
Query-URL Bipartite Based Approach to Personalized Query Recommendation

Lin Li and Zhenglu Yang
Dept. of Info. and Comm. Engineering

University of Tokyo, Japan

Ling Liu
College of Computing

Georgia Tech, Atlanta, GA

Masaru Kitsuregawa
Institute of Industrial Science
University of Tokyo, Japan

Abstract

Query recommendation is considered an effective assistant
in enhancing keyword based queries in search engines and
Web search software. Conventional approach to query rec-
ommendation has been focused on query-term based analysis
over the user access logs. In this paper, we argue that utiliz-
ing the connectivity of a query-URL bipartite graph to rec-
ommend relevant queries can significantly improve the accu-
racy and effectiveness of the conventional query-term based
query recommendation systems. We refer to theQuery-URL
Bipartite based query reCommendation approach as QUBIC.
The QUBIC approach has two unique characteristics. First,
instead of operating on the original bipartite graph directly
using biclique based approach or graph clustering, we extract
an affinity graph of queries from the initial query-URL bi-
partite graph. The affinity graph consists of only queries as
its vertices and its edges are weighted according to a query-
URL vector based similarity (distance) measure. By utilizing
the query affinity graph, we are able to capture the propa-
gation of similarity from query to query by inducing an im-
plicit topical relatedness between queries. We devise a novel
rank mechanism for ordering the related queries based on the
merging distances of a hierarchical agglomerative clustering.
We compare our proposed ranking algorithm with both naı̈ve
ranking that uses the query-URL similarity measure directly,
and the single-linkage based ranking method. In addition, we
make it possible for users to interactively participate in the
query recommendation process, to bridge the gap between
the determinacy of actual similarity values and the indeter-
minacy of users’ information needs, allowing the lists of re-
lated queries to be changed from user to user and query to
query, thus personalizing the query recommendation on de-
mand. The experimental results from two query collections
demonstrate the effectiveness and feasibility of our approach.

1. Introduction
Web search engines today provide simple and yet friendly
user interfaces which allow users to pose queries simply in
terms of keywords. Keyword search is much more popular
than SQL queries for Web information access. The main
limitation with keyword-based search is two folds. First,
some keywords have different meanings in different context,
such as mouse trap, Jaguar, Java and so on. Thus it is hard

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for search engines to return high quality results when only a
couple of keywords are used in defining users’ queries (Wen,
Nie, & Zhang 2002). This is because search engines pri-
marily rely on the matching of the query terms to the doc-
ument terms in the desired documents to determine which
Web pages will be returned given a keyword-based query.
Furthermore, users often fail to choose proper terms that best
express their information needs. Ambiguous keywords used
in Web queries and the limited ability of users to precisely
express what they want to search in a few keywords have
been widely recognized as a challenging obstacle in improv-
ing search quality.

Researches (Cuiet al. 2003; Collins-Thompson & Callan
2005) have investigated the utilization of query expansion
techniques to help users formulate better queries. The
idea of exploiting the collaborative knowledge of users,
embodied as a set of past search queries, was proposed
early (Raghavan & Sever 1995; Glance 2001; Wen, Nie, &
Zhang 2002). The main process of these techniques con-
sists of two steps: (1) Finding the terms from queries or
documents that are most similar to the current query, and
(2) Ranking similar terms and utilizing the ranked similar
terms to reformulate the current query. We call this pro-
cess query recommendation. Existing query recommenda-
tion techniques differ from one another in terms of the meth-
ods they use to find similar terms and the techniques they use
to rank the similar terms for query recommendation. Most of
the existing research to date considers previous queries hav-
ing common terms with the current query to be the similar
queries and naturally recommends these queries. However,
queries can be phrased with different terms but are meant
for the same information need. Raghavan et al. (Raghavan
& Sever 1995) have shown that the query result-vectors are
a better similarity metric compared to query term-vectors.

