
A General Proximity Privacy Principle
Ting Wang, Shicong Meng, Bhuvan Bamba, Ling Liu, Calton Pu

College of Computing, Georgia Institute of Technology
{twang, smeng, bhuvan, lingliu, calton}@cc.gatech.edu

I. I NTRODUCTION

Recent years have witnessed ever-increasing concerns about
individual privacy in numerous data dissemination applications
that involve private personal information, e.g., medical data or
census data. Typically, suchmicrodatais stored in a relational
table, each record corresponding to an individual, which can
be divided into three sub-categories: (1)identifier attribute,
e.g., social security number, which can explicitly identify
an individual, and is usually removed from the microdata
for publication; (2)quasi-identifier(QI) attributes, e.g., age,
zip-code, and birth-date, whose values in combination can
potentially identify an individual, and are usually available
from other sources (e.g., voter registration list); (3)sensitive
(SA) attribute, e.g., disease, which is the private information
to be protected for the individuals.

To address the privacy concerns, a plethora of work has been
done on anonymized data publication [3], [4], [8], [9], [10],
[11], [12], [13], [14], [16], [17], [18], [19], [20], [21], [22],
[23], aiming at ensuring that no adversary can accurately infer
the SA-value of an individual, based on the published data and
her background knowledge. In particular, a majority of the
efforts focus on addressing thelinking attacks: the adversary
possesses the exact QI-values of the victim, and attempts to
discover his/her SA-value from the published data. A popular
methodology of thwarting such attacks isgeneralization[18]:
after partitioning the microdata into a set of disjoint subsets
of tuples, calledQI-group, generalization transforms the QI-
values in each group to a uniform format, so that all the tuples
belonging to the same QI-groupG are indistinguishable in
terms of QI-values.

Example1. Consider the example of publishing uncertainty
sensitive data as shown in Table I:Age and Zip are QI-
attributes, andDisease is an uncertainty sensitive attribute,
which follows the x-relation probabilistic model [1]: each
Disease value is a discrete probability distribution over a
set of alternative diseases, indicating the possibility ofthe
individual’s suffering of each specific disease.

The generalization over the microdata produces two QI-
groups, as indicated by their group IDs (GID), and transforms
the QI-values in each group to a unified format. The adversary
who knowsKevin’s QI-values can no longer uniquely deter-
mine his SA-value: eachDisease value in the first group
may belong to him, therefore without further information, the
adversary can associateKevin with each specificDisease
value with probability only 20%.

Essentially, generalization protects against linking attacks

Age Zip Disease GIDflu asthma bronchitis none
Kevin 1 18-30 12-17k 0.5 0.3 0.1 0.1 1

2 18-30 12-17k 0.4 0.3 0.2 0.1 1
3 18-30 12-17k 0.4 0.2 0.2 0.2 1
4 18-30 12-17k 0.3 0.4 0.2 0.1 1
5 18-30 12-17k 0.2 0.7 0.1 0 1
6 32-40 22-30k 0.2 0.6 0.2 0 2
7 32-40 22-30k 0.8 0.1 0 0.1 2
8 32-40 22-30k 0.3 0.1 0.5 0.1 2

TABLE I

ILLUSTRATION OF PRIVACY-PRESERVING PUBLICATION.

by weakening the association between QI-values and SA-
values. The protection is sufficient if the weakened associa-
tions are not informative enough for the adversary to infer
individuals’ SA-values with high confidence. Aiming at pro-
viding adequate protection, a number of anonymization prin-
ciples have been proposed, including (i)k-anonymity [18],l-
diversity [13] and its variants [19], [22], and(c, k)-safety [14]
for publishing categorical sensitive data, and (ii)(k, e)-
anonymity [23], variance control [10],t-closeness [11] and
(ǫ, m)-anonymity [12] for publishing one-dimensional nu-
meric sensitive data.

However, designed with the assumption of specific data
types, these principles and their associated anonymization
algorithms fail to address the privacy risks for a much wider
range of data models, where the proximity of sensitive values
is defined by arbitrarily complicated or even customized
defined functions, as illustrated in the following example.

