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Abstract. The demand on cluster analysis for categorical data continues to grow over the last
decade. A well-known problem in categorical clustering is to determine the best A number of
clusters. Although several categorical clustering algorithms have been developed, surprisingly,
none has satisfactorily addressed the problem of Best K for categorical clustering. Since categor-
ical data does not have an inherent distance function as the similarity measure, traditional cluster
validation techniques based on geometric shapes and density distributions are not appropriate for
categorical data. In this paper, we study the entropy property between the clustering results of
categorical data with different K number of clusters, and propose the BKPlot method to address
the three important cluster validation problems: 1) How can we determine whether there is sig-
nificant clustering structure in a categorical dataset? 2) If there is significant clustering structure,
what is the set of candidate “best Ks”? 3) If the dataset is large, how can we efficiently and
reliably determine the best Ks?
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1. Introduction

Data clustering is well-known as an important tool in data analysis, where a clustering
algorithm uses some similarity measure to group the most similar items into clusters
(Jain and Dubes, 1999). Clustering techniques for categorical data are very different
from those for numerical data in terms of the definition of similarity measure. Tradi-
tionally, categorical data clustering is merged into numerical clustering through a data
preprocessing stage (Jain and Dubes, 1999). In the preprocessing, numerical features
are extracted/constructed from the categorical data, or a conceptual similarity function
between data records is defined based on the domain knowledge.
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However, meaningful numerical features or conceptual similarity are usually dif-
ficult to extract at the early stage of data analysis, because we have little knowledge
about the data. It has been widely recognized that directly clustering the raw categorical
data is important for many applications. Examples include environmental data analy-
sis (Wrigley, 1985), market basket data analysis (Aggarwal, Magdalena and Yu, 2002),
DNA or protein sequence analysis (Baxevanis and Ouellette, 2001), text mining (Wang
and Karypis, 2006), and security (Barbara and Jajodia, 2002). Therefore, recently there
are increasing interests in clustering categorical data (Huang, 1997; Guha, Rastogi and
Shim, 2000; Ganti, Gehrke and Ramakrishnan, 1999; Gibson, Kleinberg and Ragha-
van, 2000; Barbara, Li and Couto, 2002; Dhillon, Mellela and Modha, 2003; Andrit-
sos, Tsaparas, Miller and Sevcik, 2004; Li, Ma and Ogihara, 2004; Yu, Qian, Lu and
Zhou, 2006).

Cluster Validation for Categorical Data Different clustering algorithms hardly
generate the same clustering result for the same dataset, and we need cluster vali-
dation methods to evaluate the quality of clustering results (Sharma, 1995; Jain and
Dubes, 1988; Halkidi, Batistakis and Vazirgiannis, 2002). Formally, there are three main
issues in cluster validation: 1) how to evaluate the quality of different partition schemes
generated by different clustering algorithms for the same dataset, with a fixed K num-
ber of clusters; 2) how to determine whether there is significant clustering structure in
the datasets; 3) how to determine the best number of clusters (the “best K), if there is
inherent significant clustering structure in the dataset.

In addition, when large datasets are processed for clustering, the performance be-
comes critical to effective to both clustering and cluster validation. General approaches
addressing the performance issue, such as sampling, raise particular problems for vali-
dating clusters in large datasets: 1) whether the result on sample datasets is consistent
with that on the original dataset, and 2) how to estimate the proper sample size that
guarantees the consistency.

For numerical data, the clustering structure is usually validated by the geometry
and density distribution of clusters. When a distance function is given for the numerical
data, it is natural to introduce the density-based methods (Ester, Kriegel, Sander and Xu,
1996; Ankerst, Breunig, Kriegel and Sander, 1999) into clustering. As a result, the dis-
tance functions and density concepts play unique roles in validating the numerical clus-
tering result. Various statistical cluster validation methods and visualization-based vali-
dation methods have been proposed for numerical data (Jain and Dubes, 1988; Halkidi
et al., 2002; Chen and Liu, 2004), all of which are based on the geometry and density
property of datasets. The intuition behind the geometry and density distribution justifies
the effectiveness of these cluster validation methods. A good example commonly seen
in clustering literature is evaluating the clustering result of 2D experimental datasets
by visualizing it — the clustering result is validated by checking how well the cluster-
ing result matches the geometry and density distribution of points through the cluster
visualization.

Due to the lack of intuitive distance functions between categorical values, the tech-
niques used in cluster validation for numerical data are not applicable to categorical
data. Without reasonable numerical feature extraction/construction for a given cate-
gorical dataset, the general distance functions are usually inapplicable. As a result, no
geometry/density-based validation method is appropriate in validating the clustering
result for categorical data. Surprisingly, to our knowledge, there is no literature satisfac-
torily addressing the cluster validation problems for categorical data.

Entropy Based Categorical Clustering One way to address the similarity problem
for categorical data is to use set-based similarity measures, for example, the entropy
(Cover and Thomas, 1991) based measures. Originated from information theory, en-



“Best K”: Critical Clustering Structures in Categorical Datasets 3

tropy has been applied in both pattern discovery (Brand, 1998) and numerical cluster-
ing (Cheng, Fu and Zhang, 1999). Recently, there have been some efforts in applying
entropy and the related concepts in information theory to clustering categorical data
(Barbara et al., 2002; Li et al., 2004; Dhillon et al., 2003; Andritsos et al., 2004; Chen
and Liu, 2005). Initial results have shown that entropy criterion can be very effective in
clustering categorical data.

Entropy-based similarity measures evaluate the orderliness of a given cluster. In
entropy-based categorical clustering, the quality of clustering result is naturally evalu-
ated by the entropy of all clusters (Barbara et al., 2002; Li et al., 2004), namely, the
expected entropy. The lower the expected entropy is, the more ordered the clusters are.
While it is intuitive to evaluate the overall orderliness of a clustering result with ex-
pected entropy, can entropy also be used to identify the best K number of clusters?
can it be used to determine whether there is significant clustering structure in a given
dataset?

Our Contributions We try to answer the above cluster validation problems based
on the entropy difference between the optimal clustering structures. Intuitively, if the
best clustering structure has K clusters, fitting the data from K clusters into K — 1 clus-
ters will seriously disturb the clustering structure, while the change of optimal K + 1
clusters to K clusters should be much less distinctive. This heuristic leads us to explore
the property of optimal neighboring clustering structures with K and K + 1 clusters,
respectively, K varying from one to a small number, e.g., K < 20, for primary clus-
tering structures, i.e., those consisting of major clusters '. The optimality is evaluated
based on expected entropy. Briefly, we identify and interpret that the similarity between
the optimal clustering structures is the key to find the critical clustering structures, and
then propose the “Best-K Plot (BKPlot)” method to conveniently capture the dramatic
difference between the optimal clustering structures.

However, optimal BKPlots are based on optimal clustering results, which are com-
putationally intractable due to the NP-hard complexity of entropy minimization. Gen-
erating high-quality “approximate BKPlots” becomes a significant problem in prac-
tice. We address this problem with two aspects. First, we propose a new inter-cluster
similarity measure Incremental Entropy (IE). With IE, a standard agglomerative cate-
gorical clustering algorithm with Entropy criterion (as “ACE algorithm referred in this
paper) can be used for generating reliable approximate BKPlots. The initial experi-
mental results show that an agglomerative algorithm based on IE can generate high-
quality BKPlots, compared to other entropy-criterion based algorithms. Second, for
large datasets, we develop the theory of sample approximate BKPlot, which addresses
the issues in consistently identifying the Best K's based on uniformly sampled datasets
with the IE-based method.

When applying sample approximate BKPlot, we also notice that there are datasets
having no significant clustering structure, such as uniformly distributed data, or single-
mode clustering structure. By exploring the characteristics of the BKPlots for the typical
no-cluster datasets, we provide a testing method for determining whether a given dataset
has significant clustering structure.

In summary, we propose a framework for determining the critical clustering struc-
ture in categorical datasets, which consists of four main components

1. the basic BKPlot method for determining the best Ks;

1 Major clusters are usually large clusters in terms of the overall size of the dataset. Small clusters will
become a part of some large cluster in a hierarchical clustering structure, or be regarded as outliers. Our
technique does not intend to identify clustering structures that distinguishes small clusters.
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2. the incremental entropy based inter-cluster similarity measure and the algorithm for
generating reliable approximate BKPlots;

3. the theory of sample approximate BKPlot for large datasets;

4. atesting method for determining whether there is significant clustering structure for
a given dataset.

The rest of the paper is organized as follows. Section 2 sets down the basic con-
cepts and notations. Section 3 introduces the BKPlot method for determining the best
K's and the intuition behind the method, as well as an effective method for generating
approximate BKPlots - the ACE algorithm. In section 4 and 5, we analyze the sample
approximate BKPlots for large datasets, and also propose a novel testing method for de-
termining the existence of significant clustering structure. The experimental results are
presented in Section 6. Section 7 reviews some related work in categorical clustering
and cluster validation, and finally we conclude the paper.

