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Abstract— Freshness and accuracy are two key measures of
quality of service (QoS) in location-based, mobile continual
queries (CQs). However, it is often difficult to provide both fresh
and accurate CQ results due to (a) limited resources in computing
and communication and (b) fast-changing load conditions caused
by continuous mobile node movement. Thus a key challenge
for a mobile CQ system is: How do we achieve the highest
possible quality of the query results, in both freshness and
accuracy, with currently available resources under changing load
conditions? In this paper, we formulate this problem as a load
shedding one, and develop MobiQual − a QoS-aware framework
for performing both update load shedding and query load
shedding. The design of MobiQual highlights three important
features. (1) Differentiated load shedding: Different amounts of
query and update load shedding are applied to different groups
of queries and mobile nodes, respectively. (2) Per-query QoS
specifications: The overall freshness and accuracy of the query
results are maximized with individualized QoS specifications.
(3) Low-cost adaptation: MobiQual dynamically adapts, with a
minimal overhead, to changing load conditions and available
resources. We show that, through a careful combination of update
and query load shedding, the MobiQual approach leads to much
higher freshness and accuracy in the query results in all cases,
compared to existing approaches.

I. INTRODUCTION

With the ever increasing accessibility of wireless com-

munications and the proliferation of mobile devices, we are

experiencing a world where we can stay connected while on-

the-go. Combined with the availability of low-cost positioning

devices (such as GPS sensors), this has created a new class of

applications and business opportunities in the area of mobile

location-based services (LBSs). Examples include location-

aware information delivery and resource management, such as

transportation services (NextBus bus locator [1], Google ride

finder [2]), fleet management, mobile games, and battlefield

coordination.

A key challenge for LBSs is a scalable location monitoring

system capable of handling large number of mobile nodes

and processing complex queries over their positions. Although

several mobile continual query (CQ) systems have been pro-

posed to handle long-running location monitoring tasks in

a scalable manner [3], [4], [5], [6], [7], the focus of these

works is primarily on efficient indexing and query processing

techniques, not on accuracy or freshness of the query results.

Accuracy (inaccuracy) is defined based on the amount of

mobile node position errors found in the query results at

the time of query re-evaluation. This accuracy measure is

strongly tied to the frequency of position updates received

from the mobile nodes. Although one can also use a higher

level concept to measure accuracy, such as the amount of

containment errors found in the query results1, including both

false positives (inclusion errors) and false negatives (exclusion

errors), we argue that using position update errors for accuracy

measure will provide higher level of precision. This is primar-

ily because by utilizing the amount of node position errors as

the accuracy measure, one can easily bound the inaccuracy by

a threshold-based position reporting scheme [8], [9].

Freshness (staleness), on the other hand, refers to the age

of the query results since the last query re-evaluation. It is

dependent on the frequency of query re-evaluations performed

at the server. As mobile nodes continue to move, there are

further deviations in mobile node positions after the last query

re-evaluation. However, such deviations are not attributed to

inaccuracy. Hence, freshness can be seen as a metric capturing

the post-query-re-evaluation deviations in mobile node posi-

tions. It is important to note that higher freshness does not

necessarily imply higher accuracy and vice versa.

To obtain fresher query results, the CQ server must re-

evaluate the continual queries more frequently, requiring more

computing resources. Similarly, to attain more accurate query

results, the CQ server must receive and process position

updates from the mobile nodes in a higher rate, demanding

communication as well as computing resources. However,

it is almost impossible for a mobile CQ system to achieve

100% fresh and accurate results due to continuously changing

positions of mobile nodes. A key challenge therefore is: How

do we achieve the highest possible quality of the query results

in both freshness and accuracy, in the presence of changing

available resources and changing workloads of location up-

dates and location queries?

In this paper, we propose MobiQual − a resource-adaptive

and QoS-aware load shedding framework for mobile CQ

systems. MobiQual is capable of providing high-quality query

1A bound on the amount of containment errors can be approximated by a bound on

the position errors, if the distribution of the mobile nodes around the query boundaries

is at hand or can be approximated.



results by dynamically determining the appropriate amount of

update load shedding and query load shedding to be performed

according to the application-level QoS specifications of the

queries. An obvious advantage of combining query load shed-

ding and update load shedding within the same framework

is to empower MobiQual with differentiated load shedding

capability, that is configuring query re-evaluation periods and

update inaccuracy thresholds for achieving high overall QoS

with respect to both freshness and accuracy.

We have conducted detailed experimental studies on the

effectiveness of MobiQual. Our results show that (1) a careful

combination of location update load shedding and location

query load shedding can significantly outperform the ap-

proaches that are based on query-only or update-only load

shedding; and (2) MobiQual provides higher quality guaran-

tees compared to the approaches that lack the supports of QoS

awareness and differentiated load shedding.

Previous work on mobile CQ systems have focused on four

major themes with respect to scalability and performance.

These are: i) indexing schemes to process position updates

more efficiently [10], [5], [11], [12]; ii) query processing

techniques to evaluate continual queries more efficiently [6],

[3], [13], [14]; iii) motion modeling techniques to reduce the

number of position updates received from the mobile nodes,

while keeping the position accuracy high [8], [9]; and iv)

distributed mobile CQ systems that achieve scalability by

performing query-aware update filtering on the mobile node

side to receive updates that only relate to the current set of

queries installed in the system [15], [4], [16]. Most of these

works, with the exception of the works listed under item iv,

are mostly orthogonal to our work and can be incorporated

into MobiQual easily. For instance, MobiQual can use a TPR-

tree [10] as its underlying index structure on the server side,

can make use of advanced motion modeling techniques [8]

on the mobile node side, and can employ incremental query

processing techniques [3] for query re-evaluation. Unlike the

set of works listed under item iv, MobiQual receives updates

from all the nodes, so that ad-hoc and historical queries

can also be supported. However, MobiQual prefers to shed

position updates from regions that have minimal impact on the

currently installed queries, thus achieving best of both worlds.