One obvious approach to utilizing the query-result infor-
mation is to represent queries and their result URLs as a
bipartite graph with edges connecting queries on one side
of the graph to the corresponding URLs of search results
returned by a search engine on the other side of the graph.
It is clear that related queries can be found by examining
the collection of queries and URLs in the query-URL bi-
partite graph. Queries that are more strongly connected
to each other are considered more similar (related). Dif-
ferent approaches can be used for finding similar queries.

From a graph theoretical viewpoint, extracting the collec-
tion of most related queries and URLs can be approximated
by the problem of partitioning a bipartite graph (Beefer-
man & Berger 2000; Zhaet al. 2001) and then finding
the maximum biclique, one of the well-known NP com-
plete problems in the literature (Dawandeet al. 2001). The
problem of partitioning a bipartite graph can also be ad-
dressed by clustering techniques (Hansen & Shriver 2001;
Wen, Nie, & Zhang 2002). After finding the collection of
similar queries for a given input query, the next challenge
is how to devise a ranking mechanism to order these re-
lated queries and making personalized query recommenda-
tions. In this paper we present a Query-URL BIpartite based
approach to personalized query reCommendation, called
QUBIC. In the QUBIC system, the process of finding and
ranking similar queries proceeds in two phases: discovery
and ranking. In the discovery phase, we construct the query-
URL bipartite graph from the query-URL historical collec-
tion and find related queries based on theconnectivity of the
graph and the similarity measure between pairs of queries.
Instead of using query-term vector model to compute the
similarity among queries, we use query-URL vector model
to measure the query similarity. In the query-URL vector
model, a query is represented in terms of the correspond-
ing set of URLs returned by the search engine in responding
to the query, instead of the set of terms used in the query
keyword list. In the ranking phase, we argue that the naı̈ve
approach that directly uses the similarity score computed in
the discovery phase is insufficient. We propose to utilize the
monotonicity of the merging distances of a hierarchical ag-
glomerative clustering (HAC) which can capture the diffu-
sive transition of similarity on the affinity graph of queries to
rank similar queries discovered in the discovery phase. Fur-
thermore, instead of fixing the degree of similarity of queries
based on their query-URL vector similarity, the QUBIC sys-
tem adaptively controls the output of different lists of related
queries in terms of the level of users’ satisfaction.

The remainder of this paper is organized as follows. An
overview of our approach is described in Section 2. We
present the QUBIC two-phase query recommendation algo-
rithm in Section 3 and Section 4 and report our experimental
evaluation of the effectiveness of the QUBIC approach in
Section 5. The related work and summary are discussed in
Section 6 and Section 7 respectively.

2. QUBIC System Overview
The QUBIC system is designed to implement a query-URL
bipartite based approach to personalized query recommen-
dation. Figure 1 shows a sketch of the QUBIC system
architecture where query recommendation consists of two
phases: (1) The discovery of similar queries from the his-
torical query-URL collection (the top red box in Figure 1);
and (2) The ranking of similar queries by taking into account
both the propagation of the similarity and the subjectivityof
the similarity (the bottom red box in Figure 1).

Concretely, the discovery phase consists of the following
three steps: (1) constructing query-URL bipartite graph; (2)
generating query affinity graph (QAG); and (3) extracting
connected components in QAG to form the set of similar

Keyword Query Constructing Query-URL Bipartite Graph

Constructing HAC Hierarchy

HAC-based Rank Mechanism

Not Found

Found

Rank List of Recommended Queries

Selecting a HAC Strategy and Hop

 Historical

Query-URL

Collection

 Initialization User
 Generating Query Affinity Graph (QAG)

 Extracting Connected Components

Figure 1: QUBIC architecture
query groups. In the first step, we take the query-URL his-
torical collection and construct a query-URL bipartite graph.
Instead of using graph-theoretical approach of finding maxi-
mum biclique, in the second step we construct a query affin-
ity graph (QAG) using the query-URL based distance (sim-
ilarity) measures. We introduce a system defined parameter
δ to control the level of query similarity to be considered,
thus reducing the set of candidate queries in the historical
collection, which are considered most relevant. In the third
step of the discovery phase, connected components are ex-
tracted from the QAG. Each connected component is seen as
a group of queries with high relevance or similarity in terms
of their query-URL vector similarity measure.