2. Basic Notations and Concepts

We define the notations used in this paper and then introduce the entropy-based cluster-
ing criterion. Some basic properties about the entropy criterion will be presented in the
later sections.

2.1. Basic Entropy Definition

Consider that a dataset S with N records and d columns, is a sample set of the discrete
random vector X = (x1,x2,...,x4). For each component x5, 1 < j < d, x; takes a
value from the domain A;. There are a finite number of distinct categorical values in
domain A; and we denote the number of distinct values as |A;|. Let p(z; = v), v € A;,
represent the probability of z; = v, we introduce the classical entropy definition (Cover
and Thomas, 1991).

d d
H(X) =Y H(z) = =Y 3 pla; = v)logy p(a; = v)

Here, entropy H(X) is based on the column entropy H(z;), while the correla-
tions between columns are ignored for easy manipulation without affecting the results
(Barbara et al., 2002; Li et al., 2004). H(X) is often estimated with the sample set S,
we define the estimated entropy as H(X | S).

d
H(X|S)==Y Y p(v|S)logp(v|8)

j=1 ’UEA]‘

where p(v | S) is the empirical probability estimated on S. To further simplify the
notation, we also define the column entropy of A; as

H(A;|S) == p(v]S)log,p(v|S)
vEA;

The estimated entropy on S is simply the sum of the column entropies.
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Now we can define the concept of cluster entropy. Suppose the dataset S is parti-
tioned into K clusters. Let CX = {C4,...,Ck} represent the partition, where Cy is a
cluster and ny, represent the number of records in C. Thus, the cluster entropy of C},
is the dataset entropy H (X | C}). For simpler presentation, we use H (S) and H(Cy,)
to represent the dataset entropy and cluster entropy, respectively.

The classical entropy-based clustering criterion tries to find the optimal partition,
C¥, which maximizes the following entropy criterion (Bock, 1989; Celeux and Gov-
aert, 1991; Li et al., 2004).

1 1 &
Opt(CF) = P (H(S) “n anH(Ck)>
k=1

Since H(S) is fixed for the given dataset, maximizing Opt(C¥) is equivalent to
minimizing the item % Z,[f:l ng H(C}), which is named as the expected entropy of
partition C. Let us denote it as H(X | C¥), or simply H(C*). For convenience, we
also name ny H (C},) as the weighted entropy of cluster Cy,.

Li et al (Li et al., 2004) showed that the minimization of expected-entropy can be
unified into probabilistic clustering framework, and closely related to many important
concepts in information theory, clustering and classification, such as Kullback-Leibler
Measure (Cover and Thomas, 1991), Maximum Likelihood (Lehmann and Casella,
1998), Minimum Description Length (Cover and Thomas, 1991), and dissimilarity co-
efficients (Baulieu, 1997). Entropy criterion is especially good for categorical clustering
due to the lack of intuitive definition of distance for categorical values. While entropy
criterion can also be applied to numerical data (Cheng et al., 1999), it is not the best
choice for capturing all of the geometric properties a numerical dataset may have.

2.2. Incremental Entropy

Individually, cluster entropy cannot determine the structural difference between clus-
ters. However, we observe that the structural difference can be observed by mixing
(merging) two clusters. By entropy definition, the structural characteristic of a dataset
is determined by the value frequencies in each column. Intuitively, mixing two clusters
that are similar in the inherent structure will not change the value frequencies, thus, not
change the expected-entropy of the partition as well. However, merging dissimilar ones
will inevitably change the value frequencies, increasing the expected-entropy. There-
fore, the increase of expected entropy in merging clusters has some correlation with the
similarity between clusters.

By the definition of expected-entropy, after merging two clusters in a partition the
difference of expected-entropy can be equivalently evaluated by the difference between
the weighted entropies, i.e., (n, +nq)H(Cp, UCy) and n, H(C)) +ngH(Cy). We have
the following first result about weighted entropies.

Proposition 2.1. (n, +n,)H(C, UCy) > n,H(C)) + ngH(Cy)

PROOF SKETCH. This proposition formally states that mixing two clusters will not
reduce the weighted entropy. The first step of the proof is to expand both sides of the
formula with the entropy definition. Let p(z; = v|C)},) be the estimated probability of
x; = v in the column A; within the cluster C),.
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It is straightforward to prove that the above formula is true if the following relation
is satisfied for each value v in each column A;. Namely, if we can prove that for each
categorical value in each column the following formula is true, then the proposition is
established.

npp(mj = v|Cp) log, plz; = v|Cp) + nqp(%' = v|Cy) log, p(%‘ =v|Cy)
> (np +ng)p(z; = v|CpUCy) -logy p(x; = v|Cp UCY) 2)

Without loss of generality, suppose C}, having = rows and C, having y rows with
value v at j-th attribute, z,y > 0 (if x = 0 or y = 0, the inequality is trivially satisfied),
ie., p(z; =v|Cp) = ﬁ,p(xj =v|Cy) = i,andp(xj =0|C,UC,) = -“TL Then,

np+ng
the inequality 2 can be transformed to xlog, f—p + ylog, 7:’—(1 > (x + y)log,y
which is exactly the “log-sum inequality” (Cover and Thomas, 1991). [J
We define the key concept “Incremental Entropy (IE)” based on the above proposi-
tion.

T4y
np+ng’

Definition 2.1. Incremental Entropy reflects the structural difference between two clus-
ters, which is quantified by IE(C,,Cy) = (np, + ng)H(Cp, U Cy)— (n,H(C)) +
ngH(Cy))-

From the proof of Proposition 2.1, it follows that if the two clusters have the iden-
tical structure, i.e., for every categorical value v; in every attribute x;, 1 < ¢ < |A4;],
1 < j < d, p(vi|Cp) = p(v;|Cy) is satisfied, IE(C,, Cy) = 0. Interestingly, identical
structure does not concern the size of the clusters. Thus, it intuitively implies that sam-
pling will be effective when IE is used as a clustering criterion, which we will use to
derive another important result later.

Incremental entropy is a critical measure in our method. We will use this similarity
measure to construct a hierarchical clustering algorithm in order to generate reliable
results for approximately determining the best Ks. The relationship between cluster
merging and similarity can also help us understand the method to find the best Ks in
next section.

For clear presentation, we summarize the notations we will use in Table 1.

3. Finding the Best K with Entropy Criterion

Traditionally, the Best Ks for numerical data clustering are identified with statistical
index curves, based on geometry and density properties of the dataset (Sharma, 1995;
Halkidi et al., 2002) or likelihood (Hastie, Tibshirani and Friedmann, 2001). Depending
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notation description

d,N,n d: the number of attributes, N: the size of dataset, n: the sample size

Aj, |A ] represents attribute j, and | A;| is the number of distinct categorical values in this attribute
H(Cy) entropy of cluster C,

H(A; | Cg)  column entropy of column A; in cluster Cy,
IE(Cp,Cq)  incremental entropy between clusters Cy, and Cy

H(CK) expected entropy of a K-cluster partition

Hopt(C ) optimal (minimum) expected entropy of all K-cluster partitions

I(K) entropy difference of a pair of optimal neighboring partitions, i.e., H(C%) — H(CK+1)
B(K) the BKPIlot function, derived from I(K)

Table 1. Notations.

on the different property of the index curve, the K's at peaks, valleys, or distinguished
“knees” on the curve, may be regarded as the candidates of the optimal number of
clusters (the best Ks). Are there entropy-based such curves indicating the significant
clustering structures for categorical data?

The first thought might be investigating the curve of expected entropy for the opti-
mal partitions. We define

Definition 3.1. An optimal partition of K clusters is a partition that results in the min-
imum expected entropy among all K-cluster partitions.

The expected entropy of the optimal partition is denoted by H,,;(CX). Our result shows
that the H,,;(C¥) curve is often a smoothly decreasing curve without distinguished
peaks, valley, or knees (Figure 1). However, we can actually obtain some informa-
tion between the neighboring optimal partitions (with K and K + 1 clusters respec-
tively) with the concept of entropy difference. Concretely, the difference of neighboring
expected-entropies (Figure 2) can be used to indicate the critical clustering structures.
This relationship can be intuitively illustrated and understood by merging similar clus-
ters in an optimal partition. The entropy-difference curve often shows that the similar
partitions with different K are at the same “plateau”. From plateau to plateau there are
the critical points implying the significant change of clustering structure, which can
be the candidates of the best K's. Before going to details, we first give some entropy
properties of optimal partitions.

3.1. Entropy Properties of Optimal Partitions

Given the number of clusters, K, there is at least one optimal partition with minimum
expected entropy H,,+(C*). There are several properties about H,,;(CX).

