
A Temporal Data-Mining Approach for Discovering
End-to-End Transaction Flows

Ting Wang2, Chang-shing Perng1, Tao Tao1, Chungqiang Tang1,
Edward So1, Chun Zhang1, Rong Chang1, and Ling Liu2

1IBM T.J. Watson Research Center
2Georgia Institute of Technology

Abstract

Effective management of Web Services systems re-
lies on accurate understanding of end-to-end transac-
tion flows, which may change over time as the ser-
vice composition evolves. This work takes a data min-
ing approach to automatically recovering end-to-end
transaction flows from (potentially obscure) monitor-
ing events produced by monitoring tools. We clas-
sify the caller-callee relationships among monitoring
events into three categories (identity, direct-invoke, and
cascaded-invoke), and propose unsupervised learning al-
gorithms to generate rules for each type of relationship.
The key idea is to leverage the temporal information
available in the monitoring data and extract patterns
that have statistical significance. By piecing together
the caller-callee relationships at each step along the in-
vocation path, we can recover the end-to-end flow for
every executed transaction. Experiments demonstrate
that our algorithms outperform human experts in terms
of solution quality, scale well with the data size, and are
robust against noises in monitoring data.

1. Introduction

Powered by the Web Services technology, Service-
Oriented Architecture (SOA) is quickly becoming a
standard way of building agile business applications
to support today’s highly dynamic business activities.
With the SOA approach, software is packaged into
reusable, coarse-grained services that provide certain
functions through a standard Web Services interface.
As business processes evolve over time, these basic ser-
vices then can be quickly composed into new solutions
that satisfy new business needs with minimal develop-
ment time and cost.

The agility of SOA is a key reason for its success,
which unfortunately also brings along with it a set of
new challenges. As the composition of business appli-
cations change more often, it becomes harder to obtain

1This work was done during Ting Wang’s internship at IBM
Research.

an accurate image of how a transaction flows through
the IT system. Architecture diagrams are often used
to help understand a complex IT system, but they may
lack of details or quickly become outdated as the service
composition evolves.

We have repeatedly witnessed that major outages
actually happened due to the lack of understanding
of the actual dependency between business processes
and the underlying IT resources, e.g., mistakenly bring-
ing down a server for maintenance while a revenue-
generating business application running half way across
the globe critically depends on the server.

The purpose of this work is to understand precisely
how one transaction instance triggered by a business ac-
tivity actually flows through the IT system. For exam-
ple, when a workflow engine initiate a process to book a
flight for a customer, we want to know precisely which
servers are involved in this transaction instance. This
knowledge of dynamic transaction flow not only helps
avoid the mistakes mentioned above and alike, but also
has much broader usage: (1) discover discrepancy be-
tween architecture diagrams and the real system, (2)
understand IT resource consumption and provide a ba-
sis for price charging and resource provisioning, (3) pin-
point the root cause of performance issues (e.g., which
server on the invocation chain is slow and responsible
for the long response time), and (4) discover the most
frequent execution path across servers, which is the pri-
mary target for performance optimization (as opposed
to optimization purely based on architecture diagram
knowledge).

Ideally, discovering dynamic transaction flows across
servers can be done automatically by monitoring tools.
Unfortunately, our experience with real deployed sys-
tems and commercial monitoring tools indicate that,
although this can be done for new applications devel-
oped from scratch, this is often not the case in existing
deployed systems due to various reasons. For example,
the servers, middleware, or applications may come from
different vendors and their monitoring tools do not co-
operate. It is also not uncommon that some monitoring
tools simply do not have this capability.

The problem would have been easier, if every trans-
action instance carries a unique token when passing

node server name cell
cluster name hostname ip address
parent time current sequence thread id
elapsed time WSDL port operation
one-way flag current thread id msg length
current-ticket current time stamp fault-flag
time stamp parent thread id event type
parent ticket parent sequence remote ip

Table 1. Sample attributes in the ITCAM log.

through different servers, and the monitoring tool on
every server logs the token along with the observed
transaction activity. This can be done by enforcing an
industry standard of event log format and semantics on
every monitoring tool, which unfortunately is unlikely
to happen any time soon.