In the second phase, we need to rank the set of similar
queries discovered by the first phase to produce the best per-
sonalized query recommendation. The naı̈ve approach to
ranking of similar queries is to use the query-URL vector
based similarity scores, which fails to properly capture the
propagation of similarity in the query affinity graph and the
subjectivity of similarity from users’ requirements. An alter-
native approach is to use single-linkage clustering (Beefer-
man & Berger 2000) to rank the clusters of every pair of
queries that are connected in the query affinity graph. The
limitation of this approach is due to its severe constraint on
the relatedness. Another weakness of selecting queries from
the most frequently occurred connected component that con-
tains the input query (keyword list) is the fact that the se-
lected queries may not be the best query recommendation, as
the frequency is not always the best descriptor of relatedness
because it does not discern the individual targeted queries.
We argue that the monotonic merging operations of hierar-
chical agglomerative clustering (HAC) strategies can better
address this problem. In HAC, the pair of queries that has
the shortest distance will be merged first. At each remaining
step, the next closest pair of queries (or groups) should be
merged. The sequence of merge operations scores the rele-
vance of two queries and produces an ordered list of related
queries for a specific query.

We would like to note that additional cost might be in-
curred when the input query is not in the historical query-
URL collection, since we need to add this new query and its
search results to the original query-URL bipartite graph, re-
compute the distance scores between the input query with all
the queries in the historical collection, and update the affin-
ity graph of queries and the connected components. One of
our ongoing research is to devise incremental optimization

Table 1: QUBIC discovery phase
Input: query-URL data in the form of (query, URL).

Output: connected components (a group of relevant queries).

1. If a queryq appears with an URLu, place an edge in the bipartite

graph (BG) between the corresponding vertices in Q and U;

O(EBG)

2. Compute the distance scores between each pair of queries accord-

ing to one of two similarity measures;

O(Q2)

3. Link every pair of queries with a weighted edge if their distance

score is smaller thanδ, thus producing the query affinity graph

(QAG).

O(EQAG)

4. On the basic initialization of the disjoint-sets structure (Cormenet

al. 1990), each vertex in QAG is in its own set;

5. The connected components are calculated based on the edges in

QAG, so update the disjoint-sets structure when each edge isadded

into the graph;

6. Extract the connected components; O(Q+

EQAG)

q1

q2

q3

u2

u3

u1

Q U E

q4

q5

u4

u5

 q 1

q 2

q 4

q 5

q 3

�O.75
�O.75

�O.5
�O.667

�O.667
�O.667

�O.667

 (a) (b)Query-URL Bipartite Graph Query Affinity Graph

Figure 2: Query-URL BG and QAG
techniques to reduce the cost of updating the query-URL bi-
partite graph and the query affinity graph.

3. QUBIC Discovery Phase
We dedicate this section to describe the design of the
QUBIC similar query discovery phase as listed in Table 1.

3.1 Constructing Query-URL Bipartite Graph
A simple undirected graphG: =(Q ∪ U , EBG) is called
bipartite ifQ andU are disjoint sets, whereQ andU are the
vertex set andE is the edge set of the graph. In the context
of QUBIC, the query-URL relationship can be intuitively
represented as a bipartite graph (step 1) and hence, it is used
as our original model whereQ is a set of queries,U is a set
of URLs, as shown in Figure 2(a). An edgee connects a
queryq and an URLu, if the URL u is returned by a search
engine on the queryq.