In our previous work [17], we introduced the Lira system

for performing update load shedding in mobile CQ systems.

However, the Lira system not only lacks query load shedding

capabilities, but also ignores any QoS-aware mechanisms

as a part of the load shedding framework. Thus the Lira

results are limited. To the best of our knowledge, none of

the existing work has exploited the potential of combining

update load shedding and query load shedding to maximize

the application-level freshness and accuracy of mobile queries.

II. DESIGN OVERVIEW

A. Load Shedding in Mobile CQ Systems

In a mobile CQ system, the CQ server receives position

updates from the mobile nodes through a set of base stations

base station CQ servermobile nodes

position updatesupdate reporting &

update load shedding

update processing

index

CQs

query processing &

query load shedding

Fig. 1: Mobile CQ system and load shedding

(see Figure 1) and periodically evaluates the installed con-

tinual queries (such as continual range or nearest neighbor

queries) over the last known positions of the mobile nodes.

Since the mobile node positions change continuously, motion

modeling [8], [9] is often used to reduce the number of updates

sent by the mobile nodes. The server can predict the locations

of the mobile nodes through the use of motion models, albeit

with increasing errors. Mobile nodes generally use a threshold

to reduce the amount of updates to be sent to the server and

to limit the inaccuracy of the query results at the server side

below the threshold. Smaller thresholds result in smaller errors

and higher accuracy, at the expense of a higher load on the

CQ server. This is because a larger number of position updates

must be processed by the server, for instance, to maintain

an index [10], [5]. When the position update rates are high,

the amount of position updates is huge and the server may

randomly drop some of the updates if resources are limited.

This can cause unbounded inaccuracy in the query results. In

MobiQual, we use accuracy-conscious update load shedding

to regulate the load incurred on the CQ server due to position

update processing by dynamically configuring the inaccuracy

thresholds at the mobile nodes.

Another major load for the CQ server is to keep the query

results up to date by periodically executing the CQs over the

mobile node positions. More frequent query re-evaluations

translate into increased freshness in the query results, also

at the expense of a higher server load. Given limited server

resources, when the rate of query re-evaluations is high, the

amount of queries to be re-evaluated is vast and the server may

randomly drop some of the re-evaluations, causing stale query

results (low freshness). In MobiQual, we utilize freshness-

conscious query load shedding to control the load incurred

on the CQ server due to query re-evaluations by configuring

the query re-evaluation periods.

In general, the total load due to evaluating queries and

processing position updates dominates the performance and

scalability of the CQ server. Furthermore, the time-varying

processing demands of a mobile CQ system entails that update

and query load shedding should be dynamically balanced and

adaptively performed in order to match the current workload

with the server’s capacity.

B. The MobiQual Approach

The MobiQual system aims at performing dynamic load

shedding to maximize the overall quality of the query re-

sults, based on per-query QoS specifications and subject to



processing capacity constraints. The QoS specifications are

defined based on two factors: accuracy and freshness. In

MobiQual, the QoS specifications are used to decide on not

only how to spread out the impact of load shedding among

different queries, but also how to find a balance between query

load shedding and update load shedding. The main idea is

to apply differentiated load shedding to adjust the accuracy

and freshness of queries. Namely, load shedding on position

updates and query re-evaluations is done in such a way that the

freshness and accuracy of queries are non-uniformly impacted.

From the perspective of query load shedding, we make

two observations to show that nonuniform freshness in the

query results can increase the overall QoS of the mobile CQ

system: (1) Different queries have different costs in terms

of the amount of load they incur. (2) Different queries have

different tolerance to staleness in the query results. Thus it

is more effective to shed load (by sacrificing certain amount

of freshness) on a costly query than an inexpensive one.

This is especially beneficial if the costly query happens to

be less stringent on freshness, based on its QoS specification.

Bearing these observations in mind, in MobiQual we employ

QoS-aware query load shedding: We use query re-evaluation

periods as control knobs to perform query load shedding,

where the same amount of increase in query re-evaluation

periods for different queries brings differing amounts of load

reduction and QoS degradation with respect to freshness.

Similar to query load shedding, we make two observations

regarding update load shedding to show that nonuniform result

accuracy can increase the overall QoS. First, different geo-

graphical regions have different numbers of mobile nodes and

queries. Second, different queries have different tolerance to

position errors in the query results. This means that shedding

more updates from a region with a higher density of mobile

nodes and a lower density of queries can bring a higher

reduction on the update load and yet have a smaller impact on

the overall query result accuracy. This is especially true if the

queries within the region have less stringent QoS specifications

in terms of accuracy. Thus, in MobiQual we employ QoS-

aware update load shedding: We use inaccuracy thresholds

from motion modeling as control knobs to adjust the amount of

update load shedding to be performed, where the same amount

of increase in inaccuracy thresholds for different geographical

regions brings differing amounts of load reduction and QoS

degradation with respect to accuracy.

MobiQual dynamically maintains a throttle fraction, which

defines the amount of load that should be retained. It performs

both update load shedding and query load shedding to control

the load of the system according to this throttle fraction, while

maximizing the overall quality of the query results. MobiQual

not only strikes a balance between freshness and accuracy

by employing both query and update load-shedding, but also

improves the overall quality of the results by utilizing per-

query QoS specifications to capture each query’s different

tolerance to staleness and inaccuracy.

C. Notation and Fundamentals

The set of continual queries installed in the system is

denoted by Q. For each query q ∈ Q, there is an associated

QoS specification Sq. The QoS function Sq(τq, ǫq) takes a

value in [0, 1], where 1 represents perfect quality in terms

of freshness and position error, and 0 represents the worst.