On the other hand, we observe that sometimes an
expert may be able to manually recover the end-to-end
transaction flow by leveraging obscure information in
logs generated by monitoring tools. For example, Ta-
ble 1 lists some attributes in a log file. By studying a
large amount of log data and matching the values of
the attributes, the expert might guess the relationship
between the attributes, e.g., [parent ticket ⇔ current
ticket], [parent sequence⇔ current sequence], and [par-
ent thread ⇔ current thread]. This example uses in-
tuitive attribute names for ease of understanding, but
real monitoring data can be much more obscure. Us-
ing this knowledge, the expert may guess that server A
invoked server B at a particular time, which caused B
to further invoke server C right after that.

The manual process above is time consuming and
error-prone as the expert guesses the syntax and se-
mantics of log data through trial and error. We propose
a data-mining approach to systematically address this
challenge. We design unsupervised learning algorithms
to efficiently analyze a large amount of log data, and
identify a minimum set of attributes in log files that
link a caller activity to a callee activity. The key idea
is to leverage the temporal information available in the
monitoring data and extract patterns that have statis-
tical significance. By piecing together the caller-callee
relationship at each step along the invocation path, we
can recover the end-to-end flow for each transaction.

Our main contribution is not only the actual algo-
rithms we developed, but more importantly the data-
driven approach for systematically analyzing Web Ser-
vices invocation logs. We believe this approach has
many applications beyond the focus of this paper.

The remainder of the paper is organized as follows.
Section 2 provides an overview of our system, which
consists of an offline subsystem that extracts knowl-
edge from historical monitoring data, and an online
subsystem that leverages the knowledge to construct
end-to-end flows for individual transactions in realtime.
Section 3 presents our knowledge extraction algorithms
in detail. Section 4 evaluates our proposed algorithms.

A1 B1
C1
C2

A3 B3 C3 D3
(a) Correct Transaction Flows

Trans Y:

Trans X:

(b) Incorrect Transaction Flows

A1 B3 C3 D3Trans X:

A3 B1 C1Trans Y:

Figure 1. Challenges in discovering individ-
ual transaction flows. (b) is an incorrect in-
terpretation of what happens in (a).

Related work is discussed in Section 5. Section 6 con-
cludes the paper.

2. System Overview

In this section, we first describe the problem of end-
to-end transaction flow discovery, and then present an
overview of our solution.

2.1 Problem Description

Transaction Flow. Figure 1(a) shows the flows of
two transactions X and Y , which involve four Web Ser-
vices modules (A, B, C, and D) running on different
servers. We use subscripts to denote different invoca-
tions to the same module. For example, A1 and A3

are two different invocations to module A. Figure 1(b)
is an incorrect understanding of the transaction flows
in Figure 1(a). Specifically, B1 is invoked by A1, but
Figure 1(b) relates B1 to A3. Moreover, C2 is invoked
by B1, but Figure 1(b) relates C2 to neither X nor Y .
This example demonstrates the challenges in recover-
ing transaction flows from concurrent transaction activ-
ities. Our unsupervised learning algorithms attempts
to avoid mistakes as those in Figure 1(b) by automati-
cally extracting knowledge from monitoring data.

Event Relationship. A monitoring tool generates a
monitoring even in the log file to record an observed
software activity. Figure 2 shows the events recorded

Module B Module CModule A

Time Time Time

Q
o
A→B

Q i
A→B

Q o
B→C

Q i
B→C

P o
B→C

P i
B→C

P o
A→B

P i
A→B

Figure 2. Events logged during a transaction
with flow A→B→C.

2

for the transaction flow A→B→C. We only study syn-
chronous Web Service invocation in this paper. Based
our study of commercial monitoring tools, we assume
that four events are logged for each Web Service in-
vocation. For the invocation A→B, the caller side
records the outgoing request Qo

A→B and the incoming
reply P i

A→B . The callee side records the incoming re-
quest Qi

A→B and the outgoing reply P o
A→B . Here Q,

P , o, and i stand for reQuest, rePly, Outgoing, and
Incoming, respectively.

The events logged for the same transaction flow are
related to one other by three kinds of relationships:
identity, direct-invoke, and cascaded-invoke. The iden-
tity relationship (') correlates events logged at the
same module for the same invocation. For example,{
Qo

A→B ' P i
A→B

}
has this relationship at the caller

side, and {Qi
A→B ' P o

A→B} has this relationship at the
callee side. The direct-invoke (⇒) relationship links a
caller identity to a callee identity, both of which are
for the same invocation. For instance, A ⇒ B fully
captures the relationship between four events:

{
Qo

A→B ' P i
A→B

} ⇒ {
Qi

A→B ' P o
A→B

}
.

