,
tasks belonging to that recovery group already un-
der execution are allowed to finish, but further dis-
patch from that group is suspended until recovery
completes.

Figure 14 shows the average system throughput
with fault injection. The average throughput using
only performance oriented scheduling (87.8 KIOps)
drops by nearly 16.3% when compared to dynamic
RCS (105 KIOps) that also uses reactive policies.
On the other hand dynamic RCS continues to de-
liver the same throughput as under normal condi-
tions. Note that this is still not the worst case for
performance oriented scheduling. In the worst case,
all resources may be held up by the recovering tasks

�

�

��

��

��

��

��

��

��

��	
��

	������

��������

����

��������

�����
����

�	��������

��	�������

��������

���

����������

�
�
 �

�
�
 �

�!
��

�
�

��
�
��

��
��
 �

��
�
�
 �

Figure 15: Bad path latency

resulting in actual service outage and the problem
would only worsen with increasing localized recov-
ery time and system size.

The figure also compares proactive and reactive
policies in dynamic RCS. The results show that with
only proactive scheduling we are able to sustain a
throughput (104 KIOps) which is just ∼ 1% less than
that using both proactive and reactive policies (105
KIOps).

The graph also compares partially dynamic RCS
(69.9 KIOps) and static RCS (40.4 KIOps). While
these schemes are able to sustain almost the same
throughput as they do under good path, overall, the
performance of these schemes results in 20% and
54% drop in throughput respectively compared to
performance oriented scheduling.

Figure 15 compares the latency under bad-path
code with different scheduling schemes. Compared
to dynamic RCS (13.5 ms), performance oriented
scheduling (16.6 ms) results in a 22.9% increase in
response time. At the same time, even without re-
active scheduling, dynamic RCS (13.6 ms with only
proactive) increases response time by only 0.7%.
Again, partially dynamic RCS (21.7ms) and static
RCS (37.1 ms) result in latency close to their good
path performance but which is still too high when
compared to dynamic RCS.

We performed experiments with other configu-
rations of dynamic, partially dynamic and static
schemes and using other workloads too. However
due to space constraints we only present key find-
ings from those experiments. In particular we used
a disk-bound internal workload (and hence low cpu
utilization of about ∼25%) to study the effect of
our scheduling algorithms under a sparse workload.
We used the number of task dispatches as a metric
of scheduler efficiency. The fault injection mecha-
nism was similar to the cache-standard workload,
however due to the workload being sparse, we in-
troduced an overhead of only 0.3% to the aggregate
execution time of the faulty recovery group. Our re-
sults showed that dynamic RCS was able to achieve

as many dispatches as performance oriented schedul-
ing under good path operation and increase the num-
ber of dispatches by 0.7% under bad-path execution.
With partial dynamic RCS dispatches dropped by
20% during good path operation and by only 3.9%
during bad path operation compared to performance
oriented scheduling. The same static mapping used
in the cache standard workload when run in this
new environment resulted in the system not coming
up. While this may be due to setup issues, it is also
likely that insufficient resources were available to the
platform tasks during start-up. We are investigat-
ing further on a more appropriate static mapping for
this environment.

6.4 Discussion

The fact that recovery-conscious scheduling requires
minimal change to the software allows for it to be
easily incorporated even in legacy systems.

Dynamic RCS can match good path performance
of performance oriented scheduling and at the same
time significantly improve performance under local-
ized recovery. Even for the small 5% recovery over-
head introduced by us, we could witness a 16.3% im-
provement in throughput and a 22.9% improvement
in response time with dynamic RCS. Moreover, the
qualitative benefits of RCS in enhancing availabil-
ity and ensuring that localized recovery is scalable
with system size makes it an interesting possibility
as systems are moving towards more parallel archi-
tectures. Our experiments with various scheduling
schemes (some not reported in this paper) have given
us some insights into the overhead costs such as lock
spin times imposed by RCS algorithms. In ongoing
work we are continuing to characterize and investi-
gate further optimizations to RCS schemes.

Our results also seem to indicate that for small
localized recovery time and system sizes, proac-
tive policies i.e. mapping resource pools to recov-
ery groups, can deliver the advantage of recovery-
consciousness. However as system size increases or
localized recovery time increases, we believe that the
actual benefits of reactive policies such as suspend-
ing dispatch from groups undergoing recovery may
become more pronounced. In ongoing research we
are experimenting with larger setups and longer lo-
calized recovery times.

Static and partial dynamic RCS schemes are lim-
ited by their poor resource utilization in workload
intensive environments. Hence we do not recom-
mend these schemes in an environment where the
system is expected to run at maximum through-
put. However, the tighter qualitative control that
these schemes offer may make them, especially par-
tially dynamic RCS, more desirable in less intensive
environments where there is a possibility to over-

provision resources, or when the workload is very
well understood. Besides in environments where it
‘pays’ to isolate some components of the system from
the rest such mappings may be useful. We are con-
tinuing research on optimizing these algorithms and
understanding properties that would prescribe the
use of such static or partially dynamic schemes.