τq and ǫq are used to denote the degree of staleness and

inaccuracy in the query results, respectively. τq corresponds to

the query re-evaluation period for q, whereas ǫq corresponds

to the average of the inaccuracy thresholds used in motion

modeling for the mobile nodes within the query result of q. At

any given time, the result of query q can be at most τq seconds

old and at the time of query evaluation the position of a mobile

node in the query result can deviate from its actual position

by ǫq meters on average. The mobile CQ system supports a

minimum staleness value of τ⊢ and a minimum position error

of ǫ⊢. For any query q, we have Sq(τ⊢, ǫ⊢) = 1. Similarly, we

introduce a maximum staleness value, denoted by τ⊣, and a

maximum position error, denoted by ǫ⊣. The staleness in the

query results cannot exceed the maximum threshold value of

τ⊣, at which point the results are assumed to be useless. Also

the position error is bounded by ǫ⊣. In summary, we have

τq ∈ [τ⊢, τ⊣] and ǫq ∈ [ǫ⊢, ǫ⊣]. The minimum and maximum

staleness and position error thresholds are system parameters.

Since a scalable mobile CQ system should be able to handle

tens of thousands of queries and hundreds of thousands of

mobile nodes, it is inefficient, even if it is possible, to adjust

and dynamically maintain the re-evaluation periods for queries

and inaccuracy thresholds for mobile nodes individually. In

MobiQual, we divide the set of m queries into k groups,

denoted by Cj , j ∈ [1..k], where the number of queries in

Cj is denoted by mj and
∑k

j=1 mj = m. The queries within

the same group Cj share the same re-evaluation period Pj , i.e.

we have ∀qu ∈ Cj , τu = Pj . We denote the one-time cost of

processing the set of queries in Cj as fc(Cj), which is simply

the sum of one-time processing costs of individual queries. The

usage of the cost model in MobiQual does not require absolute

values of query costs and can work with relative values for

cost-based analysis. A key question for query load shedding

is how to divide the queries into k query groups and how to

compute the re-evaluation period Pj for each query group Cj

(j ∈ [1..k]).

Similarly, given a total number of n mobile nodes, we

partition the geographical area of interest into l regions,

denoted by Ai, i ∈ [1..l], where the number of mobile nodes

in Ai is denoted by ni and
∑l

i=1 ni = n. The mobile nodes

within the same region Ai use the same inaccuracy threshold

∆i. A query qu whose result lies completely within region Ai

will have ǫu = ∆i. For queries whose results contain mobile

nodes from different regions, ǫu is given by a weighted average

of ∆i values of the involved regions.

We denote the fraction of updates received from a region Ai,

when using an inaccuracy threshold ∆i, as fr(∆i). fr is rela-

tive to the ideal case where all ∆i’s are equal to the minimum

position error ǫ⊢. Thus we have fr(ǫ⊢) = 1 > fr(ǫ⊣). fr is



a non-increasing continuous function with a positive second

derivative. More detailed characterization of such functions

exist for specific motion modeling and prediction schemes [8],

[17]. A key challenge for update load shedding is how to

partition the geographical area of interest into l regions and

how to compute the inaccuracy threshold ∆i for each region

Ai (i ∈ [1..l]).

D. Trade-offs in Setting k and l

In general, the larger the number of query groups (k) we

have, the higher the quality of the query results is in terms of

freshness, as it enables performing differentiated load shedding

with finer granularity. The only restriction in setting the value

of k is the computational cost (which forms a major part of

the adaptation cost) of finding an effective setting for the re-

evaluation periods Pj , j ∈ [1..k]. Similar trade-off is observed

in setting the number of regions (l) and thus the number of

inaccuracy thresholds, with one exception. Since the changes

in inaccuracy thresholds have to be communicated back to

the mobile nodes through control messages (broadcasts from

base stations), there is a second dimension to this trade-off:

The larger the l value is, the higher the control cost of the

adaptation step will be. In Section VII, we experimentally

evaluate the benefit/cost trade-off in setting k to show that

with lightweight adaptation we can achieve high quality query

results. The details of setting l can be found in [17].

E. Solution Outline

There are three functional components in the MobiQual

system: reduction, aggregation, and adaptation.

− Reduction includes the algorithm for grouping the queries

into k clusters and the algorithm for partitioning the geograph-

ical space of interest into l regions. The query groups are

incrementally updated when queries are installed or removed

from the system. The space partitioning is re-computed prior

to the periodic adaptation.

− Aggregation involves computing aggregate-QoS functions

for each query group and region. The aggregated QoS func-

tions for each query group represent the freshness aspect of

the quality. The aggregated QoS functions for each region

represent the accuracy aspect of the quality. We argue that the

separation of these two aspects is essential to the development

of a fast algorithm for configuring the re-evaluation periods

and the inaccuracy thresholds to perform adaptation. QoS-

aggregation is repeated only when there is a change in the

query grouping or the space partitioning.

− Adaptation is performed periodically to determine: (i) the

throttle fraction z ∈ [0, 1], which defines the amount of load

that can be retained relative to the load of providing perfect

quality (i.e., ∀j∈[1..k]Pj = τ⊢ and ∀i∈[1..l]∆i = ǫ⊢); (ii)
the setting of re-evaluation periods Pj , j ∈ [1..k]; and (iii)
the setting of inaccuracy thresholds ∆i, i ∈ [1..l]. The latter

two are performed with the aim of maximizing the overall

QoS. The computation of the throttle fraction is performed by

monitoring the performance of the system and adjusting z in

a feedback loop (see our technical report for details [18]).

In the remaining sections, we first present the aggregation

of QoS functions, assuming that the query grouping and space

partitioning are performed (Section III). We then present the

formulation of the QoS-aware query load shedding problem

and present the quality loss based clustering (QLBC) algorithm

for clustering the queries into k groups (Section IV). Then we

formalize the QoS-aware update load shedding problem and

provide a brief description of the QoS-aware space partitioning

algorithm for dividing the geographical space of interest into

l regions (Section V). Finally, we present the formulation of

the problem of combining query load shedding with update

load shedding, and present the minimum quality loss per cost

step (MQLS) algorithm for performing the adaptation step

(Section VI).