Finally, the cascaded-invoke (;) relationship captures
a cascaded invocation. Suppose A calls B, which fur-
ther calls C. This can be represented as

(A⇒B) ; (B⇒C) .

In our description, we use invoke relationship to gen-
erally refer to both the direct-invoke relationship and
the cascaded-invoke relationship.

Event Representation Monitoring tools usually
record events in unstructured text. We convert un-
structured text into a normalized format, where each
event is represented as a relational tuple:

A = 〈Ao,At,Ad〉 .

Here Ao is a set of attributes specifying the operation
of the event (e.g., Web Service end point), At is a set of
temporal attributes (e.g., event timestamp), and Ad is
a set of description attributes. Table 1 lists some exam-
ples of even attributes. Events produced by the same
software module usually use the same set of attributes,
whereas events produced by different software modules
may use different sets of attributes.

Rules for Discovering Event Relationships.
If a tool can accurately infer the three types of relation-
ships between events (i.e., identity, direct-invoke, and
cascaded-invoke), then it can piece together the invo-
cation steps along the transaction path to recover the
end-to-end transaction flow. A human expert guesses
the relationship between two events by correlating their
attribute values. Take the event attributes in Table 1
as example. After analyzing a large amount of moni-
toring data, the expert might guess that two events x

Rules for Discovering
Event Relationship

Data MinerNormalized
Event Log

Mining Assisting
Knowledge

Realtime Transaction

Flow Discoverer

Meta-data

Raw
Event Log

Event
Adaptor

Discovered Transaction Flows

Normalized Realtime Events

Offline Rule
Discovery Subsystem

Online Transaction Flow
Discovery Subsystem

Figure 3. Simplified architecture of our sys-
tem for transaction flow discovery.

and y are related by the invoke relationship if and only
if their attribute values match as follows:

x . current thread = y . parent thread

x . current tickets = y . parent tickets

x . current sequence = y . parent sequence

x . ip address = y . remote ip.

Given the obscurity of log file contents and the diver-
sity of monitoring tools, it is extremely time consuming
and error-prone for a human expert to manually derive
and verify these relationship discovery rules. For exam-
ple, after analyzing a small amount of data, the expert
may conclude that the current tickets attribute alone
can uniquely pair up events with the invoke relation-
ship. This rule might be true for the small amount
of data the expert viewed manually, but does not hold
in general for a vast amount of data the expert never
viewed. Moreover, noises in the monitoring data (e.g.,
the log contains the requests for some invocations but
not the replies) make it more difficult for the expert
to make a statistically correct decision. In response to
this challenge, we design unsupervised learning algo-
rithms that automatically analyze a large amount of
monitoring data and derive rules that have statistical
significance.

2.2. System Architecture

Figure 3 show the architecture of our system. The
subsystem above the dashed line runs in offline mode.
It analyzes historical log data (i.e., unlabeled training
data) to synthesize rules that can be used for detecting
the relationships between events (i.e., identity, direct-
invoke, and cascade-invoke). The subsystem below the
dashed line runs in online mode. Guided by the re-
lationship discovery rules generated by the offline sub-
system, the online subsystem takes realtime monitoring
events as input and constructs the end-to-end flow for
every executed transaction.

3

The offline subsystem works as follows. First, his-
torical raw monitoring data are parsed and normalized
by the event adapters. In addition to the normalized
event log, the data miner takes two extra inputs. The
meta data contain information about the classification
of event attributes into the operational, temporal, and
descriptive categories. The mining-assisting knowledge
is optional. It is needed only if some critical domain-
specific knowledge is not available in the log data. The
outputs of the data miner are rules for discovering event
relationships, which drive the operation of the online
subsystem.

In the online subsystem, raw monitoring events are
gathered in realtime from a distributed system, nor-
malized and then forwarded to the realtime transaction
flow discover. The discoverer interprets rules produced
by the data miner to identify events with a certain re-
lationship. It pieces together events recorded at each
step along the invocation path of a transaction, and fi-
nally generates a complete end-to-end transaction flow.
These realtime transaction flows then can be utilized by
the downstream tools, for example, to build a realtime
monitoring dashboard for visualizing system dynamics
from both the IT perspective and the business perspec-
tive.

3 Data Mining Algorithm

The data miner in Figure 3 takes historical mon-
itoring data as input, performs deep analysis on the
data, and then synthesizes rules that can be used for
detecting the relationships between events. This sec-
tion presents the data miner in detail.