3.2 URL-Vector Based Similarity Measures
In QUBIC we model queries in terms of query-URL vec-
tors, instead of query-term vectors. LetU(q) denote the list
of y URLs returned as results to the queryq, denoted by
uq1, uq2, · · · , uqy and letwq,u be the weighted value asso-
ciated to the query-URL pair (q, u). Using the above nota-
tions, we define the different similarity measures between
queries which can be simply transformed to distance mea-
sures. We usesimilarity anddistance interchangeably to
describe our problem in different contexts. Due to the space
constraint, in this paper we discuss two functions that uti-
lize the above URL-vector model to compute the distance

between two queries (step 2).
(1)Jaccard Distance
Jaccard Distance is an intuitive and popular measure, de-
fined as

Jaccard(qi, qj) =
U(qi) ∪ U(qj) − U(qi) ∩ U(qj)

U(qi) ∪ U(qj)
. (1)

Hereqi andqj are queries,U(qi) andU(qj) are the two sets
of URLs returned by a search engine in response to the two
queriesqi andqjrespectively. The value of the defined dis-
tance between two queries lies in the range [0, 1]: 0 if they
are exactly the same URLs, and 1 if they have no URLs in
common. For example, in Figure 2(a) whereU(q1)={u1,
u4, u5} andU(q2)={u1, u2}, the Jaccard distance between
q1 andq2 is 0.75, as shown in Figure 2(b). This definition
is convenient to work with, but it suffers from not consider-
ing the frequency of a URL that occurs in a query and the
number of queries containing the URL in their results. This
motivates us to consider the following measure.
(2)Cosine Similarity
wq,u represents the weight of the URLu in the queryq. It
is similar to the traditionaltf*idf weighing method, but is
URL-vector based. We definewq,u as:

wq,u = (1 + ln(1 + ln(n(q, u)))) ∗ ln(1 + M)/mu .

In this definitionn(q, u) is the number of times the URLu
occurs in the queryq, M is the total number of queries in
the query set, andmu is the number of queries containing
u. If we use the full path of a URL,n(q, u) is always 1. If
different path levels of a URL are evaluated,n(q, u) could be
larger than 1. For example, if the hostname of a URL occurs
five times in the search results of a query, we could say that
this website can be more informative to represent the query
than other websites with lower frequency. The similarity of
each pair of query vectors is calculated using the following
Cosine formula:

Cosine(qi, qj) =

∑|U|
u=1

wqi,u ∗ wqj ,u
√

∑|U|
u=1

(wqi,u)2
√

∑|U|
u=1

(wqj ,u)2
, (2)

where |U | is the number of URLs. The distance be-
tweenqi and qj is simply computed byd(qi, qj) = 1 −
Cosine(qi, qj). Intuitively, more frequent URLs are more
likely to be better indicators for a query; while URLs with
higher query frequency might be less informative to repre-
sent a distinct query.

3.3 Generating Query Affinity Graph
Based on the query-URL vector based similarity measure for
each pair of queries, we can generate the query affinity graph
(QAG) with the queries inQ as the vertices. For each pair of
vertices, we add an edge in the QAG if their result URL sets
have at least one common URL (see Figure 2(b) for an ex-
ample). Edges in QAG are weighted according to the simi-
larity (distance) measure (Step 3). We define two queries are
related if there are paths from one to another. Under this def-
inition, we generalize the concept of relatedness in the sense
that given a query, its related queries include adjacent ver-
tices (e.g.,q1 andq2 in Figure 2(b)) and un-adjacent vertices

(e.g.,q1 andq3 in Figure 2(b)) of a query as long as they
are reachable from the given query following a path in the
QAG. Weights will be assigned by using either Jaccard or
Cosine similarity measures. In QUBIC system, we use the
system supplied parameterδ to remove the edges between
queries whose distance scores are larger thanδ in the third
step of extracting connected components (e.g.,δ = 0.85).
This helps to keep the overall data within a reasonable size.
The extraction of connected components from an undirected
graph is calculated in Step 4∼ Step 6 and readers can refer
to (Cormenet al. 1990) for detail.

4. QUBIC HAC-based Ranking Phase
The primary task of this phase is to rank the set of candidate
queries (connected components) produced in the discovery
phase based on their distance to the given input query.