III. AGGREGATING THE QOS FUNCTIONS

The aim of QoS aggregation is to associate an aggregate

function V∗
j (Pj) for each query group Cj , and an aggregate

function U∗
i (∆i) for each region Ai, such that the overall QoS

of the system, denoted by Ψ, is maximized. We define:

Ψ =
1

m

∑

q∈Q

Sq(τq, ǫq) (1)

Sq(τq, ǫq) denotes the QoS specification for query q and can

be defined as follows:

Sq(τq, ǫq) = αq · Vq(τq) + (1 − αq) · Uq(ǫq) (2)

In other words, Sq(τq, ǫq) is a linear combination of the

freshness QoS function Vq(τq) and the accuracy one Uq(ǫq).
The parameter αq ∈ [0, 1], called freshness weight, is used

to adjust the relative importance of the two components,

freshness and accuracy. Vq(τq) and Uq(ǫq) are non-increasing

positive functions, where Vq(τ⊢) = 1 and Uq(ǫ⊢) = 1.

Since the query groups are non-overlapping, we have:

V∗
j (Pj) =

∑

q∈Cj

αq · Vq(Pj) (3)

We approximate the Vq functions using piece-wise linear

functions of κ equal-sized segments along the input domain

[τ⊢, τ⊣]. This enables us to represent the aggregate QoS

functions (V∗
j ’s) as piece-wise linear functions of κ segments

as well.

Recall that the set of queries that intersect a region Ai can

overlap with the set of queries that intersect a different region,

since a query q can intersect more than one region. Let mq(i)
denote the fraction of q’s query region that lies within Ai and

Q denotes the set of queries in the system. Then, we have:

U∗
i (∆i) =

∑

q∈Q, s.t. mq(i)>0

(1 − αq) · mq(i) · Uq(∆i) (4)

The equality in Equation 4 holds when (a) Uq’s are linear

functions,2 or (b) Uq’s are piece-wise linear functions and there

are no queries crossing the region borders. However, it is still

2For Equation 4 to hold, we should be able to write Uq(ǫq) =
Uq(

P

i,mq(i)>0 mq(i) · ∆i) =
P

i,mq(i)>0 mq(i) · Uq(∆i). This can be done

if and only if Uq is a linear function.



a good approximation for the general case of piece-wise linear

functions if the crossings are not frequent. Because the size

of a region is significantly larger than that of a query, query

crossings are indeed infrequent. Like V∗
j ’s, we also represent

U∗
i ’s as piece-wise linear functions with κ segments. Based on

this analysis, the Equation 1 can be written in the following

form:

Ψ =
1

m





k
∑

j=1

V∗
j (Pj) +

l
∑

i=1

U∗
i (∆i)



 (5)

Note that, for a given j ∈ [1..k], V∗
j is independent of ∆i’s

(i ∈ [1..l]). Similarly, for a given i ∈ [1..l], U∗
i is independent

of Pj’s (j ∈ [1..k]). This separation allows us to operate at

the granularity of query groups for configuring query load

shedding and at the granularity of regions for configuring the

update load shedding.

It is critical to note that the queries within Cj may intersect

a number of different areas, and similarly queries within

area Ai may be contained in a number of different query

groups. As a result, if U∗
i ’s were not independent of Pj’s,

altering the re-evaluation period Pj for queries within Cj may

have altered more than mj different aggregate QoS functions

belonging to different regions. A similar argument is valid for

altering the inaccuracy threshold ∆i for Ai when V∗
j ’s are

not independent of ∆i’s. Thus, without a clear separation of

re-evaluation periods and inaccuracy thresholds in aggregated

QoS functions, we end up creating a significant overhead for

system optimization. This will defy reduction by making V∗
j ’s

and U∗
i ’s dependent on a large number of parameters, making

their computation costly.

One downside of representing a query’s QoS specification as

a linear combination of a freshness-related QoS function and

an accuracy-related QoS function is the loss of certain amount

of expressiveness, compared to the case of an unrestricted

QoS function of two parameters. Yet, the presented model still

manages to capture a wide spectrum of QoS specifications,

ranging from staleness insensitive (αq = 0) to inaccuracy

insensitive (αq = 1) scenarios.

We first discuss query load shedding and update load

shedding separately in the next two sections, and then present

our final solution for combining them.

IV. QOS-AWARE QUERY LOAD SHEDDING

We now focus on the QoS-aware query load shedding

problem, by only considering the freshness aspect of the

quality and the cost of query re-evaluation.

A. Formalization of the Problem

The aim of the query load shedding problem is to maximize

the first component of the overall quality from Equation 5,

denoted by Ψv . Given k query groups, recalling that V∗
j (Pj)

denote the aggregation function for the query group Cj , and

Pj denote the setting of the re-evaluation period for Cj , we

define Ψv as follows:

Ψv =

k
∑

j=1

V∗
j (Pj) (6)

Assume that the throttle fraction z is given, which defines

the fraction of query load to keep. (The details for computation

of z are described in [18]). Under this assumption, the one-

time re-evaluation cost of queries within Cj is given by fc(Cj)
and since these queries are re-evaluated every Pj seconds, the

overall cost is given by fc(Cj)/Pj . As a result, the load under

a given set of re-evaluation periods {Pj} is
∑k

j=1 fc(Cj)/Pj ,

which should be less than or equal to the throttle fraction times

the load of the ideal case of ∀q∈Q, τq = τ⊢, which is given by

z ·
∑

q∈Q fc({q})/τ⊢. In summary, the query load shedding

algorithm should respect z as the query re-evaluation budget,

while maximizing the freshness in the query results. This can

be modeled by the following processing constraint:

k
∑

j=1

fc(Cj)/Pj ≤ z ·
∑

q∈Q

fc({q})/τ⊢

∀j∈[1..k], τ⊢ ≤ Pi ≤ τ⊣

The second constraint defines the scope of the re-evaluation

period Pj (j ∈ [1..k]). The key problem here is to define the

set of query groups (Cj , j ∈ [1..k]), so as to maximize Ψv .