7 Related Work

Our work is largely inspired by previous work in the
area of software fault tolerance and storage system
availability. Techniques for software fault tolerance
can be classified into fault treatment and error pro-
cessing. Fault treatment aims at avoiding the ac-
tivation of faults through environmental diversity,
for example by rebooting the entire system [6, 24],
micro-rebooting sub-components of the system [2],
through periodic rejuvenation [13, 5] of the soft-
ware, or by retrying the operation in a different
environment [17]. Error processing techniques are
primarily checkpointing and recovery techniques [7],
application-specific techniques like exception han-
dling [21] and recovery blocks [19] or more recent
techniques like failure-oblivious computing [20].

In general our recovery conscious approaches are
complementary to the above techniques. However
we are faced with several unique challenges in the
context of embedded storage software. First, the
software being legacy code rules out re-architecting
the system. Second, the tight coupling between com-
ponents makes both micro-reboots and periodic re-
juvenation tricky. Rx [17] demonstrates an interest-
ing approach to recovery by retrying operations in
a modified environment but it requires checkpoint-
ing of the system state in order to allow ‘rollbacks’.
However given the high volume of requests (tasks)
experienced by the embedded storage controller and
their complex operational semantics, such a solution
may not be feasible in this setup.

Failure-oblivious computing [20] introduces a
novel method to handle failures - by ignoring them
and returning possibly arbitrary values. This tech-
nique may be applicable to systems like search en-
gines where a few missing results may go unnoticed,
but is not an option in storage controllers.

The idea of localized recovery has been exercised
by many. Transactional recovery using checkpoint-
ing/logging methods is a classic topic in DBMSs [16]
and is a successful implementation of fine-grained
recovery. In fact application-specific recovery mech-
anisms such as recovery blocks [19], and exception
handling [21] are used in almost every software sys-
tem. However, very few have made an effort on
understanding the implications of localized recovery
on system availability and performance in a multi-
core environment where interacting tasks are exe-

cuting concurrently. Likewise, the idea of recovery-
conscious scheduling is to raise the awareness about
localized recovery in the resource scheduling algo-
rithms to ensure that the benefits of localized recov-
ery actually percolate to the level of system avail-
ability and performance visible to the user. Al-
though vast amounts of prior work have been ded-
icated to resource scheduling, to the best of our
knowledge, such work has mainly focused on per-
formance [25, 11, 12, 8, 4]. Also much work in the
virtualization context has been focused on improving
system reliability [18] by isolating VMs from failures
at other VMs. In contrast, our development focuses
more on improving system availability by distribut-
ing resources within an embedded storage software
system by identifying fine-grained recovery scopes.
Compared to earlier work on improving storage sys-
tem availability at the RAID level [23], we are con-
cerned with the embedded storage software reliabil-
ity. These techniques are at different levels of the
storage system and are complementary.

8 Conclusion and Future Work

In this paper we presented a recovery conscious
framework for multi-core architectures and tech-
niques for improving the resiliency and recovery ef-
ficiency of highly concurrent embedded storage soft-
ware. Our main contributions include a task-level
recovery model and the development of recovery-
conscious scheduling, a non-intrusive technique to
reduce the ripple effect of software failure and im-
prove the availability of the system. We presented
a suite of RCS algorithms and quantitatively evalu-
ated them against performance oriented scheduling.
Our evaluation showed that dynamic RCS can sig-
nificantly improve performance under failure recov-
ery while matching performance oriented scheduling
during normal operation.

In order to adopt RCS for large software systems,
a significant challenge is to identify efficient recovery
scopes. In ongoing work we are working on devel-
oping more generic guidelines that would assist in
identifying fine-grained recovery scopes. Even with
pluggable mechanisms like RCS it is necessary to
emphasize that high-availability should still be a de-
sign concern and not an after-thought. We hope our
framework would encourage developers to incorpo-
rate additional error handling and anticipate more
error scenarios and that our scheduling schemes
would aid in scaling efficient error handling with sys-
tem size.

9 Acknowledgments

The authors would like to express their gratitude
to David Whitworth, Andrew Lin, Juan Ruiz (JJ),

Brian Hatfield, Chiahong Chen and Joseph Hyde
for helping us perform experimental evaluations and
interpret the data. We would also like to thank
K.K.Rao, David Chambliss, Brian Henderson and
many others in the Storage Systems group at IBM
Almaden Research Center who provided us with the
resources to perform our experiments and provided
valuable feedback. We thank our anonymous review-
ers, our shepherd Dr. Mary Baker and Prof. Karsten
Schwan for the useful comments and feedback that
have helped us improve the paper.