First of all, H,,:(C*) is bounded. It is easy to see that H,p,;(CK) is less than the
dataset entropy H (S). H,pt(C*) is maximized when K = 1 — all data points are in
the same cluster. We also have H,,;(C*) > 0 as the entropy definition implies. The
Zero entropy g opt (C k) is reached at k = IN, when each record is a cluster. Therefore,
H,,+(C¥) is bounded by [0, H(S)].

We can also derive the relationship between the optimal partitions with any different
number of clusters, K and L, K < L, with the help of Proposition 2.1.

Proposition 3.1. H,,:(C*) > H,, (C*), when K < L

PROOF SKETCH. Let a L-cluster partition C{" be formed by splitting the clusters in the



8 K. Chen and L. Liu

1K),

ko
Hon(CY) o] x
01
. o .
" N'_.S 005
i.l. ‘ & oo
s o 002
- Msters 0 A\
L IR 7 ST
e . et 7 hofclusters
gy Dramatic structural change 004 —
‘ Candidate Ks
o # of clusters

. Fig. 2. Sketch of gjs 3 Finding the best k
Fig. 1. Sketch of expected entropy-difference w1%h BKPlot Egexample of

entropy curve. curve of neighboring soybean-small data).
partitions.

optimal K -cluster partition. With Proposition 2.1 and the definition of optimal partition,
we have

Hopt(CF) = H(CF) = Hop(CF)

]

Proposition 3.1 shows that the optimal expected-entropy decreases with the increas-
ing of K, which meets the intuition well. However, it is hard to describe the curve with
a function of closed form in terms of K. As our experimental result shows, it is of-
ten a negative logarithm-like curve (Figure 1). This curve implies that, 1) it is highly
possible that the best K is not unique in terms of entropy criterion, and 2) with only
expected-entropy curve, we cannot clearly identify the significant clustering structures.

3.2. Understanding the Similarity of Neighboring Partitions

In this section, we focus on the similarity between the neighboring optimal partitions.
We formally define this similarity with the entropy difference between the neighboring
partitions as

I(K) = Hopt(C) = Hope (C* 1)

There are two heuristics to capture this similarity. One aspect is the absolute value of
I(K), which indicates how much the clustering structure is changed. The other aspect
is the difference between I(K) and I(K + 1), which indicates whether the consecutive
changes to the clustering structure are similar. Since it is not easy to understand the
change between the optimal partitions, we use a cluster merging scheme, which will be
described in Section 3.3, to demonstrate the two aspects of similarity.

— First, small I(K') means high similarity between the neighboring partitions. We can
understand this by merging the similar clusters in K+1-cluster partition to form K-
cluster partition. Merging identical clusters introduces zero increase of entropy and
the clustering structure is not changed at all. Similarly, small increasing rate between
two neighboring schemes implies that the reduction of number of clusters does not
introduce significant change to the clustering structure.

— For large change of expected entropy, we first consider the meaning of large I(K). If
the expected-entropy increases a lot from K +1 to K, this reduction of number of clus-
ters should introduce considerable impurity into the clusters and thus the clustering
structure can be changed significantly. However, whether this change is globally dis-
tinguishable from others depends on the further comparison between the continuous
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a critical clustering
structure
3. Merge
C1+C2+C3, and [

C5 to form
K-1 clusters

< C3
C1+C2+C3

1. Merge C1 and C2 to " ———,———
form K+1 clusters 2. Merge C1+C2, and C3
to form K clusters

Fig. 4. Similar merges with I(K) ~ I(K + 1),but I(K — 1) > I(K)

changes. Consider I(K) as the amount of extra impurity introduced from K + 1-
cluster partition to K -cluster partition. If [(K) ~ I(K + 1), i.e. K-cluster partition
introduces similar amount of impurity as K +1-cluster scheme does, we consider that
the clustering structure is similarly changed from K +1-cluster scheme to K-cluster
scheme.

An example of “similar merges” in Figure 4 can well demonstrate similar changes
vs. significant changes of clustering structure. We use icons to conceptually represent
categorical clusters. The shape and the size of an icon represent the structure and the
size of the cluster, respectively. Suppose that the initial state with C'1 — C'5 are the op-
timal partition of K+2 clusters, among which C1, C2, and C3 are in a similar clustering
structure as shown in Figure 4. Now, we try to form sub-optimal partitions by merging
the similar clusters. As Proposition 2.1 shows, merging the clusters with similar clus-
tering structure will result in small /E', which means small entropy difference between
the two neighboring partitions. Suppose that, H (C**1) is approximately minimized by
merging C1 and C2, and H(C*¥) by merging C1+C2 and C3. Since the three clusters
are in a similar structure, the consecutive two merge operations result in similar (K)
and I(K + 1). The resultant clustering structures should not be distinguishable from
each other. On the other hand, reducing the number of clusters further from K to K — 1
will change the clustering structure a lot and inevitably bring more impurity into the
partitions. As a result, J(K — 1) will be much larger than 7(K) and I(K + 1). We can
see that K becomes a significant point where a series of similar clustering structures
are changed to a significantly different clustering structure. Therefore, the “knees” on
the I(K) curve can provide substantial information about similar changes or significant
changes of clustering structure.

In practice, if a dataset has significant clustering structure, we can find a series
of neighboring “stable” schemes, which result in similar (K), and we may also find
the critical points where a series of “stable” schemes become “less stable” when K is
reduced (Figure 2). All of the critical points should be the candidates of the best K's and
could be interesting to cluster analysis.

The common way to mathematically identify such critical knees on the I(K) curve
is to find the peaks/valleys of the second-order difference of the curve. Specifically,
since I (K) curve consists of a set of discrete points, we define the second-order differ-
ence of the curve as

B(K)=6*I(K)=0I(K —1) — 0I(K)

and 0I(K) = I(K) — I(K 4 1) to make K aligned with the critical points. For con-
venience, we name the B curve as the “Best-k Plot (BKPlot)” (Figure 3) and B(K)
indicates the value of B function at K. Notice that dramatic structure changes happen
only at I(K) > I(K +1). I(K) < I(K + 1) means the structure change is slowing
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down when the number of clusters is reduced from K + 1 to K. In this case, we should
continue to look at the range 2 < k < K to find other dramatic changes 2. Therefore,
we need only to look at the peaks of BKPlot to find the best Ks.

3.3. Generating High-quality Approximate BKPlot

From the definition of BKPIot, we know it is intractable to generate the exact BKPlot
since obtaining the optimal clustering result is computationally intractable for even a
small dataset. However, it is important to note that the use of BKPIlots is to find the best
Ks, and “approximate BKPLots” may be used to correctly identify the Best Ks as well.
We consider high quality BKPlots as the approximate BKPlots that can consistently and
correctly identify the candidate best Ks.

Although there are many clustering algorithms proposed so far, none have designed
with the above objectives in mind. Hence, we develop a method for generating high-
quality approximate BKPlots. Since it is a standard Agglomerative Categorical cluster-
ing algorithm with Entropy criterion, we call it ACE for short.

ACE is based on the proposed inter-cluster similarity measure: the Incremental En-
tropy. While the traditional hierarchical algorithms for numerical clustering need to ex-
plicitly define the inter-cluster similarity with “single-link”, “multi-link” or “complete-
link” methods (Jain and Dubes, 1988), incremental entropy is a natural cluster-based
similarity measure, ready for constructing a hierarchical clustering algorithm.

As a standard hierarchical algorithm, ACE algorithm is a bottom-up process to con-
struct a clustering tree. It begins with the scenario where each record is a cluster. Then,
an iterative process is followed — in each step, the algorithm finds a pair of clusters C,,
and C, that are the most similar, i.e. the incremental entropy I E(C,,, Cy) is minimum
among all pairs of clusters.

Since IE calculation involves the expensive entropy calculation, a working algo-
rithm has to optimize the entropy calculation. ACE uses three structure to maintain the
incremental calculation of I E values: summary table for convenient counting of occur-
rences of values, I E-table for bookkeeping I E(C), C,;) of any pair of clusters C, and
Cy, and a I E heap for maintaining the minimum I £ value in each merge. With the help
of these data structures, we can optimize the IE based ACE algorithm (with complexity
of O(N?logN)). We will simply skip the detailed algorithm here, but refer interested
readers to the paper (Chen and Liu, 2005). Experimental results show that ACE algo-
rithm is the most effective algorithm for generating high-quality approximate BKPlots,
compared to other existing algorithms similarly optimizing entropy criterion, such as
Monte-Carlo (Li et al., 2004), Coolcat (Barbara et al., 2002), and LIMBO (Andritsos
et al., 2004).

More importantly, the ACE algorithm has a nice property in generating sample
BKPIlots for handling large datasets — The mean of sample BKPlots generated by ACE
algorithm on sample datasets is essentially an unbiased estimator of the original BKPlot
generated by ACE for the entire dataset. This property is important since we often need
to handle large datasets that cannot be directly processed by the ACE algorithm.