This is performed by the QLBC algorithm described next.

B. Measuring Quality Loss Per Unit Cost

The first question for clustering queries is to find which

metric should be used as a distance measure to define similar

queries. One intuitive observation is that two queries are

similar for the purpose of query load shedding if the amount

of reduction in quality per unit decrease in cost is similar for

the two queries. We call this measure quality loss per unit cost

(qlpc) metric. Let G(q, z) denote the quality loss per unit cost

for a given query q and a given throttle fraction z. We define

G(q, z) using the following formula:

G(q, z) =
αq ·

d(Vq(τ))
dτ

∣

∣

τ=τ⊢/z

fc({q}) ·
d(1/τ)

dτ

∣

∣

τ=τ⊢/z

(7)

Note that Vq(τ) is the freshness-related QoS function as-

sociated with q, whereas fc({q})/τ is the cost function of

q. Setting the re-evaluation period to τ = τ⊢/z reduces the

overall cost of re-evaluating q to z times the cost for the ideal

case of τ = τ⊢. Since queries within the same group will share

the same re-evaluation period, Equation 7 captures the quality

loss per unit cost for a dτ increase in the re-evaluation period.

Clearly, a query q with a small G(q, z) value is a good

choice for shedding the query load, as it brings a small loss in

QoS for a large amount of decrease in load. Therefore, if two

queries have similar Vq functions, then the one with the larger

evaluation cost fc({q}) will be preferred for load shedding.

However, if two queries have similar fc({q}) values, then the

query with the smaller (absolute) derivative of its Vq function

will be preferred for load shedding. Note that the derivative

of the QoS function Vq is constant over each linear segment

and thus Equation 7 can be simplified as follows, where Va
q (i)



denotes the slope of the ith (i ∈ [1..κ]) linear segment of Vq:

G(q, z) =
αq · V

a
q

(

⌈κ · τ⊢/z−τ⊢
τ⊣−τ⊢

⌉
)

−fc({q}) · (z/τ⊢)2
(8)

C. Grouping Queries with QLBC

MobiQual uses the quality loss per unit cost (qlpc) metric to

define the similarity of queries and the distance function used

for clustering queries into desirable query groups in terms of

load shedding effectiveness. We call this algorithm the Quality

loss based clustering algorithm, QLBC for short.

It is obvious that putting queries that have diverse G(q, z)
values into the same group is very ineffective, because queries

with larger G(q, z) values are not good candidates for query

load shedding compared to others. Hence there will be less

overall benefit from increasing the common re-evaluation

period. The QLBC algorithm finds the similarity between two

queries q1 and q2 in two steps. First, it models the quality loss

per unit cost of each query at different z values using a qlpc

vector, where each element of the vector corresponds to the

G(q, z) value at a different load shedding level z (κ different

levels equally spaced between 0 and 1). Second, the QLBC

algorithm uses the Euclidean distance between the qlpc vectors

of queries to define the similarity of queries. This similarity,

denoted by D(q1, q2), is defined as:

D(q1, q2) =
∑

ι∈([1..κ]−0.5)/κ

(G(q1, ι) − G(q2, ι))
2

(9)

The QLBC algorithm uses k-means clustering [19] to form

the final k set of query groups, based on Equation 9.

V. QOS-AWARE UPDATE LOAD SHEDDING

In this section we describe the QoS-aware update load

shedding problem, by only considering the accuracy aspect

of the quality and the cost of position update processing.

A. Formalization of the Problem

The goal of the update load shedding problem is to maxi-

mize the second component of the overall quality from Equa-

tion 5, denoted by Ψu. Given l regions of the geographical

space of interest, recalling that U∗
i (∆i) denote the aggregation

function for region Ai, and ∆i denote the inaccuracy threshold

associated with Ai, we define Ψu as follows:

Ψu =

l
∑

i=1

U∗
i (∆i) (10)

Assume that the throttle fraction z is given, which defines

the fraction of update load to keep. The number of updates

and thus the relative cost of update processing for a given

region Ai are proportional to ni · fr(∆i). As a result, the

load under a given set of inaccuracy thresholds {∆i} can be

computed by
∑l

i=1 ni · fr(∆i). This load should be less than

or equal to the throttle fraction times the load of the ideal case

of ∀i∈[1..l],∆i = ǫ⊢, which is given by z · n · fr(ǫ⊢). Thus,

the following processing constraints must hold for the update

load shedding problem:

l
∑

i=1

ni · fr(∆i) ≤ z · n · fr(ǫ⊢)

∀i∈[1..l], ǫ⊢ ≤ ∆i ≤ ǫ⊣

The second constraint defines the domain of the inaccuracy

threshold ∆i (i ∈ [1..l]). The key question here is how to

partition the space of interest into a number of regions such

that the overall quality Ψu is maximized. To perform this we

use an extension of the previously proposed GRIDREDUCE

algorithm [17]. Our extensions are targeted toward building

QoS-awareness into the algorithm.

B. The Space Partitioning Algorithm

The goal of the space partitioning algorithm is to partition

the geographical space of interest into l shedding regions,

such that this partitioning produces query results of higher

accuracy. Concretely, the algorithm first builds a partition

hierarchy over the space by constructing a quad-tree, where

each tree node corresponds to a different region in the space.

The partition hierarchy contains a single region at the top

level and becomes more fine-grained as we go down in the

hierarchy. This is achieved by dividing each partition into four

quadrant partitions at the next lower level. Each level of the

quad-tree is a uniform and non-overlapping partitioning of the

entire space. In order to capture the QoS characteristics of each

partition, we aggregate the QoS functions for each partition in

the hierarchy through a post-order traversal of the quad-tree.

Once the hierarchy is constructed and the QoS functions are

aggregated for each partition, the selection of the l regions

follows a top-down process. The algorithm starts from the

top-most partition in the hierarchy. At each step one partition

is picked and is replaced by its four quadrants. This process

continues until l regions of possibly different sizes are reached.