4.1 Our Ranking Methods
We first discuss four ranking methods to produce the ordered
list of related queries given an input query. One is simply
based on the Jaccard or Cosine similarity measures, called
naı̈ve ranking. The other three methods are HAC-based, and
their respective clustering process can estimate the related-
ness between queries. Our idea is based on the hierarchical
structure of HAC where distance measures associated with
successive combination operations could be monotonic. If
d1, d2, · · ·, dk (the definition will be expressed soon) are
successive combination distances of an HAC strategy, then
d1 ≤ d2 ≤ · · · ≤ dk must hold. The monotonic property is
desirable in our context. However, not all HAC algorithms
are monotonic. In the QUBIC design, we consider the fol-
lowing three kinds of monotonic HAC strategies, assuming
that (h), (i), and (j) are three groups, containingnh, ni, and
nj elements respectively with inter-group distances defined
asdhi, dhj , anddij . We further assume that the smallest of
all distances isdij , such that (i) and (j) fuse to form a new
group (k), with nk (=ni+nj) elements.
(1)Single-linkage strategy (SL):

dhk = MIN [d(qh, qk)].
Single-linkage and complete-linkage strategies are mono-
tonic by definition (Lance & Williams 1966; 1967). The for-
mer merges the two clusters with the smallest minimum pair-
wise distance. The latter is the opposite of the single linkage
strategy and unsuitable for our problem. As illustrated in
Figure 2(a), there ared(q1, q2) = 0.75, d(q2, q3) = 0.667,
andd(q1, q3) = 1. In the complete-linkage strategy,q1 and
q3 will not be in the same group until all the queries are
clustered into a single group. But it is apparent thatq3 is a
candidate of related queries toq1 since there is a path from
q1, q2, to q3. Therefore, the single-linkage strategy is con-
sidered in our QUBIC system.
(2)Group-average strategy(GA):

dhk =
∑

qh∈nh

∑

qk∈nk
d(qh,qk)

nhnk
.

The group-average clustering considers the distance be-
tween two clusters is defined as the average of distances be-
tween all pairs of objects, where each pair is made up of one
object from each group. It is easy to prove that the group-
average strategy holds the monotonic property as well. The

Table 2: QUBIC HAC-based ranking phase
Input: an HAC strategy chosen by a user and an input queryiq.

Output: a ranking list of related queries to the input queryiq.

7. If find the the connected component containing the queryiq;

Else update the discovery phase to reflect inclusion ofiq.

8. Choose the H-hop neighbors of the input query as candidates of

related queries, and store the distance matrix D (n × n andn ≤

Q) of candidates (includingiq).

O(n2)

9 Apply the selected HAC strategy on this matrix.

10. The successive merging operations of HAC naturally forman or-

dered list.

10.1 M [iq]: the first merging distance for the input queryiq; O(n)

10.2 Forcq=1 ton (cq 6= iq)

Being Loop

10.3 M [cq]: the first merging distance for the candidate querycq; O(n)

10.4 M [(iq, cq)]: the merging distance for the cluster that include O(n)

cq andiq;

10.5 R[cq] = |M [iq]−M [(iq, cq)]|+ |M [cq]− M [(iq, cq)]|; O(1)

End Loop

10.6 QuicksortR[n] BY ASCENT; O(nlogn)

10.7 Return the top similar queries but delete the candidatequeries

whoseD[iq][cq] are smaller than 0.2;

O(n)

11. If the user is unsatisfied with the list, selects another HAC strat-

egy; Go to 9; Else end this searching process.

detailed procedure is not described here due to page limit.
(3)Flexible strategy (F-α):

dhk = αdhi + αdhj + (1 − 2α)dij .
Lance et al. (Lance & Williams 1966; 1967) have derived a
flexible and monotonic strategy. Asα increases from 0 to
1, its hierarchy changes from an almost completelychained
system into one with increasingly intense clustering.