2 The nature of dramatic entropy change also implies that the identified clustering structures are major clus-
tering structures, which consist of large clusters in terms of the size of dataset. Note that small clusters will be
under the “shadow” of these large clusters. An effective methods to explore small clusters will be iteratively
focusing on a part of the dataset based on the identified structure.
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notation description
H (Cnk) estimated entropy of cluster C, with sample size n
I(n,K) approximate I(K) with sample size n

B(n,K) approximate B(K) with sample size n
E[],Var() expectation and variance of approximate B(K) or I(K)

Table 2. Extended Notations for Sample Data.

4. Sample BKPlots for Large Datasets

When the dataset is large (e.g., the number of records N > 10,000 ), ACE algorithm is
not effective due to its complexity O(N? log V). There are two commonly accepted ap-
proaches to handling large datasets: one is sampling and the other is summarization. We
will focus on the uniform sampling approach for finding the best Ks for large datasets
in this paper, while the summarization approach has been reported for processing data
streams (Chen and Liu, 2006).

Why uniform sampling is also appropriate for BKPlots? The reason is that BKPlot
is only used to identify the major change of clustering structure, which consists of large
clusters in comparable size 3. Thus, while uniform sampling is applied with an appro-
priate sample size, we can assume such clustering structures are well preserved. In the
sampling approach, we identify the best Ks based on the BKPlots generated on sample
datasets, which we name it sample BKPlots, denoted by B(n, K) at sample size n and
the number of clusters K. We also name the BKPIot on the original dataset original
BKPIlot. Let s denote the number of sample BKPlots and ¢ denote the sample BKPlot
based on the sample dataset i. We define the mean BKPlot of s sample BKPlots as
follows.

E[B(n,K)] = é Z Bi(n, K)

In order to prove that sample BKPlots based on uniform sampling can work effectively
for large datasets, we need to answer three questions: 1) Do the mean BKPlots converge
to the original BKPlot? 2)How is the quality of mean BKPlots in terms of consistency
to the original BKPlot? 3) How to estimate the appropriate sample size that guarantees
the mean BKPIot is consistent with the original BKPlot? The following sections will be
focused on these three questions.

If mean BKPlots converge to the original BKPlot, we can confidently use mean
BKPlots to estimate the original BKPlot. The quality of mean BKPlots should be related
to the sample size and possibly other factors. We below first discuss the convergence of
mean BKPlots which is used to evaluate the consistency of the mean BKPlots. Then we
study the variance of mean BKPlots to evaluate the quality of the BKPlot estimation, and
finally we develop the method for verifying whether a given sample size can guarantee
a reliable mean BKPlot or not.

4.1. Convergence of mean BKPlots

In general, we model the major clustering structure of a very large dataset S as follows.
Let the primary clustering structure contains a few large clusters, denoted as CM =

3 small clusters will be merged to the “nearby” large clusters and should be explored in secondary structures.
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{C1,C4,...,Cuy}, e.g., M = 10, which are preserved under uniform sampling, with
n records. Thus, we can assume the M clusters are proportionally sampled to generate
the sample dataset. We denote the sample clusters with C,Jl” ={Cn1,Cn2,---,Cnm}
With the definition of cluster entropy, we have the following proposition.

Proposition 4.1. If the primary clustering structure is preserved with sample size n, the
sample cluster entropy H (C), ;) converges to H(C};), whenn — N

This proposition states that with the increasing sample size, the structure of sample
cluster become more and more similar to that of original cluster. This can be easily
proved based on the definition of subset entropy (please refer to Appendix for details).

Our ultimate goal is to study the mean and variance of B(n, K), which are related
to the entropy difference between the sample clustering structures, denoted as I (n, K),
where n is the sample size and K is the number of cluster. Let a point on a sample
BKPlot be B(n, K). We show that we can use a set of sample BKPlots to estimate the
original BKPIot for the entire large dataset as the following theorem states.

Theorem 1. The original BKPlot generated by the ACE algorithm for the large dataset
can be estimated with the mean of sample BKPlots that are also generated by ACE.

PROOF SKETCH. The proof consists of two steps.

1) E[I(n,K)] converges to the approximate I(K) generated by the ACE algorithm.
When the ACE algorithm is used to generate BKPlots, the entropy difference I(K)
between the nearby clustering schemes is [ (K) ~ £ IE®) = L{(N,+N,)H(Cp+
C,) — N,H(C,) — N,H(C,)}. Similarly, it applies to the sample datasets, i.e.,
I(n,K) =~ {(n, + ng)H(Cpp + Cn,q) — npH(Cy ) — ngH(Cy q)}. Since the
mean of sample cluster entropy E[H(C,, ;)] for any cluster i converges to H (C;) due
to Proposition 4.1, and N, /N ~ ny,/n, Ny/N =~ ng/n, E[I(n, K)] also converges
to the approximate I (K).

2) Since the BKPIot is based on the I(K) curve, i.e., B(n,K) = I(n,K — 1) —
2I(n,K) — I(n, K + 1), the mean of sample BKPlots E[B(n, K)| will also con-
verge to the original BKPlot B(K) generated by the ACE algorithm. (]

How reliable E[B(n, K)] can be used to represent the original BKPlot depends on
its variance. Before we design the method to check the reliability of a mean BKPlot, we
first study the variance of mean BKPlots.

4.2. Variance of Mean BKPlots

The variance of mean BKPlot, Var(E[B(n, K)]), can be used to evaluate the qual-
ity of BKPlot estimation. We are more interested in the asymptotic variance, espe-
cially the relationship between variance and sample size. We will study the asymp-
totic variance of F[B(n, K)] in four steps. 1) We derive the general form of asymp-
totic variance of the sum of random variables: Var(}_;~ | a;X;), which will be heavily

used in deriving other results; Then, we show that 2) Var(E[H(Cy,;)]) ~ O(nlis);
3)WVar(E[I(n,K)]) ~ O(-%); and 4) finally, we have
1

Var(B[B(n, K))) ~ O(—) 3)
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Please refer to the Appendix for the details in the four steps. With the final result — the
step 4), it is intuitive that, by increasing the sample size, n, or the number of sample
sets, s, the mean BKPlot should become more and more reliable.

4.3. Conditions for Reliable Mean BKPlot

In general, the larger n and s are, the smaller the variance of mean BKPlots is, which
results in more reliable estimation. However, in practice, we want to use limited sample
size (n) and limited number of sample BKPlots (s) to get a reliable mean BKPlot that
is consistent with the original BKPlot. In last section, we have found the relationship
between the variance and these factors, with which we are able to verify whether a given
set of sample datasets can generate a reliable mean BKPlot and how we can improve
the reliability.

We first define the concept of “consistent mean BKPlot”. Suppose that the top &
number of candidate Ks (e.g., x = 3 and K < 20) on the original BKPlot have B(K)
values significantly higher than certain level 7. Without loss of generality, let k; < kg <
... < k,; be the significant Ks on the original BKPlot ordered by B(k;), 1 < i < k.

Definition 4.1. If the sequence of significant Ks on the mean BKPlot k] < k} < ... <
k. satisfies k} = k; for 1 < i < k, the mean BKPlot is consistent with the original
BKPlot.

There are x + 1 significant levels on the original BKPlot: B(k;), 1 < i < k, and
7. Let the minimum difference between the x + 1 values be A determined by certain
B(k,) and B(kg), r < g, ie., A = |B(k,) — B(kq)|. Let c be the constant related
to certain confidence level (Lehmann and Casella, 1998), for example, ¢ = 1.96 for
CL = 95% confidence level for normal distribution. Since E[B(n, K)] follows a nor-
mal distribution with mean B(K) and variance Var(B(n, K))/s for large n, we can
estimate whether the order will be preserved for certain sample size. Concretely, in or-
der to make the x levels consistent with the original BKPlot, we should guarantee the
non-overlapping confidence intervals of B(n, k}) at the significant Ks, with confidence
CL, i.e., the following constraint is satisfied.

c(\/Var(B(n, ki) /s + \/Var(B(n, k;))/s)
=2cy/Var(B(n,K))/s <A, 1 <i<k

It follows that, if the sample variance at size n satisfies the following formula, the mean
BKPIlot will be consistent with the original BKPlot.

A2
4c2

This describes the reliability of the mean BKPlot in term of sample size n, the number of
sample BKPIlots s, and the interested top Ks. Note that we really do not know the exact
A value. We can only bootstrap with some initial  and s for the given dataset, e.g., n =
1000 and S = 10. Then, we get the estimation of Var(B(n, K)) and A from the sample
BKPlots. If the Formula (4) is satisfied with the estimated Var(B(n, K)) and A, the
mean of sample BKPlots is reliable under certain confidence level C'L. Otherwise, we
should increase either n, or s, and apparently, increasing s is more economic.