The criterion used to decide which partition to pick at each

step forms the crux of the algorithm. With the QoS functions

at hand, we compute how beneficial it is to divide a partition

into its quadrants by solving the small scale version of the

QoS-aware update load shedding problem we formalized in

the previous subsection by restricting it to the four quadrants

at hand. The partition that provides the highest gain in terms

of the QoS measure Ψu is picked for further partitioning.

VI. PUTTING IT ALL TOGETHER: MOBIQUAL SOLUTION

In this section we first formalize the problem of combining

QoS-aware update load shedding and QoS-aware query load

shedding. Then we present a fast greedy algorithm called the

Minimum quality loss per cost step (MQLS) to configure the

re-evaluation periods Pj , j ∈ [1..k] and the result inaccuracy

thresholds ∆i, i ∈ [1..l] within the same framework, aiming at

achieving high overall QoS and better satisfying the freshness

and accuracy requirements of mobile location queries.



A. Problem Formalization

The objective of the combined load shedding problem is

to maximize the overall quality Ψ = 1
m (Ψv + Ψu) given

in Equation 5. We now restate the processing constraint by

combining the load due to query re-evaluation and update

processing.

Let zv denote the fraction of the query load retained for

a given set of re-evaluation periods {Pj}. We have: zv =
Pk

j=1 fc(Cj)/Pj
P

q∈Q fc({q})/τ⊢
. Similarly, let zu denote the fraction of the

update load retained for a given set of inaccuracy thresholds

{∆i}. We have: zu =
Pl

i=1 ni·fr(∆i)

n·fr(ǫ⊢) . With these definitions,

we can state the processing constraint as follows:

zv + zu · γ ≤ z · (1 + γ) (11)

The parameter γ in Equation 11 represents the cost of

performing update processing with the setting of ∀i,∆i = ǫ⊢
compared to the cost of performing query re-evaluation with

the setting of ∀j , Pj = τ⊢. In other words, for the ideal case

the query re-evaluations costs 1 unit, whereas the update

processing costs γ ∈ (0,∞] units. Note that γ is not a system

specified parameter and is learned adaptively as follows.

Let U be the observed cost of update processing and V
be the observed cost of query re-evaluation during the last

adaptation period. Then we have γ = U/zu

V/zv
. This assumes

that the workload does not significantly change within the

time frame of the adaptation period. Recall that the load

shedding parameters are configured after each adaptation

period, thus yielding new values for zu and zv (by way of

changing Pj’s and ∆i’s). Thus the combined load shedding

problem is formalized as follows:

maximize Ψ = 1
m

(

∑k
j=1 V

∗
j (Pj) +

∑l
i=1 U

∗
i (∆i)

)

subject to
Pk

j=1 fc(Cj)/Pj
P

k
j=1 fc(Cj)/τ⊢

+ γ ·
Pl

i=1 ni·fr(∆i)

n·fr(ǫ⊢) ≤ z · (1 + γ)

∀j∈[1..k], τ⊢ ≤ Pi ≤ τ⊣, ∀i∈[1..l], ǫ⊢ ≤ ∆i ≤ ǫ⊣

Note that this is a non-linear program, since the constraints

have 1/Pj terms and are not linear. We now describe MQLS

− a fast, greedy algorithm for setting the re-evaluation

periods and inaccuracy thresholds to solve the above stated

QoS-aware load shedding problem.

B. The MQLS Algorithm

The basic principle of the MQLS algorithm is to start

with the ideal case of ∀j , Pj = τ⊢ and ∀i,∆i = ǫ⊢ and

incrementally reduce the load to z times that of the ideal

case by repetitively increasing the re-evaluation period or the

inaccuracy threshold that gives the smallest quality loss per

unit cost reduction. The algorithm is greedy in nature, since it

takes the minimum quality loss per cost step. Concretely, we

partition the domain of re-evaluation periods and inaccuracy

thresholds into β segments, such that we increase the Pj’s

and ∆i’s in increments of size cv = (τ⊣ − τ⊢)/β and cu =
(ǫ⊣ − ǫ⊢)/β, respectively. The MQLS algorithm maintains a

min. heap that stores a qlpc (quality loss per unit cost3) value

for each re-evaluation period and each inaccuracy threshold.

The qlpc value of a re-evaluation period (or an inaccuracy

threshold) gives the quality loss per unit cost for increasing it

by cv units (or cu units). The qlpc value is denoted by Sv
j for

query group Cj and Su
i for shedding region Ai. We have:

Sv
j =

∑

q∈Q

fc({q}) ·
V∗

j (Pj + cv) − V∗
j (Pj)

fc(Cj) · (
1

Pj+cv
− 1

Pj
)

(12)

Su
i = γ · n · fr(ǫ⊢) ·

U∗
i (∆i + cu) − U∗

i (∆i)

ni · (fr(∆i + cu) − fr(∆i))
(13)

The nominators of the second components in the above equa-

tions represent the changes in the quality due to the increment,

whereas the denominators represent the changes in the cost.

Note that the first components of the above equations are used

to normalize the costs in the denominators, so that Sv
j ’s and

Su
i ’s can be compared.

When the MQLS algorithm starts, the current load expen-

diture of the system, which is the sum of the load due to

update and query load shedding appropriately weighted by γ,

is above our load budget imposed by the throttle fraction z.

The algorithm iteratively pops the topmost element of the min.

heap and depending on whether we have a re-evaluation period

or inaccuracy threshold makes the increment using either cv

or cu. The qlpc value of the popped element is updated based

on Equation 12 (or Equation 13) and is put back into the heap

unless no further increments are possible. The algorithm runs

until the load expenditure of the system is within the budget

or all the re-evaluation periods and inaccuracy thresholds hit

their maximum value. In the latter case the load cannot be

shed to meet the processing constraint and random dropping

of incoming updates as well as delay in query re-evaluations

will unavoidably take place.