The data miner takes an unsupervised approach for
learning, i.e., it does not require experts to manually la-
bel a set of monitoring data as training samples, which
is often a time consuming and error prone process. On
the other hand, the data miner can also incorporate ex-
pert’s domain knowledge to improve the quality of the
generated rules.

To reconstruct end-to-end transcation flows from
monitoring events, one needs to infer three types of re-
lationships between events: identity, direct-invoke, and
cascaded-invoke (see Section 2.1 for examples of these
relationships). The data miner uses one algorithm to
generate rules for discovering the identity relationship,
and uses another algorithm to generate rules for both
the direct-invoke relationship and the cascaded-invoke
relationship, because of their similarity (i.e., events are
nested in time).

Our algorithms search for the minimum set of event
attributes that can uniquely identify two events with
a given relationship. The general method is to (1) use
events with statistical significance as learning samples,
(2) establish an ideal solution that can perfectly derive
event relationships, and (3) search for a practical solu-
tion that has the smallest discrepency with respect to
the ideal solution. Below, we present our algorithms in
detail.

Algorithm 1: Algorithm for deriving the identity
attribute set Ap that can be used for discovering
the identity relationship.
Input: collection of event instances C, threshold

δi.
Output: The pair attribute set Ap.
// H: stack of added attributes
H ← ∅, Aopen = Ad;
// pre-screen all non-promising

attributes
for each attribute a ∈ Aopen do

if Q(Ao ∪ {a}) < Q(Ao) then Aopen ←
Aopen \ {a};

// incremental search for optimal
combination

while Aopen 6= H and Q(Ao ∪H) < δ do
a∗ = arg maxa Q(Ao ∪H ∪ {a}) for
a ∈ Aopen \ H;
if Q(Ao ∪H ∪ {a∗}) < Q(Ao ∪H) then

// backward search
repeat

a′ ← pop top entry of H;
a+ = arg maxa Q(Ao ∪H ∪ {a})

for a ∈ {a|Q(Ao ∪H ∪ {a}) <
Q(Ao ∪H ∪ {a′})};

until H = ∅ or Q(Ao ∪H ∪ {a+}) ≥
Q(Ao ∪H) ;
if H 6= ∅ then

push a+ to H;
else report failure and break;

else
if Q(Ao ∪H ∪ {a∗}) ≥ δ then

add Ao ∪H ∪ {a∗} to Ap and break;
else push a∗ to H;

3.1. Identity Relationship

Recall that an event is represented as a relational
tuple, A=〈Ao,At,Ad〉, where Ao At, and Ad are opera-
tion, temporal, and description attributes, respectively.
The identity attribute set Ap is a minimum subset of
A, such that for two events e1 and e2 with the identity
relationship, Ap(e1) = Ap(e2), whereas for two events
e′1 and e′2 without the identity relationship, Ap(e′1) 6=
Ap(e′2). That is, the values of Ap uniquely identify two
events that have the identity relationship. Because the
identity relationship is established by a Web Service in-
vocation, we know that Ao ∈ Ap. If we can accurately
infer the identity attributes Ap from historical moni-
toring data, then in the online subsystem that contin-
uously processes monitoring events in realtime, we can
use Ap to identify events with the identity relationship.

Below we describe how to learn the identity at-
tribute set Ap from unlabelled historical monitoring
data. The key observation is that Ap groups event
instances into pairs. If we organize event instances into

4

a histogram according to their projection on the at-
tributes in Ap, the ideal histogram is the one where
each bucket contains exactly two instances. For exam-
ple, the event instances in Figure 2 should be grouped
into four pairs.

{
Qo

A→B = P i
A→B

}
,
{
Qi

A→B = P o
A→B

}
,{

Qo
B→C = P i

B→C

}
, and

{
Qi

B→C = P o
B→C

}
.

Based on this observation, for a set of attributes
A′ ⊆ A, we measure its quality Q(A′) as the similarity
of the ideal histogram and that projected over A′. In
our current implementation, we use Euclidean distance
to measure the similarity of two histograms. Our al-
gorithm aims to find the minimum set of attributes A′
that has the highest quality score Q(A′).