Var(B(n,K)) < 4)
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5. Identifying No-cluster Datasets with BKPlot Method

Finding the peaks on BKPlot does not always mean the existence of significant cluster-
ing structure. Low peak levels mean smooth changes of clustering structure and each
clustering structure does not distinguish itself from others, i.e., there is no significant
clustering structure. Therefore, a challenge comes — how to distinguish datasets having
clustering structures from those having no clustering structure? We propose a method to
address this problem. The main idea is based on the property of the sample BKPlots for
the datasets that are known to have no clustering structure. Specifically, first, we study
the characteristics of clustering structure for the typical no-cluster datasets: datasets
with uniform or normal data distribution (single cluster mode). Then, we test if the
clustering structure of the given dataset is significantly different from the no-cluster
structures.

5.1. Property of Datasets Having No Clustering Structure

We study two types of typical datasets that do not have significant clustering struc-
ture. One is the datasets with elements uniformly distributed in a column and between
columns, which obviously have no clustering structure. The other type is the datasets
of discretized multidimensional normal distribution, which has only one mode (or one
cluster). In the following discussion, the Maximum Peak Level (MPL) of BKPIot is
used to represent the significance level of the clustering structure.

Ideally, large sample datasets exactly following uniform/normal distribution have
no significant clustering structure. Thus, every point on their BKPlots should be very
close to zero, with tiny variance for large sample datasets. However, synthetic sample
datasets usually do not exactly follow the desired distribution, which may create some
small noisy structures. These noisy structures should be treated as statistically equiv-
alent to the ideal no-cluster structures. Therefore, we can also treat any datasets that
have clustering structures not significantly different from these noisy structures as the
no-cluster datasets. With the varying number of records n, columns d, and column car-
dinalities |Aj|, 1 < j < d, synthetic sample datasets may deviate from the desired
distribution to different extent, with different levels of noisy structures. We will charac-
terize them both formally and experimentally.

In deriving Formula (3), the asymptotic form of the variance of mean BKPlots, we
also have a more detailed form of Var(E[B(n, K)|) in terms of the three factors n, d,
and |A;| (see Appendix).

d

Var(E[B(n,K)]) ~ O()

j=1

A, s

f(]A;]) represents some unknown function of | A;|. For ideal no-cluster datasets,
B(K) ~ 0 everywhere. Thus, with the increasing n or d, the maximum peak levels
should converge to 0. The converging rate is characterized by the corresponding fac-
tors in Var(E[B(n, K)]). From above formula we are unable to directly determine the
effect of |A;|. However, we will show some experimental results to further study the
relationship between the three factors and MPLs.
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5.2. Testing Existence of Significant Clustering Structure

From the above analysis, we conclude that different settings of n, d and | A| may result
in different statistical properties of no-cluster BKPlots. There is no simple threshold
independent of the settings. Thus, given a real dataset, its sample BKPlots have to be
compared to those of no-cluster datasets that have the same setting of n, d, and |A;]|.
Combined with the theory of sample BKPlots, we suggest the following testing
method for determining the significance of the clustering structure in a given dataset.

1. generate the BKPlot with ACE algorithm for the target dataset and find its MPL,
denoted by p/;

2. with the n, d and |A4;| setting of the target dataset, we generate two sets of testing
datasets : one with uniform distribution and the other with normal distribution, each
with about 30 sample datasets 4.

3. calculate the mean denoted by u, and the confidence interval of the MPLs of the
simulated datasets: [u — CI, u + C1I], at confidence level A;

4. if 4/ > p+C1, there is significant clustering structure in the target dataset, otherwise,
no clustering structure. CI is often very small compared to the mean level p, thus, u
is sufficient to represent the upper bound.

6. Experiments

We have formally given the basic BKPlot method, the sample BKPlot method for large
datasets, and the BKPlot method for identifying no-cluster datasets. In this section,
we want to show that, 1) BKPlots can be used to effectively find the critical Ks; 2)
experimental results support the initial analysis of the noisy structures of typical no-
cluster datasets; 3) ACE algorithm is a robust tool for generating high-quality approx-
imate BKPlots, compared to the existing entropy-based clustering algorithms, such as
Monte-Carlo method (MC) (Li et al., 2004), Coolcat (Barbara et al., 2002), and LIMBO
(Andritsos et al., 2004).

4 a number which is considered as “statistically large”
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6.1. Datasets

In order to intuitively evaluate the effectiveness of the method, we use both synthetic
and real datasets, and cross-validate the results with the visualization tool VISTA (Chen
and Liu, 2004) that is designed for validating numerical clustering results.

Simple Synthetic Data (DS1&DS2). First, we construct two sets of synthetic cat-
egorical datasets, so that their clustering structure can be intuitively understood and
verified. The first set of datasets has totally separated clusters in one layer 5. The sec-
ond set has a multi-layered clustering structure with overlapping clusters in the lower
layer ( the layer with more clusters). Both can be visually verified. Figure 6 shows such
a dataset with 1000 records and 30 columns. It has a two-layered clustering structure.
The top layer has four clusters, two of which also have two sub-clusters, respectively.
Each cluster has random categorical values selected from {‘0°,‘1°,°2°,3",‘4’, ‘5’ } in
a distinct set of attributes, while the rest attributes are set to ‘0’. As we can visually
identify it, its BKPlot should at least suggest two Best Ks. We name these two types of
datasets as DS1 and DS2, respectively.

Discretized Synthetic Mixture Data (DMIX). The third set of datasets, are the
discretized version of multidimensional normal mixture datasets (Hastie et al., 2001).
We use this set of datasets because we can validate the result with both BKPlot method
and the visualization method. As we discretize the continuous value while still preserv-
ing the numerical meaning, the original numerical clusters are preserved. Meanwhile,
similar values are categorized to the same categorical values, which makes the cate-
gorical clustering structure consistent with the numerical clustering structure. We then
use a visualization approach, VISTA, which is designed for interactively validating the
clustering structure for numerical data (Chen and Liu, 2004), to visually validate the
clusters. By doing so, we are able to better understand the nature of our proposed cat-
egorical method. A discretized 10-dimensional mixture dataset with 7 clusters (10,000
samples) is visualized in Figure 8. The continuous values in each column are partitioned
into 10 equal-width buckets for discretization. These 7 clusters also show a hidden two-
layer clustering structure (C1.1, C1.2, C1.3), (C2.1, C2.2), (C3) and (C4). In particular,
C2.1 and C2.2 are overlapped by each other, and C1 clusters are very close to each
other, which generate some special difficulty for identifying them.

Census Data. We use a real dataset — the discretized version of the large 1990
census data >. This dataset is originally used by the paper (Meek, Thiesson and Hecker-
man, 2002) in studying the relationship between the sampling approach and the effec-
tiveness of Expectation-Maximization (EM) based clustering algorithms for very large
datasets. It is large in terms of both the number of records and the number of attributes.
After dropping many of the less useful attributes in the raw dataset, the total number of
preserved attributes still reaches 68. It contains more than 2 million (2,458,284) records,
about 352 megabytes in total. Since the discretized version still preserves the ordinal
meaning, we can similarly use the visualization method to evaluate whether the BKPlot
method is effective, as we do for DMIX data. C2.1 and C2.2 in Census Data are also a
pair of overlapping clusters.

Overlapping clusters are clusters that are similar to each other but each of the clus-
ters still has its own characteristic distribution to distinguish itself from other clusters.
Identifying and handling overlapping clusters is a difficult problem in numerical data
clustering, and it is more difficult for categorical data. Overlapping clusters in categori-
cal data can be exemplified with these subclusters in DS2, the C2.1 and C2.2 in DMIX,

5 In UCI KDD Archive http://kdd.ics.uci.edu/databases/census 1990/USCensus1990.html
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and also the C2.1 and C2.2 in Census. In many cases, if there are a multi-layered cluster-
ing structure, it is possible that overlapping clusters present. Identifying them is useful
since deep analysis of these clusters may reveal particular characteristics in practice.
Due to the unclear boundary between the overlapping clusters, most methods may fail
to identify them. However, we will see that BKPlots can be used to effectively identify
them. Further analysis on the grouped clusters identified by the BKPlot method, such
as comparing the incremental entropy between each pair of clusters in the group, can
reveal more details of the overlapping clusters.

6.2. Validating the BKPlot Method

Below we show the result of applying the BKPlot Method to the synthetic and real
datasets. ACE algorithm is used to generate the BKPlots. We generate ten sample
datasets for each type of synthetic clustering structure.