The total number of greedy steps the algorithm can take

is given by β · (l + k), which happens when all re-evaluation

periods and inaccuracy thresholds have to be increased to their

maximum values. Each greedy step takes O(log (l + k)) time,

since the min. heap has l+k elements and the heap operations

used take logarithmic time on the heap size. The final time

complexity of the MQLS algorithm directly follows as O(β ·
(l + k) · log (l + k)) and the space complexity as O(l + k).

VII. EXPERIMENTAL EVALUATION

In this section we compare the performance of the Mobi-

Qual system to a number of other alternatives. These are:

− Query-only load shedding: QoS-aware differentiated load

shedding with respect to re-evaluation periods only (see Sec-

tion IV) and uses a fixed inaccuracy threshold of ǫ⊢.

− Update-only load shedding: QoS-aware differentiated

load shedding with respect to inaccuracy thresholds only (see

Section V) and can be seen as the QoS-aware extension of the

Lira approach [17]. Thus we name it as Lira+.

3This is qlpc for a query group or for a region, and not for a query as it was first

introduced in Section IV-B. The core concept is the same.
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− Single ∆-P: Combined QoS-aware query and update load

shedding, but without query grouping (QLBC algorithm from

Section IV-C) and space partitioning (extended GRIDREDUCE

algorithm from Section V-B). It represents a special case of

the MobiQual system with k = l = 1.

We evaluate the MobiQual system using four main evalua-

tion metrics. These include:

i) The overall quality metric Ψ, as defined by Equation 5.
ii) The mean period delay D, which is defined as the average

difference between the ideal case period τ⊢ and the

assigned period of queries, τq = Pj for q ∈ Cj . The

mean period delay is formulated as:

D = 1
m

∑

q∈Q(τq − τ⊢)
iii) The mean position error R, which is defined as the

average error in the positions of the mobile nodes within

query results, relative to the error for the ideal case of

∀i∈[1..l] ∆i = ǫ⊢. It is formulated as:

R = 1
m

∑

q∈Q(ǫq − ǫ⊢)
iv) The running time of the adaptation step, which includes

configuring a new set of re-evaluation periods and in-

accuracy thresholds using the MQLS algorithm.

A. Experimental Setup

To create the mobile node movement trace used in the ex-

periments, we used a real-world road map from the Chamblee

region of the state of Georgia, USA. The trace covers a region

of around 200km2. We used real-world traffic volume data at

the granularity of specific road types (such as expressway,

arterial, collector), taken from [20], to simulate cars going

on roads. The trace contains around 15K mobile nodes. The

default re-evaluation period range used for the experiments is

[τ⊢, τ⊣] = [1, 10] seconds, whereas the inaccuracy threshold

range used is [∆⊢,∆⊣] = [5, 100] meters. The number of

regions used for partitioning is set as l = 250 (see [17]). The

increments used by the MQLS algorithm are determined using

β = 100, i.e., the maximum number of increments possible

is 100 for each re-evaluation period and inaccuracy threshold.

The queries used in the experiments are range queries. The

query distribution is proportional to the object distribution.

Inverse and random distributions were also used, with similar

results. The query side lengths were randomly chosen from

the range [0, 1000] meters.

A number of system and workload parameters were varied

in the course of the experiments to understand their impact

on the query result quality and running-time performance of

the MobiQual system. These include the number of query

groups used, i.e., the k parameter used by the QLBC algorithm

(default value: 16), the number of queries to number of objects

ratio (default value: 0.01), the emulated capacity of the system

(default: z = 0.5), and the QoS functions specified by the

queries. Figure 2 gives the general template of the QoS func-

tions that were used for both Vq (freshness) and Uq (accuracy)

components of a query q’s QoS specification function Sq,

whereas the α value that adjusts the relative importance of the

freshness and accuracy components of quality were chosen

at random from the range [0, 1]. The QoS functions were

approximated by 10 linear segments and a parameter called

mid-point QoS threshold was used to pick a random Vq or

Uq component from the set of available functions, a subset of

which is shown in Figure 2. Any given Vq or Uq is chosen

by randomly picking a number, say y0.5, between 0 and the

mid-point quality threshold, and determining the QoS function

whose value for the mid-point of its domain is equal to y0.5

(and matching the template given in Figure 2).

B. Experimental Results

We divide the experimental results into three parts. The

first part deals with the impact of the amount of load to

be shed on the query result quality. The second part deals

with the performance of MobiQual under different query loads

and the impact of the number of query groups on the query

result quality as well as on the time it takes to perform the

adaptation step. The third part deals with the impact of the

QoS specifications on the performance of MobiQual.
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1) Impact of the Throttle Fraction: The graphs in Figure 3

plot the overall quality of the query results as a function of

the throttle fraction (i.e., at different load shedding levels) for

the competing approaches. At a given load shedding level, if

1 − z fraction of the load cannot be shed by a load shedding

algorithm, then the QoS value is not plotted for that z value,

and for smaller z values thereof. For instance, we observe

from Figure 3 that, for the default settings, the query-only

approach can only support load shedding for z ≥ 0.7 and Lira+

for z ≥ 0.5, whereas MobiQual and Single ∆-P can support

z ≥ 0.2. MobiQual significantly outperforms update-only and

query-only load shedding schemes, as it is observed from the

rapidly declining QoS values of the latter two approaches

with decreasing z. Furthermore, MobiQual outperforms Single

∆-P, for a wide range of z values. While shedding 60%

(z = 0.4) of the load, MobiQual is able to keep the QoS

around Ψ = 0.9, whereas this value is only around 0.75 for the

Single ∆-P approach. Similarly, MobiQual manages to sustain

a QoS value of Ψ = 0.7 for 70% load shedding, compared



to a mere 0.4 for Single ∆-P. The two approaches both hit

the Ψ = 0 boundary when MobiQual is forced to set all

query re-evaluation periods and inaccuracy thresholds to their

maximum value, at which point there is no difference between

the two. The superior performance of MobiQual compared to

Single ∆-P illustrates the strength of the differentiated load

shedding concept, whereas the poor performances of update-

only and query-only load shedding attest to the importance of

performing combined query and update load shedding.
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The graphs in Figures 4 and 5 plot the mean period delay