To find A′ efficiently, our algorithm reduces the
search space significantly by leveraging two key
paradigms, namely Apriori rule[2] and best-first search:

• Apriori rule. Suppose Q(A′) > Q(A′′), where A′
and A′′ are two sets of attributes and A′ ⊂ A′′.
It is safe to stop exploring the supersets of A′′,
because the quality of those supersets cannot be
better than Q(A′). Note that Q(A′) > Q(A′′)
means thatA′′ already have too many buckets that
contain only a single event instance. Therefore,
adding more attributes to A′′ can only further de-
teriorates the quality.

• Best-first search. Suppose the current candidate
identity attribute set is A′. We expand A′ by
first considering the attribute h that leads to the
highest score Q(A′ ∪ {h}). Let h∗ be such an at-
tribute, i.e., h∗ = arg maxh Q(A′ ∪ {h}). If score
Q(A′ ∪ {h∗}) < Q(A′), it is safe to stop exploring
other attributes.

Algorithm 1 shows the pseudo code for generating
the identity attribute set Ap that can be used for dis-
covering the identity relationship. We first identify
the open attribute set Aopen by removing all the non-
promising attributes that bring no improvement to the
quality of the selected set. We then apply best-first
search to find the minimum set of attributes with qual-
ity above the threshold δ. On meeting the boundary,
we apply a backward search strategy.

3.2. Invoke Relationship

The rules for discovering the direct-invoke relation-
ship and the cascaded-invoke relationship are similar,
and we simply refer to both of them as the invoke rela-
tionship. Given a collection of events with the associ-
ated set of attributes as A = 〈Ao,At,Ad〉, the invoke
mapping is an one-to-one mapping m between two sub-
sets Ai

1 and Ai
2 of Ad, such that for two pairs e1 and e2

with the invoke relationship, Ai
1(e1) =m Ai

2(e2) (i.e.,
e1 and e2 have identical values w.r.t. the mapping m),
whereas for two e′1 and e′2 without the invoke relation-
ship, Ai

1(e
′
1) 6=m Ai

2(e
′
2). Note that each of e1, e2,

e′1, and e′2 is a pair of events with the identity rela-
tionship rather than an individual event. Using the

a

e’b b’ c’c

a’ d’d

e time

Figure 4. Rules for discovering the invoke re-
lationship.

example in Figure 2, e1 can be
{
Qo

A→B = P i
A→B

}
, e2

can be
{
Qi

A→B = P o
A→B

}
. e1 and e2 have the invoke

relationship. We use a mapping m instead of just an
attribute set because the caller and callee may have
different event format.

If we can accurately infer the invoke mapping m
from historical monitoring data, then in the online sub-
system that continuously processes monitoring events
in realtime, we can use m to identify events with the
invoke relationship. Below we describe how to learn
m from unlabelled historical monitoring data, which is
based on two key observations.

The first observation is that, if two event pairs are
related by the invoke relationship, then one pair must
be nested in the other in the temporal dimension. For
example, in Figure 2,

{
Qi

A→B = P o
A→B

}
is nested in-

side
{
Qo

A→B = P i
A→B

}
. The second observation is that

two event pairs with the invoke relationshp have func-
tional dependency on their corresponding operations.
We can therefore aggregate the nested structure on the
operation level, and pick statistically significant opera-
tion pairs to form the learning samples.

Concretely, our algorithm executes the following
steps. (1) Group events into event pairs using the algo-
rithm in Section 3.2, e.g., the event pairs in Figure 4:
(a, a′), (b, b′), (c, c′), (d, d′), (e, e′). (2) Find nested
event pairs, e.g., (b, b′) is nested in (a, a′), (c, c′) is
nested in (a, a′), and (e, e′) is nested in (d, d′). (3) Ag-
gregate such nested structures on the operation level,
e.g., (a, a′), (b, b′), (c, c′), (d, d′) and (e, e′) are of op-
erations A, B, C, D, E, respectively. Therefore the
counters of A→B, A→C, and D→E, are each increased
by one. Given the statistics of the nested relationship
between operations, we pick the operation pairs with
the largest counters, and use their instances as learn-
ing samples. In our example, we may pick A→B, A→C,
and D→E, as the correlated operation pairs, and their
instances (a, a′)− (b, b′), (a, a′)− (c, c′), (d, d′)− (e, e′)
as the learning samples. Among the learning samples,
we pick all the request instances (e.g., a→b, a→c, d→e)
and consider them as pairs with the invoke relationship.
These pairs form our learning samples.