DS1. The BKPlots generated by ACE algorithm for DS1-¢ datasets (Figure 10 clearly
indicate that ‘3’ is the only significant K and datasets with the same clustering structure
have almost the identical BKPlot. By checking the significant level for the setting of
1,000 records, 30 columns and column cardinality of 6, with 20 no-cluster test datasets
(10 normal distribution datasets and 10 uniform distribution datasets, respectively), we
find the maximum peak levels (MPLs) of no-cluster datasets are around 0.0004, which
is far lower than that of the DS1, 0.21. Therefore, the detected Best K is significant.

DS2. The peaks of BKPlots for DS2-i (Figure 11) include the two inherent signif-
icant Ks — ‘4’ and ‘6’. However, ‘2’ is also given as the third significant K, which
suggests that the top 4 clusters can be further clustered into two groups. Interestingly,
compared to the three peak levels, we notice that the peak values at ‘K=2" have much
higher variance, which implies that ‘K=2’ is less significant than the other two.

DMIX. The BKPlot of DMIX generated by ACE algorithm (Figure 12) indicates
that 7 and 4 are the Best Ks with a noisy best K at 2, and they are significant com-
pared to the bound (~0.0013) for the setting of 1,000 records, 10 columns and column
cardinality of 10. The 4-cluster structure indicates that some of the 7 clusters are close
to each other and form a secondary clustering structure. The corresponding labeled re-



18 K. Chen and L. Liu
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sult shows the clustering/validation result is well matched with the visualization result
(Figure 8).

Census data. The Census data contains three major clusters as shown in the visu-
alization of 1K sample dataset (Figure 9. In the sample data, C2 and C3 are very close,
thus, they may also form a two-layer clustering structure — the top layer consists of C1
and C2+C3. Its BKPlot (Figure 13 indicates both 2 and 3 are significant, compared to
the bound (~ 0.0005) for the setting (1,000 records, 68 columns and column cardinality
defined in (Meek et al., 2002)). The clustering result with ACE at K = 3 is very close to
the cluster distribution observed via visualization (Figure 9). The cross-validation with
the visualization method confirms that the Best K and clustering result generated by
ACE algorithm are highly consistent with the inherent clustering structure.

We summarize the detailed information in Table 3. n represents the sample size used
in generating BKPlots, d is the number of columns, and “Cardinality” is the column
cardinality, i.e., |A|. For the first three datasets, each column has the same cardinality.
For the census dataset, the column cardinality varies from 2 to 223. Clustering structure
describes the possible hierarchical structure of dataset. For example, “two layers, 4/6
clusters” for DS2 means that the clustering structure has two layers with 4 and 6 clusters,
respectively. “MPL bounds” is the estimated upper bound of no-cluster datasets with the
same setting of n, d and | A|. Due to very small confidence intervals, only the mean levels
are used to represent the bounds. “BestK” are the best Ks suggested by ACE algorithm
and “MPLs at Best Ks” are the corresponding MPLs in the BKPlots generated by ACE
algorithm.
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Datasets n d cardinality Clustering Structure MPL bounds ~ BestK MPLs at Best Ks
DS1 1000 30 6 single layer, 3 clusters 0.0004 3 0.21
DS2 1000 30 6 two layers, 4/6 clusters 0.0004 2,4,6 0.020, 0.058, 0.023
DMIX 1000 10 10 two layers, 4/7 clusters 0.0013 2,47 0.005, 0.041,0.016
Census sample 1000 68 2-223 two layers, 2/3 clusters 0.0005 2,3 0.014,0.044

Table 3. Summary of validating the BKPlot method

6.3. Comparing BKPlot and BIC

Bayesian Information Criterion (BIC) (Hastie et al., 2001) is a popular method for
model selection. If appropriate assumption is made about the prior distribution of the
clusters, it can also be used to select the best K number of clusters. We compare our
method with BIC and show the unique advantages of our method.

In order to use BIC method, we need to make assumption about the cluster dis-
tribution. Categorical data is often modeled with Multinomial mixture (Lehmann and
Casella, 1998). The model fitting is optimized by maximizing the likelihood of fitting
the data to the mixture model. The generic form of BIC is then based on the maximum
likelihood and the number of parameters used in estimation.

BIC = —2 -loglikelihood + (log n) - 9

where n is the number of sample records, and ¢ is the number of parameters used in
the modeling that include the number of clusters. Usually, the K corresponding to the
minimum BIC is regarded as the best K. The main problem is, if the real cluster distri-
bution does not well follow the assumed distribution with any K, the result is possibly
not good. For instance, in numerical clustering, the Gaussian mixture model assumption
does not work well for irregularly shaped clusters and thus BIC based on the Gaussian
assumption is not effective.

In experiments, we use AutoClass® to generate the fitted model, which will also
give BIC values. In AutoClass, 1) is specifically defined as d(d + 1) + K, where d is
the number of columns. On the BIC curve, the best K happens at the minimum BIC. It
shows that the BIC method can often suggest one best K, but it cannot find all possible
best Ks for multi-layer clustering structures. In the experiment we also observed, the
best K for DMIX and Census data is not clearly indicated (Figure 16 and 15), possibly
because of the overlapping clusters, the complex clustering structure, and the outliers.

6.4. Properties of Sample BKPlots for Large Datasets

Now we study some properties of sample BKPlots, and particularly mean BKPlots. The
mean BKPlot has two important factors: the number s of sample sets and the sample
size n for each sample set. We will focus on the size n in the experiment. We use both
DMIX and Census data. For each tested sample size, we generate 10 sample BKPlots,
on which the mean BKPIot is calculated. Figure 17 for Census data shows, when the
clustering structure is simple, the resulting mean BKPlots are very close for different
sample sizes, even though the sample size is small. Figure 18 zooms in the peak values

6 http://ic.arc.nasa.gov/ic/ projects/bayes-group/autoclass/
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at K = 3 at Figure 17. It shows that with the increase of sample size, the MPLs will be
stablized at certain level as we expected.

Figure 19 shows that the sample variance decreases with the increasing sample size
as we have formally analyzed. For the same sample size, a smaller K also implies
merging larger clusters, which usually means a larger n,, + n,. Since Formula (8) in

Appendix shows that var(E[I(n, k)]) ~ O(%), i.e., the variance is proportional to
np + ng, a smaller K will result in larger variance.
However, sample size does affect the accuracy of BKPlots for complicated cluster-

ing structure. DMIX has more clusters and the clustering structure is also much more
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complicated. In Figure 20, we see when the sample size is very small, e.g., 200 samples,
the clustering structure is not preserved well. The mean BKPIot shows that the low-layer
best clustering structure consists of 8 clusters different from the expected 7 clusters. On
the contrast, the 4-cluster clustering structure is more stable since it consists of larger
number of points. In general, if a cluster is not compact in terms of intra-cluster similar-
ity between points, or small in terms of number of records in the cluster, we will need
more samples to preserve it.

6.5. Datasets Having no Clustering Structure

In this set of experiments, we want to show the relationship between the Maximum Peak
Levels (MPLs) of no-cluster sample datasets and the factors: the number of records n,
the number of columns d, and the column cardinalities | A |, which should be consistent
with our formal analysis.

Since n and d have similar effect on the sample BKPlots according to the analysis,
we organize them in the first set of experiments, while the second set of experiments
focus on the unknown effect of column cardinality. Each point on the figures is the
average of ten runs with the standard deviation as the error bar.

Number of Records and Number of Columns For simplicity, the set of simulated
datasets in this experiment have the equal cardinality for columns, denoted as |A| —
with unequal cardinality, we can get similar results. Figure 21 shows the result when we
fix the number of columns and the column cardinality, and vary the number of records
only. The MPL drops quickly from the sample size 100 to 300, but keeps stable when
the size increases more. This confirms our analysis that for small datasets, the entropy
differences between the clusters have large variance and MPLs tend to deviate more
from zero. Varying the number of columns, while fixing the other two factors, we get a
similar pattern, as Figure 22 shows.

Column Cardinality We can try to understand the factor of cardinality in terms of the
model complexity — column cardinality represents the inherent complexity of dataset.
In general, with the increasing model complexity, the representative sample size should
be increased in order to capture the complexity of the structure. On the other hand, if
the sample size n keeps unchanged the increasing model complexity should bring more
variance, which results in stronger noisy structures, i.e., higher MPLs. This hypothesis
is supported by the experiments (Figure 23) that increasing the mean column cardinality
will increase the level of MPLs with the same sample size. Figure 24 also shows that
with the increasing sample size, the higher the column cardinality is, the slower the
MPLs converge for both types of datasets (uniform and normal), which confirms that
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we need more samples to characterize the increasing model complexity. In Figure 25,
we let the column cardinalities randomly varying in the range [|A| — 10, |A| + 10], but
keep the mean cardinality as |A|. We also get a similar pattern that the MPLs increase
when the mean cardinality increases.