Example2. Recall the example in Table I. If one measures
the pair-wise semantic proximity1 of theDisease values in
the first QI-group, it is noticed that the first four tuples form
a tight “neighborhood” structure, where the value of #2 is
semantically close to that of #1, #3 and #4, as shown in Fig. 1.

0.5

0.4

0.3

0.4

0.1
0.1

0.2

0.2

0.2

0.1

#2

#3

#1

#5#4

Fig. 1. Illustration of the proximity breach in the generalized data. Dashed
lines indicate that the pairwise distances could not be embedded in a two-
dimensional space.

Clearly, assuming that each tuple in the group belongs to

1Here we usevariational distanceas the distance metric. For two discrete
distributions P = (p1, . . ., pm) and Q = (q1, . . ., qm), their distance is
defined asD(P, Q) =
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Kevin with identical probability, the adversary can infer that
Kevin’s Disease value falls in the neighborhood structure
with probability 80%. Furthermore, by picking theDisease
value of the center node as the representative, she arrives at a
privacy intruding claim that “Kevin’s Disease value is fairly
close to[0.4, 0.3, 0.2, 0.1]”.

The example above illustrates the general proximity
breaches essentially existing in mostdata models, given a
semantic proximity metric is defined over the domain of the
sensitive attribute. In this paper, we aim at developing effective
privacy principle to tackle such general proximity breaches.

Concretely, we propose a novel principle(ǫ, δ)-dissimilarity.
It intuitively requires that in each QI-groupG, every SA-value,
is “dissimilar” to at leastδ · (|G| − 1) other ones, where|G|
denotes the cardinality ofG and two SA-values are considered
“dissimilar” if their semantic distance is aboveǫ. We provide
theoretical proof that(ǫ, δ)-dissimilarity, used in conjunction
with k-anonymity [18], provides effective protection against
linking attacks. We analytically discuss the satisfiability prob-
lem of both(ǫ, δ)-dissimilarity andk-anonymity. Finally, we
point to promising solutions to fulfilling these two principles.

II. PROBLEM FORMALIZATION

In this section, we introduce the fundamental concepts, and
formalize the problem ofgeneral proximity privacy.

A. Models and Assumptions

Let T be a microdata table to be published, which contains
a set of QI attributes, and a sensitive attributeAs. We make
the following assumptions regarding these attributes:

• All QI-attributes are either categorical or numeric, i.e.,
an ordering can be juxtaposed;

• As can be of arbitrary data type, e.g., categorical, quan-
titative, customized defined type, etc;

• A distance metric∆(·, ·) is defined over the domain of
As, and∆(x, y) denotes the semantic distance between
two SA-valuesx andy.

The generalization operation partitionsT into a set of QI-
groupsGT = {G1, . . ., Gm}, which satisfiesG1 ∪ . . . ∪ Gm

= T , and Gi ∩ Gj = ∅ for i 6= j, i.e., GT is a disjoint
and complete partition ofT . The QI-values in each group
G are then transformed to a uniform format. One possible
strategy could be: if the QI-attributeAq is quantitative, the
generalized value could be the minimum bounding interval of
all the Aq values inG; if Aq is categorical, it could be the
lowest common ancestor (LCA) of all theAq values inG on
the domain generalization hierarchy ofAq.

Given the generalized table, the adversary attempts to
exploit it to infer the SA-valueo.As of an individual o.
We assume that the adversary possesses full identification
information [14], which includes (1) the identifier ofo, (2) the
exact QI-values ofo, and (3) the QI-groupG in the generalized
table that containso. Note that by assuming the background
knowledge (3), we are dealing with the worst-case scenario
that there is only one QI-group with QI-values matchingo.

After identifying the QI-groupG that containso, the adver-
sary attempts to estimateo.As with a probabilistic approach.
We assume that from the perspective of the adversary, every
tuple in G belongs too with identical possibility, therefore
o.As is a random variable with a discrete distribution over the
SA-values appearing inG. Let X denote this random variable,
which has the following probability mass function:

prob[X = v] =
numG(v)

|G|
(1)

wherenumG(v) is the number of tuples with SA-value asv
in G, and|G| is the cardinality ofG.