Our goal is to find an optimal mapping m between
two subsets of A, such that w.r.t. m (i) event pairs
with the invoke relationship have identical values, and
(ii) event pairs without the invoke relationship have dis-
tinct values. For the example in Figure 4, the optimal
mapping should have agreed values for a→b, a→c, and
d→e, but different values for other pairs, e.g., a→e.

5

Therefore we first find the set of attribute pairs sat-
isfy condition (i) above as the candidate attributes,
from which we then search for the minimum set of at-
tribute pairs meeting condition (ii) to form the map-
ping m. It is straightforward to check the quality of
the selected attribute pairs w.r.t. condition (i) by com-
paring attribute values. For condition (ii), we adopt a
search strategy similar to Algorithm 1.

Specifically, our algorithm leverages the following
observation. Suppose m is a mapping between two at-
tribute sets Ai

1 and Ai
2, which are on the caller side and

the callee side, respectively. Assuming this mapping
satisfies condition (i), if condition (ii) is also satisfied,
then Ai

1 should distinguish all the distinct event in-
stances at the caller side. However the event instances
at the callee side may not have distinct values w.r.t.
Ai

2. For example, in Figure 4, a and d should have
distinct values w.r.t. Ai

1, but b and c tend to have the
same values w.r.t. Ai

2, since they are both caused by a.
Therefore, we only need to examine the instances at

the caller side in search of the optimal mapping that
satisfies condition (ii). Concretely, we execute the fol-
lowing steps. (1) From the pool of event pairs with the
invoke relationship, pick all the instances at the caller
side. (2) Search for the minimum mapping m (Ai

1→Ai
2)

such that Ai
1 distinguishes all these instances (i.e., re-

sulting in a histogram where the size of every bucket is
one). The search algorithm is similar to Algorithm 1,
and is omitted here.

4 Evaluation

This section presents an empirical evaluation of our
algorithms that generate rules for discovering event re-
lationships (i.e., identity, direct-invoke, and cascaded-
invoke). We use ID to denote the rules for discovering
the identity relationship. We use IV to denote the rules
for discovering both the direct-invoke relationship and
the cascaded relationship as they are similar.

We use three metrics to evaluate our algorithm. (1)
Is the quality of the rules generated by our algorithm
comparable to those found by human experts? (2) How
sensitive are our algorithm to noise in the monitoring
data? (3) Are our algorithm scalable in terms of execu-
tion time as the data size increases? In summary, our
experiments show that our algorithm generates high-
quality rules, is robust against noises, and is scalable.

The experiments are based on the travel booking
application shown in Figure 5. The TravelBookingSer-
vice is hosted in a workflow engine (WebSphere Process
Server 6.1). It contains one business activity Book-
Flight, which internally invokes a series of Web Ser-
vices (BookFlight, EPayment, CreditCard, and EMail)
running on different servers. All the servers are hosted
in a IBM BladeCenter and run Windows Server 2003.
The entire distributed system is monitored by the
ITCAM4SOA component of IBM Tivoli Monitoring
(ITM) 6.1. Some attributes of the events logged by
the monitoring tool are shown in Table 1.

TravelBookingService

Business Process

BookFlight

Business Activity

BookFlight

Web Service

EPayment

Web Service

CreditCard

Web Service

EMail

Web Service

Figure 5. The travel booking application.

4.1 Quality

We first evaluate the quality of the relationship dis-
covery rules generated by our algorithm by comparing
them with rules manually generated by human experts.
Before developing the automated data miner described
in this paper, we actually have already used those man-
ual rules in production systems for a long period of
time. Therefore, those manual rules are not just de-
signed for evaluation purpose and are a fair baseline
for comparison. The reason that motivated this work
is our observation that it is extremely time consuming
and error prone for experts to manually study a large
amount of logging data in order to derive the rules.
With the automated data miner, we actually can ver-
ify that the manual rules sometimes are inaccurate even
if the domain experts have spent extraordinary efforts
in constructing them.

Table 2 summarizes and compares the rules, with
the differences highlighted in bold. We make the fol-
lowing observations. (1) Our algorithm automatically
discovers that the attributes WSDL port and operation
are redundant in identifying the identity relationship,
because either of them, in combination with the other
attributes, can uniquely identify events with the iden-
tity relationship. This is empirically proved by the fact
that the rules suggested by human expert and our al-
gorithm achieve the same quality score of 0.948, as
defined in Section 3.2. (2) Our algorithm discovers
that it is not necessary to use the attribute pair Cur-
rent Ticket→Parent Ticket for detecting the identity
relationship, because the other three attributes are al-
ready sufficient. This is empirically proved by the fact
that the rules discovered by human expert and our al-
gorithm achieve the same quality score of 1.0.