6.6. Comparing Algorithms for Generating Approximate BKPlots

Literally, any categorical clustering algorithm that employs the same entropy minimiza-
tion criterion can generate approximate BKPlots. However, the quality of approximate
BKPlots can be greatly influenced by the algorithms. We compare four directly re-
lated algorithms: our proposed ACE, Monte-Carlo (Li et al., 2004), Coolcat (Barbara
et al., 2002), and LIMBO (Andritsos et al., 2004) in this section, to see whether ACE
is the best for generating high-quality approximate BKPlots. Monte-Carlo and Coolcat
use the same criterion, “expected-entropy” that is also used by ACE, to find suboptimal
partitions, while LIMBO uses mutual information in clustering, which is closely related
expected-entropy. The reported results are based on ten randomly sampled datasets of
each experimental data.

6.6.1. Algorithms for Generating Approximate BKPlots

Monte-Carlo Method (Li et al., 2004) is a top-down partitioning algorithm. With a
fixed K, it begins with all records in one cluster and follows an iterative process. In
each step, the algorithm randomly picks one record from one of the K clusters and puts
it into another randomly selected cluster. If the change of assignment does not reduce
the expected entropy, the record is put back to the original cluster. Theoretically, given
a sufficiently large s, the algorithm will eventually terminate at a near optimal solution.
We set s = 5000 for running MC on the synthetic datasets.

Coolcat (Barbara et al., 2002) algorithm begins with selecting K records, which
maximize the K -record entropy, from a sample of the dataset as the initial K clusters. It
sequentially processes the rest records and assigns each to one of the K cluster. In each
step, the algorithm finds the best fitted one of the K clusters for the new record — adding
the new record to the cluster will result in minimum increase of expected entropy. The
data records are processed in batches. Because the order of processing points has a
significant impact on the quality of final clusters, there is a “re-clustering” procedure at
the end of each batch. This procedure picks m percentage of the worst fitted records in
the batch and re-assigns them to the K clusters in order to reduce the expected entropy
further.

We run Coolcat algorithm on each dataset with a large initial sample size (50%
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of the dataset) for choosing the seed clusters and m = 20% for re-clustering, which
is sufficient for improvement through re-clustering (Barbara et al., 2002). In order to
reduce the effect of ordering, we also run Coolcat 20 times for each datasets and each
run processes the data in a randomly generated sequence. Finally, we select the best
result — having the lowest expected entropy among the 20 results.

LIMBO (Andritsos et al., 2004) algorithm is a hierarchical clustering algorithm
using the Information Bottleneck (Tishby, Pereira and Bialek, 1999) criterion as the
similarity between clusters. It uses a summarization structure DCF-tree to condense
large datasets. In our experiments, we set the information loss factor ® to 0, which does
not use DCF-tree to compress the data. Under this setting the result is not subject to the
order of records, and thus there is no randomness introduced in different runs for the
same dataset.

6.6.2. Measuring Quality of BKPlots

We use three measures to evaluate the quality of approximate BKPlots.

— Coverage Rate. The robustness of BKPlot is represented with “Coverage Rate (CR)”
— how many significant inherent clustering structures are indicated by the BKPlot.
There could be more than one significant clustering structures for a particular dataset.
For example, four-cluster and six-cluster structures can be all significant for DS2. An
robust BKPlot should always include all of the significant K.

— False Discovery Rate. There could be some K's, which are actually not critical but
suggested by some BKPlots. In order to efficiently find the most significant ones, we
prefer a BKPlot to have less false indicators as possible. We use “False Discovery
Rate(FDR)” to represent the percentage of the noisy results in the BKPlot.

— Expected Entropy. Since the BKPlot is indirectly related to expected entropy, it might
also be reasonable to check the quality of expected entropy for the partitions gener-
ated by different algorithms at the particular K's. For a set of datasets in the same
clustering structure, like DS1-4, 1 < ¢ < 10, we have almost same optimal cluster-
ing structure for different datasets at a fixed K. Using the mean-square-error (MSE)
criterion (Lehmann and Casella, 1998) to evaluate the quality of the algorithmic re-
sult, we can decompose the errors to two parts: the deviation to the lowest expected
entropy (the expected entropy of the optimal partition), and the variance of the esti-
mated expected entropy. Let h be the expected entropy of the clustering result and h
be the optimal one. i > h is held. Let E[h — h] be the expected bias and var(h) is

the variance of h.
MSE = E*[h — h] 4+ var(h)

Without knowing h, if an algorithm generates clustering results with the lowest ex-
pected entropy and minimum variance among other algorithms, its BKPlots might be
more trustable.

6.6.3. Results by Other Algorithms

As we have shown in Section 6.2, the BKPlots generated by ACE algorithm clearly and
consistently indicate the exact Best Ks for the experimental datasets. We show some
results generated by other algorithms.

The BKPlots generated by Monte-Carlo algorithm for DS1 (Figure 26) clearly iden-
tify that ‘3’ is the best K with some small variation. However, BKPlots for DS2 show
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large variation on K's. Overall, the K's distribute from ‘2’ to ‘10’ for different DS2-7, not
allowing the user to identify the exact Best Ks. This implies that MC algorithm might
not be robust enough for datasets having complicated clustering structure. The reason
is MC algorithm becomes more likely to trap in local minima with the increasing com-
plexity of clustering structure and increasing number of clusters.

Coolcat algorithm is even worse. It brings large variance for both datasets (Figure
28 and 29). The reason is that Coolcat algorithm simply does not guarantee to have
near-optimal clustering results for any fixed number of clusters, and the results between
different Ks do not necessarily correlate to each other.

LIMBO can successfully find the best Ks for simple structures, such as DS1 and
DS2. Its DS1 and DS2 BKPlots are very similar to ACE’s. However, it may generate
some noise and miss some best Ks for a more complicated structure, such as Census
data and DMIX data. Interestingly, it is more easily confused by higher-level structures
(with less number of clusters). For example, for DMIX data (Figure 30), the LIMBO
result can consistently give the best K at K = 7, while it generates noisy results at
K =2,3,4.

We summarize the results with the discussed measures, Coverage Rate (CR), False
Discovery Rate (FDR), and expected entropy (EE) in Table 4. The higher the coverage
rate, the more robust the BKPlot is. The lower the false discovery rate the more efficient
the BKPlot is. The numbers are the average over the 10 sample datasets. In almost all
cases, ACE shows the minimum expected entropy and minimum standard deviation,
as well as the highest CR and lowest FDR. LIMBO is the second reliable method for
generating approximate BKPlots. In general, it can generate reliable BKPlots for not-so-
noisy and non-overlapping clustering structure, but may miss a part of best clustering
results for overlapping clusters, such as those in DMIX and Census data. For those
complicated clustering structures both MC and Coolcat will perform unsatisfactorily.
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LIMBO LIMBO
CR  FDR EE(K=3)
DSI ACE  100% 0% 0.283 £ 0.000
LIMBO 100% 0% 0.283 £ 0.001
MC 100% 0% 0.283 £ 0.001
Coolcat  60% 8% 0.285 £0.005

CR FDR  EE(K =4) EE(K = 6)

DS2 ACE  100% 33% 0218 £0.001 0.194 £ 0.001
LIMBO 100% 33%  0.218%0.002  0.19420.001

MC 30%  53% 0244 L0015 0214 £0.005

Coolcat  60%  70% 0253 £0.005 0.216L 0.008

CR FDR EE(K = 4) EE(K =7)
DMIX ACE 100% 0% 0.415£0.003  0.293 £ 0.004
LIMBO  90% 25% 0.415£0.002 0.293£0.005
MC 20% 90% 0.494+0.030 0.310+0.021
Coolcat  20% 80% 0.449+0.005 0.315+0.016

CR FDR EE(K = 2) EE(K = 3)
Census ACE 100% 0% 0.398 £0.004  0.336 £ 0.004
LIMBO  60% 33% 0416 £0.010  0.3384+0.012
MC 50% 17% 0.395+0.004 0.330£0.007
Coolcat  50% 17%  0.401 £0.003  0.341 £ 0.007

Table 4. Quality of Approximate BKPlots

These algorithms are not likely to keep the results consistently changing through all Ks.
When they cannot find near-optimal results for complicated clustering structure, it is
almost impossible to generate high-quality approximate BKPlots.

7. Related Work

While many numerical clustering algorithms (Jain and Dubes, 1988; Jain and Dubes,
1999) have been published, only a handful of categorical clustering algorithms appear in
literature. The general statistical analysis of categorical data was introduced in (Agresti,
1990). Although it is unnatural to define a distance function between categorical data
records or to use the statistical center (the mean) of a group of categorical items, there
are some algorithms, for example, K-Modes (Huang, 1997) algorithm and ROCK (Guha
et al., 2000) algorithm, trying to fit the traditional clustering methods into categorical
data. However, since the numerical similarity/distance function may not describe the
categorical properties properly, the result cannot be easily validated. Coolcat[6] has
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compared the expected entropy method with ROCK and showed that expected-entropy
is more appropriate for categorical data.