Example3. In our running example of TABLE I, the adversary
identifies thatKevin is associated with each specificDisease
value in the first QI-group with equal probability 20%.

B. General Proximity Privacy

It is noticed that in Equation 1, if for every pair of SA-values
vi, vj in G, numG(vi) = numG(vj), then all the SA-values in
G are indistinguishable in terms of probability, which provides
sufficient privacy protection in terms ofl-diversity [13], if G
contains more thanl different SA-values.

Now we introduce the semantic proximity into our privacy
concern. For a QI-groupG with SA-values as a multi-set
SVG = {v1, v2, . . . , vn}, and the semantic distance metric
∆(·, ·) over the sensitive attribute, the “ǫ-neighborhood” of a
value v ∈ SVG, ΦG(v, ǫ) is defined as the subset ofSVG

with their semantic distance tov at mostǫ, formally

ΦG(v, ǫ) = {v′| v′ ∈ SVG and∆(v, v′) ≤ ǫ}

Example4. In the running example shown in Fig. 1, givenǫ
= 0.1, theǫ-neighborhood ofv2 consists of{v1, v2, v3, v4}.

The probability that a tuple has SA-value belonging to the
private neighborhood ofv is defined as

prob[X ∈ ΦG(v, ǫ)] =
|ΦG(v, ǫ)|

|G|
(2)

where|ΦG(v, ǫ)| denotes the cardinality of theǫ-neighborhood
of v. Specifically, within this framework, the definition in
Equation 1 can be re-formalized as

prob[X = v] =
|ΦG(v, 0)|

|G|

Clearly, for anyv and ǫ > 0, prob[X = v] ≤ prob[X ∈
ΦG(v, ǫ)].

It is noticed that given a reasonableǫ, if the ǫ-neighborhood
of v, ΦG(v, ǫ) contains a considerable portion of the SA-values
in G, the adversary can conclude that the victim individualo is
associated with the SA-values appearing inΦG(v, ǫ) with high
probability, though she may not be sure about the exact value.
Furthermore, usingv as the representative value ofΦG(v, ǫ),
she can obtain fairly precise estimation abouto.As, the SA-
value ofo.

To measure the severeness of the breaches, and particularly,
to capture the effect of proximate SA-values on enhancing the



estimation of the adversary, we introduce the following risk
metric: given the neighborhood widthǫ and a QI-groupG, its
risk of general proximity breach,risk(G, ǫ) is defined as:

risk(G, ǫ) = max
v∈SVG

|ΦG(v, ǫ)| − 1

|G| − 1
(3)

Intuitively, risk(G, ǫ) measures the relative size of the largest
ǫ-neighborhood inG, and by excluding one from the neigh-
borhood, it highlights the impact of proximate SA-values on
improving the belief of the adversary, who priorly associates
the victim with each SA-value2 with probability1/|G|.

It is noted thatG is free of proximity breach (risk(G, ǫ) = 0)
if all the SA-values are dissimilar, and reaches its maximum
(risk(G, ǫ) = 1) if a specific SA-valuev is similar to all other
SA-values. In particular, we define that|ΦG(v,ǫ)|−1

|G|−1 = 1, for
the extreme case thatSVG = {v}.

Further, we define the risk of general proximity breach for
a partition of the microdata tableT , GT , risk(GT , ǫ) as the
maximum risk of the QI-groups inGT , formally

risk(GT , ǫ) = max
G∈GT

risk(G, ǫ) (4)

III. A G ENERAL PRINCIPLE

In this section, we present(ǫ, δ)-dissimilarity, a remedy
against general proximity breaches, with theoretical proof
of effectiveness against linking attacks. We further discuss
the relevance of(ǫ, δ)-dissimilarity to other generalization
principles in literatures.

A. (ǫ, δ)-Dissimilarity

To remedy the general proximity breaches, we propose a
novel privacy principle,(ǫ, δ)-dissimilarity. A partition GT

satisfies(ǫ, δ)-dissimilarity if in every G ∈ GT , every SA-
valuev in G is “dissimilar” to at leastδ · (|G| − 1) other SA-
values, while two SA-values are considered dissimilar if their
semantic distance is aboveǫ. Note thatδ essentially controls
the risk of the possible proximity breaches.

