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. Repent years hf';\ve witnessed ever-increasing conC(.alrns gﬁﬂuz 530 TR o —0.3 e - 1
individual privacy in numerous data dissemination appidces 3 1830 12-17k | 04 02 02 02 1
that involve private personal information, e.g., medicaador 4 | 18-30 12-17t 0.3 04 0.2 0.1 1
- . : : : 5 [1830 | 12-17k | 0.2 0.7 0.1 0 1
census data. Typically, sua:hlcrqdata|s sto_req ina relatlpnal 6 F3a0 T 2230k 02 0.6 02 5 5
table, each record corresponding to an individual, whiah ca 7 3220 2230k [ 0.8 01 0 01 2
be divided into three sub-categories: (#entifier attribute, 8 [ 3240 [ 22-30k | 0.3 01 05 0.1 2
e.g., social security number, which can explicitly identif TABLE |
an individual, and is usually removed from the microdata [LLUSTRATION OF PRIVACY-PRESERVING PUBLICATION

for publication; (2)quasi-identifier(QI) attributes, e.g., age,

zip-code, and birth-date, whose values in combination cB) Wweakening the association between Ql-values and SA-
potentially identify an individual, and are usually avail Values. The protection is sufficient if the weakened associa
from other sources (e.g., voter registration list); §@nsitive tions are not informative enough for the adversary to infer
(SA) attribute, e.g., disease, which is the private infafora individuals’ SA-values with high confidence. Aiming at pro-
to be protected for the individuals. viding adequate protection, a number of anonymization-prin

To address the privacy concerns, a plethora of work has b&dples have been proposed, including Kipnonymity [18],1-
done on anonymized data publication [3], [4], [8], [9], [L0]diversity [13] and its variants [19], [22], and, k)-safety [14]
[11], [12], [13], [14], [16], [17], [18], [19], [20], [21], 2], for publishing categorical sensitive data, and ({®,e)-
[23], aiming at ensuring that no adversary can accuratdy in @nonymity [23], variance control [10}-closeness [11] and
the SA-value of an individual, based on the published dath aff; 7?)-anonymity [12] for publishing one-dimensional nu-
her background knowledge. In particular, a majority of thEleric sensitive data.
efforts focus on addressing tfieking attacks the adversary =~ However, designed with the assumption of specific data
possesses the exact Ql-values of the victim, and attemptd¥{es, these principles and their associated anonymizatio
discover his/her SA-value from the published data. A popul@l/gorithms fail to address the privacy risks for a much wider
methodology of thwarting such attacksgeneralization18]:  range of data models, where the proximity of sensitive \&lue
after partitioning the microdata into a set of disjoint seiss is defined by arbitrarily complicated or even customized
of tup|es, Ca||edg|-g|’0up’ genera"za’[ion transforms the Q|-defined functions, as illustrated in the fO”OWing example.
values in each group to a uniform format, so that all the siplgxample2. Recall the example in Table I. If one measures
belonging to the same QI-grou@ are indistinguishable in the pair-wise semantic proximityof the Di sease values in
terms of Ql-values. the first QI-group, it is noticed that the first four tuplesrfor
Examplel. Consider the example of publishing uncertaint@ tight “neighborhood” structure, where the value of #2 is
sensitive data as shown in Table Age and Zi p are QI- semantically close to that of #1, #3 and #4, as shown in Fig. 1.
attributes, andi sease is an uncertainty sensitive attribute, ‘
which follows the x-relation probabilistic model [1]: each
Di sease value is a discrete probability distribution over a
set of alternative diseases, indicating the possibilitytrod
individual's suffering of each specific disease.

The generalization over the microdata produces two QlI-
groups, as indicated by their group IDs (GID), and transrm
the Ql-values in each group to a unified format. The adversafy. 1. lllustration of the proximity breach in the genezefi data. Dashed
who knowsKevins Ql-values can no longer uniguely deterlines indicate that the pairwise distances could not be el in a two-
mine his SA-value: eacli sease value in the first group dimensional space. _
may belong to him, therefore without further informationet ~ Clearly, assuming that each tuple in the group belongs to

adversary can associakevin with each specifidDi sease
value with probability 0n|y 20%. IHere we usevariational distanceas the distance metric. For two discrete
) o0 ) o distributions P = (p1, ..., pm) and Q = (q1, ..., gm), their distance is
Essentially, generalization protects against linking@ks defined aD(P, Q) = -7, S|pi — ail-




Kevin with identical probability, the adversary can infer that After identifying the QIl-group= that containg, the adver-
Kevirls Di sease value falls in the neighborhood structuresary attempts to estimateA® with a probabilistic approach.
with probability 80%. Furthermore, by picking th# sease We assume that from the perspective of the adversary, every
value of the center node as the representative, she artiwes tuple in G belongs too with identical possibility, therefore
privacy intruding claim thatKeviris Di sease value is fairly o0.A® is a random variable with a discrete distribution over the
close t0[0.4,0.3,0.2,0.1]". SA-values appearing i&. Let X denote this random variable,