CACTUS (Ganti et al., 1999) adopts the linkage idea from ROCK and names it
as “strong connection”. The similarity is calculated by the “support” — a threshold to
connect or not. A cluster is defined as a region of attributes that are pair-wise strongly
connected. Still, the concept of “support” or linkage is indirect in defining the similarity
of categorical data, and also makes the clustering process complicated.

Gibson et al. introduced STIRR (Gibson et al., 2000), an iterative algorithm based
on non-linear dynamical systems. STIRR represents each attribute value as a weighted
vertex in a graph. Starting with the initial conditions, the system is iterated until a “fixed
point” is reached. When the fixed point is reached, the weights in one or more of the
“basins” isolate two groups of attribute values on each attribute. Even though it is shown
that this algorithm works for the experimental datasets having two partitions, it is chal-
lenging to determine the optimal number of clusters solely with this algorithm.

Cheng et al. (Cheng et al., 1999) applied the entropy concept in numerical subspace
clustering, and Coolcat (Barbara et al., 2002) introduced the entropy concept into cat-
egorical clustering. Coolcat is kind of similar to KModes. However, Coolcat assigns
the item to a cluster that minimizes the expected entropy. Considering the cluster cen-
ters may shift, a number of worst-fitted points will be re-clustered after a batch. Even
though Coolcat approach introduces the entropy concept into its categorical clustering
algorithm, it did not consider the problem of finding the optimal number of categor-
ical clusters. Coolcat, Information Bottleneck (Tishby et al., 1999; Gondek and Hof-
mann, 2007), LIMBO (Andritsos et al., 2004), and the method developed in this pa-
per are based on minimizing the same entropy criterion. The closely related work also
includes Co-clustering (Dhillon et al., 2003) and Cross-association (Chakrabarti, Pa-
padimitriou, Modha and Faloutsos, 2004). Entropy criterion is also discussed under the
probabilistic clustering framework (Li et al., 2004).

Most of the recent research in categorical clustering is focused on clustering al-
gorithms. Surprisingly, there is little research concerning about the cluster validation
problems for categorical datasets. The “Best K™ problem has been discussed in terms of
numerical data, especially with the mixture models. AIC and BIC (Hastie et al., 2001)
are the major model-based criteria for determining the best mixture model (with the
“Best K”). They have been used widely in validating the Gaussian mixture based numer-
ical clustering. They are supposed to also be effective if appropriate mixture models are
used for categorical data, among which Multinomial mixture is usually used to model
categorical data. As model-based clustering fits data into assumed models, exceptions
can happen when the assumed model is not appropriate. We compare the Multinomial-
mixture based BIC criterion and our BKPlot method. Experimental results show that
the BKPlot method has unique advantages in determining the best Ks: 1) it can deter-
mine all the best Ks for multi-layer clustering structures, while BIC cannot; 2) cluster
overlapping can create certain difficulty for BIC, but BKPlot can successfully handle it.

8. Conclusion

Most of the recent research about categorical clustering has been focusing on clustering
algorithms only. In this paper, we propose an entropy-based cluster validation method.
Specifically, we address three problems: 1) identifying the best K's for categorical data
clustering; 2) determining whether a dataset contains significant clustering structure; 3)
developing theory for handling large datasets. Our idea is to find the best K's by observ-
ing the entropy difference between the neighboring clustering results of K and K + 1
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clusters, respectively. The “Best-K plot (BKPIot)” is used to conveniently identify the
critical Ks. BKPlots generated by different algorithm may have different performance
in identify the significant clustering structures. In order to find the robust BKPlot, we
also develop a hierarchical algorithm ACE based on a new inter-cluster entropy criterion
“Incremental Entropy”. Our experiments show that, the BKPlot method can precisely
identify the Best Ks and ACE algorithm can generate the most robust BKPlots for vari-
ous experimental datasets.

In addition, we also address the problems with large datasets and develop the theory
of sample BKPlots for finding the best Ks for very large datasets. The result is extended
to analyzing the datasets having no clustering structure. Sample no-cluster datasets are
used to generate statistical tests for determining whether a given dataset has significant
clustering structure.
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Appendix
Sketch Proof of Convergence of Sample Cluster Entropy

The proof can be described in three steps.

1) estimate the distribution of any categorical value in a column of sample dataset. The
cluster entropy H(C;) = 3¢ =1 H(A;|C;) is defined by the probability p;;;, of each

categorical value v;; in column 5,1 < k < \A |. Let N; be the number of records in
the cluster C;, and Ny, be the number of records containing the value vj. pijr ~
Nijk
e
in sample cluster C,, ;. Y;;, can be modeled as a binomial distribution b(ng, Dijk)

Let the random variable Y;;; represent the number of records containing v,y

(Lehmann and Casella, 1998), and thus ”" is an unbiased estimator for p;;, with

1 . .
VarlanceM ie, EJ ”"] Dijk and Var( U’») — Pigk(1=Pije)

2) prove that the mean of ”’“ log — Yijk jg Dijk logpijr. Let Y = ”’“ . Using Taylor’s
formula, we have YlogY Y(logp”k + (Y — pijr)) = Ylogpwk + (Y2
Yp”k) .WithY — p;jk, € = piji. Thus,

¢
(Y2~ Ypiju)

ik

We already know E[Y] = pij and E[Y?] = E2[Y]+Var(y) = LatlU-pur) 2

Therefore, the mean of Y log Y is given by

YlogY ~ Y logpijr +

c(1 = piji)

0

EYlogY| = piji logpiji +

When n — N, the item W becomes very small, so E[Y log Y] converges to
Pijk 10g Pijk.

7 ¢=log 4 € d is the cardinality of the column and e is the base of the natural logarithm. £ is a value between
Y and Pijk
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3) prove that E[H (C,, ;)] =~ H(C;), whenn — N.
Since H(A;|Cy ;) = LA 1‘ Y;'L”“ log == Yik we have

E[H(A;|Cy.)] ~— z' J‘p”klogp”k— H(A,|C}). It follows that E[H(C,, ;)] ~
H(C;), whenn — N

Sketch Proof of Variance Estimation of Mean BKPlots
The proof can be described in four steps.

1) We will repeatedly use the following formula in the estimation. Let X; denote the ith
random variable, i = 1...m, Var(X;) ~ O(n%), where n; is the sample size of X,
a; are some constants, and X; and X; are correlated with correlation coefficient p;;,
|pij] < 1. For simplicity, we assume that p;; is approximately a constant, and is not
related to the sample size n;.

Va?"(f: a; X;) = i a?Var(X;) + 2 Z a;a;pij \/Var OVar(X;)
1=1 i=1

1<j<m
U a2 a;a;
~ O3 % 4o (b5 6)
i:Zl n i<§m A /nmj

When n; = n, the result is simplified to O (==L 1+( a0’ )~ O(2)

n

2) Similar to the process of getting E[Y log Y], we apply Taylor’s formula to expand
YlogY, then apply the formula (6) to get Var(Y logY) ~ O(1+2) ~ O(2).
With the Central Limit Theory (Lehmann and Casella, 1998), suppose there are s
sample BKPlots, the distribution of E[ Yije log Yijk ] can be approximated with a nor-
mal distribution N (p;j, log piji, O(- )) where O(-1.) is the asymptotic notation
of the variance. By the definition of column entropy and applymg the formula (6), we
have Var(E[H(A;|C;)]) ~ O(+=; (‘A D) where f(|A ) is some constant determined
by [A4;[. Let p; be the correlatlon between E[H (A;|C;)] and E[H (Ax|C;)], from
the definition of cluster entropy, we have

d
Var(E[H(C, =Var( ZE H(A;|C))] ZVar H(A;|C))])

+2 37 [ Var (BU(A;|CODVar (B (44]C))

J<k<d

d
o> 112y~ o1 @

3) Since we suppose I(n, K) ~ +1E(C,,C,) with ACE algorithm, we can estimate
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the variance for E[I(n, K)] as follows.
Var(E[I(n, K))) = Var{ "2 5[f1(C, + C,)]
n

+-LEH(Cy)) + ~L BIH(C,)]}

Ny, +1n n n
~ oM q p q
( n?s + n?s + n?s +
\/(np + ng)ny \/(np +ng)ng  /TpTig
2( 2 + 2 + 2 ))
n2s n2s n2s
Ny, +1n
~ O(%) (®)

To simplify it further, the variance is asymptotically O(-%) for n,, + nq ~ O(n).

4) By definition of B(K), we have B(n,K) = I(n,K —1) —2I(n,K)—I(n, K +1),
which is a linear combination of the entropy difference between partition schemes.
Therefore, with formula 6, we also have

Var(E[B(n, K)]) ~ Var(E[I(n, K)]) ~ O(—)

ns
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