This work is partially supported by an IBM PhD
scholarship and an IBM Storage Systems internship
for the first author, and the NSF CISE IIS and CSR
grants, an IBM SUR grant, as well as an IBM faculty
award for the authors from Georgia Tech.

References

[1] Ibm z/architecture principles of operation. SA22-
7832, IBM Corporation, 2001.

[2] G. Candea, J. Cutler, and A. Fox. Improving avail-
ability with recursive microreboots: a soft-state sys-
tem case study. Perform. Eval., 56(1-4):213–248,
2004.

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman,
and A. Fox. Microreboot–a technique for cheap re-
covery. OSDI, 2004.

[4] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovi-
tis, A. Ailamaki, G. E. Blelloch, B. Falsafi, L. Fix,
N. Hardavellas, T. C. Mowry, and C. Wilkerson.
Scheduling threads for constructive cache sharing
on cmps. In SPAA, pages 105–115, New York, NY,
USA, 2007. ACM Press.

[5] S. Garg, A. Puliafito, M. Telek, and K. Trivedi. On
the analysis of software rejuvenation policies. In
Proceedings of the 12th Annual Conference on Com-
puter Assurance (COMPASS’97), 1997.

[6] J. Gray. Why do computers stop and what can
be done about it? In Symposium on Reliability in
Distributed Software and Database Systems, pages
3–12, 1986.

[7] J. Gray and A. Reuter. Transaction Processing :
Concepts and Techniques (Morgan Kaufmann Se-
ries in Data Management Systems). Morgan Kauf-
mann, October 1992.

[8] A. Gulati, A. Merchant, and P. J. Varman. pclock:
an arrival curve based approach for qos guarantees
in shared storage systems. In SIGMETRICS, pages
13–24, New York, NY, USA, 2007. ACM Press.

[9] M. Hartung. IBM totalstorage enterprise storage
server: A designer’s view. IBM Syst. J., 42(2):383–
396, 2003.

[10] HP. HSG80 array controller software.

[11] S. Iyer and P. Druschel. Anticipatory scheduling:
A disk scheduling framework to overcome deceptive
idleness in synchronous i/o. In Symposium on Op-
erating Systems Principles, pages 117–130, 2001.

[12] M. Karlsson, C. Karamanolis, and X. Zhu. Triage:
Performance differentiation for storage systems us-
ing adaptive control. Trans. Storage, 1(4):457–480,
2005.

[13] N. Kolettis and N. D. Fulton. Software rejuvena-
tion: Analysis, module and applications. In FTCS,
page 381, Washington, DC, USA, 1995. IEEE Com-
puter Society.

[14] L. LaFrese. Ibm totalstorage enterprise storage
server model 800 new features in lic level 2.3.0 (
performance white paper). ESS Performance Eval-
uation, IBM Corporation, 2003.

[15] I. Lee and R. K. Iyer. Software dependability in the
tandem guardian system. IEEE Trans. Softw. Eng.,
21(5):455–467, 1995.

[16] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,
and P. Schwarz. ARIES: a transaction recov-
ery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM
Trans. Database Syst., 17(1):94–162, 1992.

[17] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx:
Treating bugs as allergies — a safe method to sur-
vive software failure. In SOSP, Oct 2005.

[18] H. Ramasamy and M. Schunter. Architecting de-
pendable systems using virtualization. In Workshop
on Architecting Dependable Systems in conjunction
with 2007 International Conference on Dependable
Systems and Networks (DSN-2007), 2007.

[19] B. Randell. System structure for software fault tol-
erance. In Proceedings of the international con-
ference on Reliable software, pages 437–449, New
York, NY, USA, 1975. ACM Press.

[20] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy,
T. Leu, and J. William S. Beebee. Enhancing server
availability and security through failure-oblivious
computing. In OSDI, Berkeley, CA, USA, 2004.
USENIX Association.

[21] S. Sidiroglou, O. Laadan, A. D. Keromytis, and
J. Nieh. Using rescue points to navigate software
recovery. In SP, pages 273–280, Washington, DC,
USA, 2007. IEEE Computer Society.

[22] Sirius. Sirius enterprise systems group disk drive
storage hardware. Solicitation EPS050059-A4.

[23] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Improving
Storage System Availability with D-GRAID. ACM
Transactions on Storage (TOS), 1(2):133–170, May
2005.

[24] M. Sullivan and R. Chillarege. Software defects and
their impact on system availability - a study of field
failures in operating systems. FTCS, pages 2–9,
1991.

[25] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,
and E. Riedel. Storage performance virtualization
via throughput and latency control. Trans. Storage,
2(3):283–308, 2006.