The example above illustrates the general proximitynich has the following probability mass function:
breaches essentially existing in madtta models, given a nume(v)
semantic proximity metric is defined over the domain of the prob[X =v] = ————=
sensitive attribute. In this paper, we aim at developingaite G
privacy principle to tackle such general proximity breache wherenumg(v) is the number of tuples with SA-value as

Concretely, we propose a novel princigted)-dissimilarity.  in G, and|G| is the cardinality ofG.

It intuitively requires that in each QI-grou, every SA-value, Example3. In our running example of TABLE I, the adversary

is “dissimilar” to at least - (|| — 1) other ones, wherg| identifies thaKevinis associated with each specibtsease
denotes the cardinality @ and two SA-values are consideredgye in the first QI-group with equal probability 20%.

“dissimilar” if their semantic distance is aboveWe provide
theoretical proof thate, §)-dissimilarity, used in conjunction B. General Proximity Privacy
with k-anonymity [18], provides effective protection against |t s noticed that in Equation 1, if for every pair of SA-vatue
linking attacks. We analytically discuss the satisfiapiptob- vi,vj in G, nume(v;) = numg(v;), then all the SA-values in
lem of both (e, 6)-dissimilarity andk-anonymity. Finally, we ¢ are indistinguishable in terms of probability, which praes
point to promising solutions to fulfilling these two prin&s.  sufficient privacy protection in terms éfdiversity [13], if G
contains more thah different SA-values.

Now we introduce the semantic proximity into our privacy
In this section, we introduce the fundamental concepts, aconcern. For a QI-groug? with SA-values as a multi-set

(1)

Il. PROBLEM FORMALIZATION

formalize the problem ofeneral proximity privacy SVe = {v1,v2,...,v,}, and the semantic distance metric
. A(-, ) over the sensitive attribute, the-tieighborhood of a
A. Models and Assumptions valuev € SV¢, ®¢(v,€) is defined as the subset &)V¢

Let T' be a microdata table to be published, which containgth their semantic distance to at moste, formally
a set of QI attributes, and a sensitive attribute We make "o ,
the following assumptions regarding these attributes: ®a(v,6) = {V'| v € SV andA(v,v) < ¢}

« All Ql-attributes are either categorical or numeric, i.eEExample4. In the running example shown in Fig. 1, given

an ordering can be juxtaposed; = 0.1, thee-neighborhood ofu; consists of{vy, va, v3, v4}.

« A can be of arbitrary data type, e.g., categorical, quan-The probability that a tuple has SA-value belonging to the
titative, customized defined type, etc; private neighborhood of is defined as

« A distance metricA(-, -) is defined over the domain of
A®, and A(z,y) denotes the semantic distance between prob[X € O (v, €)] = [26(v, )] (2)
two SA-valuesr andy. |G|

The generalization operation partitiofisinto a set of QI- where|®(v, )| denotes the cardinality of theneighborhood
groupsgr = {Gu, ..., G}, which satisfies7; U... UG, of v. Specifically, within this framework, the definition in
=T,andG;, NG; = 0 for i # j, i.e., Gr is a disjoint Equation 1 can be re-formalized as
and complete partition of’. The QIl-values in each group 16 (v, 0)|
G are then transformed to a uniform format. One possible prob[X =v] = — %
strategy could be: if the Ql-attributd? is quantitative, the G
generalized value could be the minimum bounding interval @learly, for anyv and e > 0, prob[X = v] < prob[X €
all the A? values inG; if A? is categorical, it could be the ®¢(v,¢€)].
lowest common ancestor (LCA) of all th&? values inG on It is noticed that given a reasonakléf the e-neighborhood
the domain generalization hierarchy af. of v, (v, €) contains a considerable portion of the SA-values

Given the generalized table, the adversary attempts itoG, the adversary can conclude that the victim individuid
exploit it to infer the SA-valueo.A® of an individual 0. associated with the SA-values appearin@i(v, €) with high
We assume that the adversary possesses full identificatmobability, though she may not be sure about the exact value
information [14], which includes (1) the identifier of (2) the Furthermore, using as the representative value ®f; (v, ¢),
exact Ql-values of, and (3) the QI-groug: in the generalized she can obtain fairly precise estimation about®, the SA-
table that containg. Note that by assuming the backgroundalue ofo.
knowledge (3), we are dealing with the worst-case scenarioTo measure the severeness of the breaches, and particularly
that there is only one QI-group with Ql-values matching to capture the effect of proximate SA-values on enhancieg th