and mean position error as a function of the throttle fraction

for competing approaches, respectively. Note that the query-

only approach has zero mean position error (as observed

from Figure 5), whereas the update-only approach has zero

mean period delay (as observed from Figure 4). However,

since a good overall quality requires balancing freshness and

accuracy, these two approaches do not provide good overall

QoS as observed from Figure 3. The mean period delay

of Single ∆-P stays slightly above that of MobiQual for

z > 0.3. After this point Single ∆-P registers lower mean

period delays. This is because further increasing the single

re-evaluation period has diminishing benefit in terms of the

qlpc metric, since Single ∆-P cannot provide differentiated

load shedding. In contrast, the MobiQual approach can

locate queries that can tolerate further staleness with less

impact on the QoS value, due to the QLBC algorithm, and

thus can increase the re-evaluation periods further for such

queries. Even though this results in higher mean period delay

compared to Single ∆-P, it translates into a higher overall

QoS due to a better balance between query and update

load shedding. It is observed from Figure 5 that MobiQual

consistently outperforms Single ∆-P in terms of the mean

position error. This is not because MobiQual sheds less

update load, but it is because MobiQual sheds the update

load from regions that has lesser impact on the query results,

due to the QoS-aware partitioning algorithm it employs.

2) Impact of the # of Queries and Query Groups: The

graphs in Figure 6 plot the overall QoS of the query results

as a function the number of queries to number of mobile

nodes ratio, for MobiQual vs. query-only and update-only

(Lira+) load shedding. The throttle fraction is set to 0.75
for this experiment. It is interesting to observe that as the

number of queries increase, the update-only load shedding

loses its advantage over query-only load shedding. This is

because with increasing number of queries, the dominant cost
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ferent number of query groups

becomes the query re-evaluation, since the full update load

does not depend on the number of queries. This shows the

importance of performing combined query and update load

shedding, which is effective independent of the number of

queries or the number of mobile nodes, as evidenced by the

superior performance of MobiQual compared to query-only

and update-only approaches with changing number of queries

to number of mobile nodes ratio (see Figure 6).

An important parameter that impacts the performance of

the MobiQual system is the number of query groups, k. As

discussed in Section II-D, in general the higher the number of

query groups the more fine grained is the differentiated load

shedding. The only limiting factor in increasing the value of

k is the time it takes to execute the adaptation step, as the

computational complexity of the MQLS algorithm is dependent

on k. However, increasing the number of k has diminishing

return in terms of the overall QoS, as shown by Figure 7,

since the query groups become more and more homogeneous

in terms of the QoS functions of the queries contained within.

The graphs in Figure 7 plot the overall QoS as a function of

the throttle fraction (x-axis is in logarithmic scale) for different

k values. This experiment is run for 1000 continual queries.

We clearly see from the figure that the gain in QoS when

going from k = 8 to k = 16 is significantly lower than the

gain in QoS when going from k = 1 to k = 2. This shows

that having query groups smaller than 50-60 queries does not

bring much gain in overall query result quality. Even though

small query groups are unnecessary, the MQLS algorithm can

support large k values with low overhead. Figure 8 shows that

for k = 16 and z = 0.5 the adaptation step takes around

110 milliseconds. In a mobile CQ system, the change in the

workload in terms of the number of CQs and mobile nodes

is not spontaneous, and significant shifts in the workload is

likely to happen within minutes. Thus the time it takes to

run the adaptation step in order to configure the new set of

re-evaluation periods and inaccuracy thresholds is relatively

small compared to the adaptation period, resulting in a very

lightweight load shedding scheme.

3) Impact of the QoS Specifications: The graphs in Fig-

ures 9 and 10 plot the overall query result quality as a function

of the mid-point QoS threshold used for the freshness com-

ponent of the QoS specifications and the accuracy component

of it, respectively. Decreasing values along the x-axis repre-

sent QoS specifications with increasingly stringent freshness

components for Figure 9 and increasingly stringent accuracy

components for Figure 10. A high throttle fraction value of
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0.75 was used to make sure that all competing approaches

can shed the required fraction of the load. Note that update-

only load shedding (Lira+) is indifferent to the freshness

components of the QoS specifications, whereas query-only

load shedding is indifferent to the accuracy components. As a

result, the lines for update-only and query-only load shedding

are flat in Figures 9 and 10, respectively. We observe from

Figure 9 that MobiQual is very robust to changes in the

freshness components of the QoS specifications and shows a

smaller decrease in overall QoS with increasing intolerance

to staleness in QoS specifications, compared to alternative

approaches. It provides up to 12% better QoS compared to

query-only load shedding and 5% better compared to Single

∆-P. These values are valid for shedding 25% percent of

the load. The improvement provided by MobiQual over the

closest competitor reaches 80% when shedding 70% of the

load, and for a mid-point freshness QoS threshold of 0.75
(see previous Figure 3). The results from Figure 10 for the

mid-point accuracy QoS threshold are very similar.

VIII. CONCLUSION

In this paper we presented MobiQual, a load shedding

system aimed at providing high quality query results in mobile

CQ systems. MobiQual has three unique properties. First,

it uses per-query QoS specifications that characterize the

tolerance of queries to staleness and inaccuracy in the query

results, to maximize the overall QoS of the system. Second,

it effectively combines query load shedding and update load

shedding within the same framework, through the use of dif-

ferentiated load shedding concept. Finally, the load shedding

mechanisms used by MobiQual are lightweight, enabling quick

adaption to changes in the workload. Through experimental

studies, we showed that MobiQual significantly outperforms

approaches that are based on query-only or update-only load

shedding, as well as approaches that do combined query and

update load shedding but lack the differentiated load shedding

elements of the MobiQual solution.
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