4.2 The Design of Our Ranking Procedure
We provide a sketch of our QUBIC HAC-based ranking pro-
cedure in the format of pseudo code in Table 2. After a HAC
strategy is selected, our algorithm will utilize the process of
hierarchical clustering to rank the candidates for query rec-
ommendation. Concretely, givenn candidate queries, we
create ann × n distance matrix of candidate queries, and
apply the chosen HAC strategy on this matrix in three step
process (Step 7∼ Step 9) before we rank them to form the
recommendation list (Step 10). Although the main weak-
ness of agglomerative clustering methods is they do not scale
well: time complexity of at least O(n2), the complexity of
the clustering and ranking process depend on the number of
candidate queries obtained in Step 8 which is smaller than
the total number of queries and is typically dependent on the
number of hops used in traversing the query affinity graph. If
the users want more diverse queries by increasing the num-
ber of hops, it will take more time to traverse the affinity
graph and to cluster and rank them. The process of the HAC
clustering is stored as ann by 2 matrixM which contains
the combination distances between merging clusters at the
successive stages. Letn be the number of candidates. Rowi
of the matrix describes the merging of clusters at the stepi of
the clustering. We show that the successive merging opera-
tions of the HAC algorithm naturally form an ordered list. A
HAC strategy builds a hierarchical structure where an input
query is merged with a group(query) at a distance (M [iq]) in
the first time (Step 10.1), and the first merging for a candi-

Table 3: Query-URL bipartite graph
Data Set Queries Distinct URLs Edges

QueryKDD 800 26,206 39,599

QueryTREC 10,000 147,761 491,956

date query is at a distance (M [cq]) (Step 10.4). In addition,
the input query (iq) and the candidate query (cq) will come
together at a combination distance (M [(iq, cq)]) (Step 10.5).
Then, the distance score between the two queries is esti-
mated to|M [iq]−M [(iq, cq)]|+|M [cq]−M [(iq, cq)]|which
ranks each candidate (Step 10.6). We empirically show this
HAC-based ranking is effective in the Section 5.

A clustering structure produced by our experiments is il-
lustrated in Figure 3 where “Height”, the label of the ver-
tical axis, means the combination distance at each merging
operation. Using query1 and query5 in Figure 3(b) as a
concrete example, we knowM [1]= 0.575,M [5]=0.7, and
M [(1, 5)]=0.8. Then,R[5] is 0.375 which may vary with hi-
erarchical structures produced by different HAC strategies.

4.3 Discussions
Our similarity measure between queries is based on the com-
mon URLs returned from submitting both queries to a search
engine. If these related queries are identical or give an iden-
tical result to the original query, then they add no value to
the query recommendation quality and effectiveness, and
thus cannot improve the level of satisfaction of the users.
Naturally, we want to suggest queries that yield compara-
ble search results. One way to approach this goal is to re-
move the candidates whose distance scores are smaller than
a threshold. This ensures that our approach does not try to
recommendexactly similar queries, butsub-similar ones. It
is worth noting that in the first prototype of QUBIC we sim-
ply choose 0.2 as a filtering threshold, in real application,
users can get more similar queries by decreasing the value or
obtain less similar ones by increasing it. The reason that we
did not apply such filtering in Step 3 of the discovery phase
is because these candidates can work as bridge to propagate
similarity between queries during the HAC clustering.

5. Experiments
5.1 Data Sets and Evaluation Metric
The experiments use two data sets: QueryKDD and Query-
TREC. The former is the 800 queries of KDD cup 2005 data
set1 that are labelled by three people. The latter is the “10k”
stream of the Efficiency task topics of the 2006 TREC Ter-
abyte Track2. Table 3 summarizes the statistics about the
query-URL bipartite graphs of them. We empirically did an
analysis on parameters. Due to page limit, only results are
reported here. We stored the top 50 of search results for each
query, and the values of the thresholdδ for QueryKDD and
QueryTREC are 0.98 and 0.85 respectively.H is set as 3 to
keep the overall data within a reasonable size. The perfor-
mance is evaluated by the precision measure calledP@N
which calculates the percentage of the related queries at the
topN results.