estimation of the adversary, we introduce the followind risthat each SA-value can have, relative to the QI-group size. |
metric: given the neighborhood widthand a QIl-groufZ, its captures the impact of proximate SA-values on improving the
risk of general proximity breachisk(G, ¢) is defined as: estimation of the adversary, who has prior bellgfG| for
' B (v, €) — 1 each SA-vaIge inG. N .
risk(G,€) = max —————— 3) However, it does not prevent the trivial case of small size
vesve |Gl -1 Ql-group with pair-wise dissimilar SA-values. To remedy
Intuitively, risk(G, €) measures the relative size of the largeshis, we introducek-anonymity [18] into our framework: by
e-neighborhood inGG, and by excluding one from the neigh-requiring that every Ql-group contains at ledstuples, the
borhood, it highlights the impact of proximate SA-values oprior belief for each SA-value is at mosf k.
improving the belief of the adversary, who priorly asscgsat  Clearly, by applying(e, §)-dissimilarity, in conjunction of
the victim with each SA-valtfewith probability 1/|G. k-anonymity, one can effectively counter linking attacks in
It is noted that is free of proximity breachr{sk(G,¢) =0) terms of both exact and proximate QI-SA associations. We
if all the SA-values are dissimilar, and reaches its maximuterm the combination ofe, §)-dissimilarity andk-anonymity
(risk(G, €) = 1) if a specific SA-valuey is similar to all other as (e, §)*-dissimilarity.
SA-values. In particular, we define thﬁ% =1, for ] o
the extreme case th&¢ = {v}. B. Relevance to Previous Principles
Further, we define the risk of general proximity breach for (e, §)*-dissimilarity makes no specific assumption about the
a partition of the microdata tabl&, Gr, risk(Gr,¢) as the underlying data models, hence is general enough to tackle th
maximum risk of the QI-groups igr, formally proximity breaches within most existing data models. Rello
, i ing we show that most anonymity principles on proximity
risk(Gr €) = S risk(G, ) (4)  breaches in literatures are either in-adequate againgtrajen
I, A GENERAL PRINCIPLE p_rox.im.ity _brea_ch_es, or essentially the special case(s,dﬁk.-
_ ) o dissimilarity within the data models which they are desine
In this section, we preser, ¢)-dissimilarity, a remedy g,
against general pr0>_<imity_ b_reaches, with theoretical _proo 1) Principles for categorical data:Motivated by the ho-
of effectiveness agamsft Ilnk!ng_ attacks. We further Oh*_s’cumogeneity breachegdiversity [13] and its variants(a, k)-
thg r.eleva.ncg of(e, 0)-dissimilarity to other generalization anonymity [19], m-invariance [22] are designed to ensure
principles in literatures. sufficient diversity of the SA-values in every QI-group, and
A. (e, 6)-Dissimilarity are all essentially special forms @t,§)*-dissimilarity for

. data models where different values have no sense of semantic
To remedy the general proximity breaches, we propose

a. . . .
. e A o proximity, e.g., categorical data.

novel privacy principle,(e, §)-dissimilarity. A partition Gr ) : : )

satisfies(e, §)-dissimilarity if in everyG € Gr, every SA- Take (a, k)-anonymity [19] as an example, which essen

X S tially combinesk-anonymity and-diversity, and demands that
valuewv in G is “dissimilar” to at least - (|G| — 1) other SA- y ymity anc Y,
values, while two SA-values are considered dissimilar &irth (1) every QI-group must contain at ledstuples, (2) at most
- . . a-percent of the tuples carry an identical SA-value. Triyial
semantic distance is above Note thaty essentially controls .. . . b i -
. ; o it is equivalent to(e, 6)"-dissimilarity in the sense that= 0
the risk of the possible proximity breaches.

Now we prove the effectiveness of this principle a ainsatnd1 —oma
¢ P Pl ag 2) Principles for numeric data:For data models within

gengral proximity attacks. Cpnpretely we shqw that a par!m.which different values can be strictly ordered, e.g., numer
Gr is free of general proximity breaches, if and only if it

- T . _data, it qualifies as several threats if the adversary cam ide
satisfies(e, §)-dissimilarity. We have the following theorem: tify the victim individual's SA-value within a short inteay,

Theorem 1. Given a microdata tablg” and ¢, for a partition even not the exact value. Attempting to capture such privacy
Gr, risk(Gr,e) < 1 — 4, if and only if Gr satisfies(e,§)- requirement, a set of privacy principles have been propfused
dissimilarity. publishing numerical sensitive data, e.g., variance obfito],

(k, e)-anonymity [23],¢-closeness [11]. However, it is proved
in [12] that all these principles provide insufficient prctien
against proximity attacks.