Now we prove the effectiveness of this principle against
general proximity attacks. Concretely we show that a partition
GT is free of general proximity breaches, if and only if it
satisfies(ǫ, δ)-dissimilarity. We have the following theorem:

Theorem 1. Given a microdata tableT and ǫ, for a partition
GT , risk(GT , ǫ) ≤ 1 − δ, if and only if GT satisfies(ǫ, δ)-
dissimilarity.

Proof: (⇒) If the partition GT violates (ǫ, δ)-
dissimilarity, i.e.,∃G ∈ GT , ∃v ∈ SVG, |ΦG(v, ǫ)| − 1 >

(1 − δ) · (|G| − 1), then trivially risk(GT , ǫ) ≥ |ΦG(v,ǫ)|−1
|G|−1 >

1 − δ, which indicates a proximity breach.
(⇐) If GT contains a proximity breach with risk at least

1 − δ, then there must exist certainG ∈ GT , and certainv ∈
SVG, which violates(ǫ, δ)-dissimilarity.

Essentially,(ǫ, δ)-dissimilarity counters general proximity
attacks by specifying constraints on the number ofǫ-neighbors

2Note that here we consider the collection of SA-values in a group G,
SVG as a multi-set, and regard all SA-values as unique.

that each SA-value can have, relative to the QI-group size. It
captures the impact of proximate SA-values on improving the
estimation of the adversary, who has prior belief1/|G| for
each SA-value inG.

However, it does not prevent the trivial case of small size
QI-group with pair-wise dissimilar SA-values. To remedy
this, we introducek-anonymity [18] into our framework: by
requiring that every QI-group contains at leastk tuples, the
prior belief for each SA-value is at most1/k.

Clearly, by applying(ǫ, δ)-dissimilarity, in conjunction of
k-anonymity, one can effectively counter linking attacks in
terms of both exact and proximate QI-SA associations. We
term the combination of(ǫ, δ)-dissimilarity andk-anonymity
as (ǫ, δ)k-dissimilarity.

B. Relevance to Previous Principles

(ǫ, δ)k-dissimilarity makes no specific assumption about the
underlying data models, hence is general enough to tackle the
proximity breaches within most existing data models. Follow-
ing we show that most anonymity principles on proximity
breaches in literatures are either in-adequate against general
proximity breaches, or essentially the special cases of(ǫ, δ)k-
dissimilarity within the data models which they are designed
for.

1) Principles for categorical data:Motivated by the ho-
mogeneity breaches,l-diversity [13] and its variants,(α, k)-
anonymity [19], m-invariance [22] are designed to ensure
sufficient diversity of the SA-values in every QI-group, and
are all essentially special forms of(ǫ, δ)k-dissimilarity for
data models where different values have no sense of semantic
proximity, e.g., categorical data.

Take (α, k)-anonymity [19] as an example, which essen-
tially combinesk-anonymity andl-diversity, and demands that
(1) every QI-group must contain at leastk tuples, (2) at most
α-percent of the tuples carry an identical SA-value. Trivially,
it is equivalent to(ǫ, δ)k-dissimilarity in the sense thatǫ = 0
and1 − δ ≈ α.

2) Principles for numeric data:For data models within
which different values can be strictly ordered, e.g., numeric
data, it qualifies as several threats if the adversary can iden-
tify the victim individual’s SA-value within a short interval,
even not the exact value. Attempting to capture such privacy
requirement, a set of privacy principles have been proposedfor
publishing numerical sensitive data, e.g., variance control [10],
(k, e)-anonymity [23],t-closeness [11]. However, it is proved
in [12] that all these principles provide insufficient protection
against proximity attacks.