1http://www.acm.org/sigs/sigkdd/kddcup/index.php
2http://trec.nist.gov/data/terabyte06.html

Table 4:P@10 of QueryKDD data set
Naı̈ve SL GA F-α(0.5)

Jaccard 0.4015 0.3868 0.4549 0.4416

Cosine 0.4482 0.4397 0.4675 0.4575

Table 5:P@10 of QueryTREC data set
Naı̈ve GA

Jaccard 0.43 0.56

Cosine 0.64 0.80

5.2 Results and Discussions
Experiments on the QueryKDD Data Set For precision
evaluation, if two queries share at least one category, we re-
gard them as related queries. The experimental results av-
eraged by three labelers are shown in Table 4. The single-
linkage strategy merges in each step the two clusters whose
two closest members have the smallest distance. Its main
weakness is that it is sensitive to outliers, which leads to
the fact that single-linkage strategy performs worst among
the four rank mechanisms (naı̈ve, single-linkage, group-
average, and flexible(α=0.5) strategies). While the group-
average strategy is robust to outliers because it considersthe
distance between one cluster and another cluster to be equal
to the average distance from any member of one cluster to
any member of the other cluster. The flexible(α = 0.5)
strategy computes the sum of distance between members
of clusters and is stable as well. Both of them got higher
precision scores than the naı̈ve one under both two similar-
ity measures. The Cosine measure produces better results
than the Jaccard measure in all four ranking methods. The
group-average strategy with the Cosine measure is the op-
timal combination in terms of precision@10. These results
prove that our URL-vector basedif ∗ idf weighing method
is more effective than the un-weighing Jaccard measure.

Experiments on the QueryTREC Data Set Different
from the QueryKDD data set, the QueryTREC data set does
not supply us with the categorization information. Three hu-
man evaluators are invited to judge the performance of our
algorithm. After running the QUBIC two-phase algorithm
with the group-average strategy, we can recommend a list of
related queries for each query. We then randomly selected
30 queries as our test data. The three evaluators worked sep-
arately without knowing how our detection algorithms work.
Queries are manually tagged as either related or unrelated.
Their averaged results are reported in Table 5. The Cosine
measure achieves much better performances than the Jac-
card measure, and the HAC-based ranking obtains higher
precision scores than the naı̈ve ranking. The two results are
consistent with the result of QueryKDD data set. Therefore,
we conclude that the Cosine measure using the conventional
if ∗ idf term weights of documents is effective to represent
the queries in a URL-vector space model, and HAC-based
ranking is more effective for query recommendation than the
naı̈ve ranking.

In Figure 3, asα increases from 0.25 to 0.45 in the
Flexible-α strategy, the hierarchy changes. Thus, it is ob-
vious that the ordering in the list of related pages partly
changes as well. In our personalization scheme, if a user in-
puts a query to retrieve Web pages, our algorithm will supply

1 4

2

1
7 5

3

1
9

7 9

1
6

1
2

1
4

1
5

8

1
3 1

1 1
8

6

1
0

2
0

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5
0

.8
0

0
.8

5
0

.9
0

(a) Alpha=0.25

H
e

ig
h

t

1 4
2

5 1
7

1
0

3
1

9
7

1
2

9
1

6
8 1
3 1

1
1

8
6

1
4

1
5

2
0

0
.5

0
.6

0
.7

0
.8

0
.9

(b) Alpha=0.45

H
e

ig
h

t

Figure 3: Effect of varying HAC strategies. Measure: Cosine; Height: the combination distance at each merging.

her with a list of related queries from historical collection.
Then, the user can formulate her query and do a new search,
or she may also ask our algorithm to produce a new list of
related queries by selecting a different HAC strategy. This
process may be repeated until the user is satisfied with the
search results. The naı̈ve ranking cannot supply users with
such diverse lists of query recommendation due to its local-
ity and lack of effective similarity propagation.