The principle most relevant @, &)*-dissimilarity is (e, m)-
anonymity [12], which requires that in a given Ql-groah
Yor each SA-valuer, at most1l/m of the tuples ofG fall
in the interval of[x — €,z + €. Clearly, (e, m)-anonymity is
a special form of(e, 6)*-dissimilarity for numeric sensitive
data, with1/m ~ 1 — §. However, targeting one-dimensional
numeric data, the theoretical analysis and the correspgndi

2Note that here we consider the collection of SA-values in eugrG, gene_ra_lizatipn algorithm$ in [12] are not gppligable fongxal
SV as a multi-set, and regard all SA-values as unique. proximity privacy protection. Moreover, sinee is an integer,

Proof: (=) If the partition G violates (¢,?)-
dissimilarity, i.e.,3G € Gr, Fv € SVq, |Pg(v,€)] — 1 >
(1-20)- (|G| = 1), then trivially risk(r, ¢) > [Pedl=t >
1 — 6, which indicates a proximity breach.
(<) If GT contains a proximity breach with risk at leas
1 — ¢, then there must exist certal € Gy, and certairv €
SV¢, which violates(e, ¢)-dissimilarity.
Essentially, (¢, §)-dissimilarity counters general proximity
attacks by specifying constraints on the numbet-ngighbors



V. CONCLUSION

This work presents a systematic study of the problem of pro-
tecting general proximity privacy, with findings applicalib
most existing data models. Our ontributions are multi-old
we highlighted and formulated proximity privacy breaches
é'l,?_ a data-model-neutral manner; we proposed a new privacy
principle (e, 6)*-dissimilarity, with theoretically guaranteed
protection against linking attacks in terms of both exact
and proximate QI-SA associations; we provided a theoretica

the users can only specify their proximity privacy require-
ment in a harmonic sequence manner, i-ée%, ..., instead
of “stepless” continuous adjustment as provided (bys)*-
dissimilarity.

IV. FULFILLMENT OF (¢, 8)*-DISSIMILARITY

In this section, we present a theoretical study of the s
isfiability of (e, §)*-dissimilarity. Specifically, and point to
promising approximate solutions to fulfilling this printap

A. Satisfiability of(e, §)*-Dissimilarity

analysis regarding the satisfiability of, §)*-dissimilarity, and

Given the microdata tabl&, and the privacy requirementspointed to promising solutions to fulfilling this principle

as specified by (k-anonymity),e andé ((¢, 6)-dissimilarity),

the first question arises as “does there exist a partiprior

T that satisfies bottk-anonymity (e, §)-dissimilarity?”, i.e.,
the satisfiability of (e, §)*-dissimilarity for 7. Unfortunately,
in general, no efficient solution exists to answer this goast
as shown in the next theorem.

Theorem 2. In general, the(e, 6)*-dissimilarity satisfiability

problem is NP-hard. (1]

Proof: It suffices to prove that this problem for a specific
setting is NP-hard. Consider a stringent version(af§)*-
dissimilarity: 0 = 1, i.e., in every QI-group, all the SA-values [3]
are required to be dissimilar.

For given parameter and microdatal” (of cardinality n),
we construct an abstract grapty (e) = (Vr(e),Er(e)): Vr(e)  [5]
is the set of vertices, with each vertexrepresenting a SA-
value in T; &r(e) represents the set of edges over(e),
and two verticesy and v’ are adjacent, if and only if their
corresponding SA-values are similar.

Without loss of generality, consider a partitighy> of T
consisting ofm (m < |n/k|) Ql-groups:Gr = {G1, Ga, ...,
G}, and the vertices inPr(e) corresponding to eachy;
are labeled with one distinct color. Clearly, in this segtiGr
satisfies(e, 6)*-dissimilarity, only if no two adjacent vertices 11
in U (¢) share identical color, called a proper coloring.

However, it is known that for a general graph, determirt?
ing if a proper coloring using at mosk colors exists is [13]
NP-complete [5], which implies that the, §)*-dissimilarity
satisfiability problem is NP-hard.

El
[10]

B. Possible Solution [15]

Instead of attempting to seek an exact answer to whettig]
a partition exists for given privacy requirements, one iﬁ?]
more interested in developing approximate algorithms that
can (1) provide explicit and intuitive guidance for the seft [18]
of privacy parameters, and (2) efficiently find high-quality
approximate solution to partitioning the microdata. [19]

One such approximate solution could be: one first reformu-
lates the problem of finding afe, §)*-dissimilarity satisfied 20]
partition in the framework of graph coloring, and projedts {
to certain relaxed coloring problem, e.g., [2], [7], whichnc [21]
desirably embeds the privacy parameters @ndk). One can
then study sufficient and necessary conditions for the excst
of a proper coloring. A constructive proof of the condition§3]
can naturally lead to an efficient solution.

[22]
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