Because of the redundancy in rules, the expert rules
are not optimal compared with the rules derived by
our algorithm. This experiment demonstrates that the
data miner can generate relationship discovery rules
comparable to, or even better than, the expert rules.
On the other hand, we acknowledge that, sometimes
some application domain knowledge is not expressed in
the monitoring data in anyway, and hence it is impos-
sible for the data miner to discover it. In this case, it

6

rule category specification

ID
experts

current thread, current sequence,
ip address, WSDL port, operation

algorithm
current thread, current sequence,

ip address, WSDL port/operation

IV
experts

current thread → parent thread
current ticket → parent ticket

current sequence → parent sequence
ip address → remote ip

algorithm
current thread → parent thread

current sequence → parent sequence
ip address → remote ip

Table 2. Summary of correlation rules discov-
ered by human expert and our algorithm.

is beneficial to have experts provide that knowledge to
our data miner as extra input.

4.2 Robustness

In real systems, the monitoring data may be incom-
plete or contains errors. These noises make it harder
for the data miner to derive the relationship discov-
ery rules. However, we will show that the data miner
works robustly even in the face of significant noises in
the monitoring data.

Here we specifically consider noises caused by mes-
sage loss, i.e., some invocations may not have coupled
requests and replies, for example, due to communica-
tion errors or problems with the monitoring tool. The
message loss impacts rule discovery by making event
pairing more difficult.

We evaluate the robustness of our algorithm against
message loss. We measure the quality of the discovered
rules under various message loss rates, and determine
the threshold of loss rate above which the discovered
rules deviate from those found under the perfectly clean
data. Specifically, the thresholds for ID and IV are:

ID : 56% IV : 93% .

We make several observations. (1) The quality of the
relationship discovery rules start to deteriorate only if
the message loss rate is extremely high (56% for ID
and 93% for IV). Note that 93% means 93% of the
invocation messages (request or response or both) are
not recorded in the log data. This indicates that our
algorithm is extremely robust against noises that may
exist in real environments. (2) The IV threshold is
much higher than the ID threshold. This can be ex-
plained by the fact that IV is discovered by analyzing
the operation pairs with the highest statistical correla-
tion, and such statistical significance is preserved even
in extremely noisy data.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.1 0.3 0.5 0.7 0.9

Data Fraction

E
xe

cu
ti

on
 T

im
e

(s
)

Figure 6. ID: execution time vs. fraction of
data collection.

0
5

10
15
20
25
30
35
40
45
50

0.1 0.3 0.5 0.7 0.9

Data Fraction

E
xe

cu
ti

on
 T

im
e

(s
)

Figure 7. IV: execution time vs. fraction of
data collection.

4.3 Scalability

The last experiment evaluates the scalability of our
algorithm (see Figures 6 and 7). We measure the ex-
ecution time of the algorithm for a given fraction of
the data collection. The execution time grows almost
linearly with the data size. The O(n) complexity is
necessary because any algorithm that generates rela-
tionship discovery rules needs to at least scan the data
once. On the other hand, because our algorithm is ex-
tremely robust against message loss, for a very large
data set, we can select a subset of the data and use it
as the input for our algorithm. The figures also show
that generating IV is slower than generating ID by
two orders of magnitude.

5. Related Work

Most of the prior work leverages ontological or se-
mantic clues to finding component-level static relation-
ship. By contrast, it is much more challenging to dis-
cover the end-to-end flow for individual transaction in-
stances in realtime. To our knowledge, this work is the
first one that takes an unsupervised learning approach
to address this challenge.

7

The work of De Pauw et al.[6] is the closest to
ours. Their method explores the semantic relation-
ship between event schemas, and iterates over pairs
of paths between any two event schemas to determine
whether there is a one-to-one, one-to-many, or many-
to-many relationship. Their method can discover di-
alogs across multiple transactions, e.g., three related
orders placed by the same customer, but requires access
to the full contents of Web Services messages, which
unfortunately is not always available, for example, due
to security or privacy concerns. By contrast, our al-
gorithms take ordinary log files as input and perform
deep histogram and temporal analysis.