The principle most relevant to(ǫ, δ)k-dissimilarity is(ǫ, m)-
anonymity [12], which requires that in a given QI-groupG,
for each SA-valuex, at most1/m of the tuples ofG fall
in the interval of[x − ǫ, x + ǫ]. Clearly, (ǫ, m)-anonymity is
a special form of(ǫ, δ)k-dissimilarity for numeric sensitive
data, with1/m ≈ 1 − δ. However, targeting one-dimensional
numeric data, the theoretical analysis and the corresponding
generalization algorithms in [12] are not applicable for general
proximity privacy protection. Moreover, sincem is an integer,



the users can only specify their proximity privacy require-
ment in a harmonic sequence manner, i.e.,1

2 , 1
3 , . . ., instead

of “stepless” continuous adjustment as provided by(ǫ, δ)k-
dissimilarity.

IV. FULFILLMENT OF (ǫ, δ)k-DISSIMILARITY

In this section, we present a theoretical study of the sat-
isfiability of (ǫ, δ)k-dissimilarity. Specifically, and point to
promising approximate solutions to fulfilling this principle.

A. Satisfiability of(ǫ, δ)k-Dissimilarity

Given the microdata tableT , and the privacy requirements
as specified byk (k-anonymity),ǫ andδ ((ǫ, δ)-dissimilarity),
the first question arises as “does there exist a partitionGT for
T that satisfies bothk-anonymity (ǫ, δ)-dissimilarity?”, i.e.,
the satisfiability of (ǫ, δ)k-dissimilarity for T . Unfortunately,
in general, no efficient solution exists to answer this question,
as shown in the next theorem.

Theorem 2. In general, the(ǫ, δ)k-dissimilarity satisfiability
problem is NP-hard.

Proof: It suffices to prove that this problem for a specific
setting is NP-hard. Consider a stringent version of(ǫ, δ)k-
dissimilarity: δ = 1, i.e., in every QI-group, all the SA-values
are required to be dissimilar.

For given parameterǫ and microdataT (of cardinalityn),
we construct an abstract graphΨT (ǫ) = (VT (ǫ), ET (ǫ)): VT (ǫ)
is the set of vertices, with each vertexv representing a SA-
value in T ; ET (ǫ) represents the set of edges overVT (ǫ),
and two verticesv and v′ are adjacent, if and only if their
corresponding SA-values are similar.

Without loss of generality, consider a partitionGT of T
consisting ofm (m ≤ ⌊n/k⌋) QI-groups:GT = {G1, G2, . . .,
Gm}, and the vertices inΨT (ǫ) corresponding to eachGi

are labeled with one distinct color. Clearly, in this setting, GT

satisfies(ǫ, δ)k-dissimilarity, only if no two adjacent vertices
in ΨT (ǫ) share identical color, called a proper coloring.

However, it is known that for a general graph, determin-
ing if a proper coloring using at mostm colors exists is
NP-complete [5], which implies that the(ǫ, δ)k-dissimilarity
satisfiability problem is NP-hard.

B. Possible Solution

Instead of attempting to seek an exact answer to whether
a partition exists for given privacy requirements, one is
more interested in developing approximate algorithms that
can (1) provide explicit and intuitive guidance for the setting
of privacy parameters, and (2) efficiently find high-quality
approximate solution to partitioning the microdata.

One such approximate solution could be: one first reformu-
lates the problem of finding an(ǫ, δ)k-dissimilarity satisfied
partition in the framework of graph coloring, and projects it
to certain relaxed coloring problem, e.g., [2], [7], which can
desirably embeds the privacy parameters (ǫ, δ andk). One can
then study sufficient and necessary conditions for the existence
of a proper coloring. A constructive proof of the conditions
can naturally lead to an efficient solution.

V. CONCLUSION

This work presents a systematic study of the problem of pro-
tecting general proximity privacy, with findings applicable to
most existing data models. Our ontributions are multi-folded:
we highlighted and formulated proximity privacy breaches
in a data-model-neutral manner; we proposed a new privacy
principle (ǫ, δ)k-dissimilarity, with theoretically guaranteed
protection against linking attacks in terms of both exact
and proximate QI-SA associations; we provided a theoretical
analysis regarding the satisfiability of(ǫ, δ)k-dissimilarity, and
pointed to promising solutions to fulfilling this principle.
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