6. Related Work
Utilizeing a set of past search queries, was proposed
early (Raghavan & Sever 1995; Glance 2001; Wen, Nie, &
Zhang 2002). Treating the top ranked documents as a spe-
cial case of relevance feedback is a variation of the orig-
inal work on local feedback (Xu & Croft 1996). Wen et
al. (Wen, Nie, & Zhang 2002) proposed to cluster similar
queries to recommend URLs to frequently asked queries of
a search engine. Hansen et al. (Hansen & Shriver 2001) dis-
tilled search-related navigation information from proxy logs
to cluster queries. The query-URL relationship can be repre-
sented by a bipartite graph as modelled in Section 3. Graph
partitioning is an alternative for grouping (Zhaet al. 2001;
Rege, Dong, & Fotouhi 2006) which is done by cutting the
set of vertices into disjoint sets. The drawbacks of the ap-
proach proposed by Beeferman et al. (Beeferman & Berger
2000) have already been discussed in Section 2. Differ-
ent from the above studies, our approach makes use of the
HAC monotonicity to rank related queries based on query-
URL bipartite, which is a combination of clustering-based
and graph-based methods to capture the diffusive transi-
tion of similarity. Furthermore, we propose a personaliza-
tion framework to adaptively rank the collection of related
queries according to users’ needs.

7. Conclusions
We have presented QBUIC − a query-URL bipartite graph
based approach to personalized query recommendation. Our
approach recommends related queries to a given query by
analyzing the query-URL history through a novel two-phase
algorithm (i.e, discovery and HAC-based ranking phases).
The experimental results demonstrate the usefulness of
graph effectiveness and the feasibility of our approach in
helping users optimally represent their information needs
by keyword queries. Our research continues along several

dimensions, including optimization for incremental updates
of our query-URL bipartite graph and query affinity graph
maintenance and more comprehensive user study in terms
of usability and performance of our QUBIC system.

References
Beeferman, D., and Berger, A. L. 2000. Agglomerative
clustering of a search engine query log. InKDD, 407–416.
Collins-Thompson, K., and Callan, J. 2005. Query expan-
sion using random walk models. InCIKM, 704–711.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 1990. Introduction to Algorithms. McGraw-Hill.
Cui, H.; Wen, J.-R.; Nie, J.-Y.; and Ma, W.-Y. 2003. Query
expansion by mining user logs.IEEE Trans. Knowl. Data
Eng. 15(4):829–839.
Dawande, M.; Keskinocak, P.; Swaminathan, J. M.; and
Tayur, S. 2001. On bipartite and multipartite clique prob-
lems.J. Algorithms 41(2):388–403.
Glance, N. S. 2001. Community search assistant. InIUI,
91–96.
Hansen, M., and Shriver, E. 2001. Using navigation data
to improve ir functions in the context of web search. In
CIKM, 135–142.
Lance, G. N., and Williams, W. T. 1966. A general-
ized sorting strategy for computer classifications.Nature
212:218.
Lance, G. N., and Williams, W. T. 1967. A general theory
of classificatory sorting strategies: 1. hierarchical systems.
The Computer Journal 9:373–380.
Raghavan, V. V., and Sever, H. 1995. On the reuse of past
optimal queries. InSIGIR, 344–350.
Rege, M.; Dong, M.; and Fotouhi, F. 2006. Co-clustering
documents and words using bipartite isoperimetric graph
partitioning. InICDM, 532–541.
Wen, J.-R.; Nie, J.-Y.; and Zhang, H. 2002. Query cluster-
ing using user logs.ACM Trans. Inf. Syst. 20(1):59–81.
Xu, J., and Croft, W. B. 1996. Query expansion using local
and global document analysis. InSIGIR, 4–11.
Zha, H.; He, X.; Ding, C. H. Q.; Gu, M.; and Simon, H. D.
2001. Bipartite graph partitioning and data clustering. In
CIKM, 25–32.