Kind et al.[9] used “shockwaves” in IP networks to
discover dependency. They described a mathematical
model for discovering transaction flows by correlating
NetFlows at the packet level, where a NetFlow as a set
of network packets during a certain time interval. Sim-
ilarly, Brown et al.[4] actively created perturbation in
the system for dependency discovery. By contrast, we
take a passive monitoring approach and use informa-
tion at the task level.

Transaction flow discovery has also been studied in
the performance debugging area. Aguilera et al.[3]
showed that it is possible to use low-level traces with
little semantic knowledge to discover multi-hop causal
path patterns. This work discovers static relationship
at the component level rather than dynamic transac-
tion flows at the instance level. Similarly, several other
work [1, 7, 5] also proposed solutions for discovering
component dependency in order to solve the perfor-
mance debugging problem.

Unlike the methods above, Sycara [10] used Seman-
tic Web to model Web Services invocations. This
method, however, requires substantial domain knowl-
edge about the application.

6. Conclusion

One key challenge in realtime SOA management is
to understand how invocations are chained together to
form end-to-end transaction flows. Much work has been
done on discovering component-level dependency, e.g.,
using ontology or shockwaves. By contrast, our system
can construct in realtime the end-to-end flow of ev-
ery executed transaction, powered by the knowledge for
identifying the relationships among monitoring events.
This knowledge is extracted offline from historical mon-
itoring data by our unsupervised learning algorithms.

We classify the temporal relationships among mon-
itoring events into three categories. The identity re-
lationship matches a Web Service invocation’s request
event with reply event at the same component. The
direct-invoke relationship connects an event on the
caller side to the corresponding event on the callee
side, both of which are for the same invocation. The
cascaded-invoke relationship chains two nested invoca-
tions, where A calls B and B further calls C. The end-
to-end transaction flow can be recovered accurately if

one can infer the three types of relationships at each
step along the invocation path.

Our unsupervised learning algorithms discover the
three types of relationships by searching for the min-
imum set of event attributes that can uniquely iden-
tify two events with a given relationship. The general
method is to (1) use events with statistical significance
as learning samples, (2) establish an ideal solution that
can perfectly derive event relationships, and (3) search
for a practical solution that has the smallest discrep-
ancy with respect to the ideal solution. Experiments
demonstrate that our algorithms outperform human ex-
perts in terms of solution quality, scale well with the
data size, and are robust against noises in monitoring
data.

This paper lays out a foundation for some interesting
future work. Equipped with the capability of discover-
ing end-to-end transaction flows on the instance level,
one can build a realtime monitoring dashboard to vi-
sualize system dynamics from both the IT perspective
and the business perspective. Data mining can also
be applied to analyze historical transaction flows and
identify opportunities for further optimization.

References

[1] M. K. Agarwal, K. Appleby, M. Gupta, G. Kar,
A. Neogi, and A. Sailer. Problem determination us-
ing dependency graphs and run-time behavior models.
In IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, 2004.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, 1994.

[3] M. K. Aguilera, J. C. Mogul, J. Wiener, P. Reynolds,
and A. Muthitacharoen. Performance debugging for
distributed systems of black boxes. In ACM Sympo-
sium on Operating Systems Principles, October 2003.

[4] A. Brown, G. Kar, and A. Keller. An active ap-
proach to characterizing dynamic dependencies for
problem determination in a distributed environment.
In IFIP/IEEE International Symposium on Integrated
Network Management, 2001.

[5] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: problem determination in large,
dynamic internet services. In International Conference
on Dependable Systems and Networks, 2002.

[6] W. De Pauw, R. Hoch, and Y. Huang. Discovering
conversations in web services using semantic correla-
tion analysis. In IEEE International Conference on
Web Services, 2007.

[7] J. Gao, G. Kar, and P. Kermani. Approaches to build-
ing self healing systems using dependency analysis.
In The IFIP/IEEE International Symposium on In-
tegrated Network Management, 2004.

[8] JBoss.org. Drools. http://www.jboss.org/drools/.
[9] A. Kind, D. Gantenbein, and H. Etoh. Relation-

ship discovery with netflow to enable business-driven
it management. In 1st IEEE/IFIP Int. Workshop
on Business-Driven IT Management (BDIM 2006) in
conjunction with NOMS’06, April 2006.

[10] K. P. Sycara. Dynamic discovery, invocation and com-
position of semantic web services. In he Third Hellenic
Conference on Artificial Intelligence, SETN, 2004.

8

