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Abstract 
 

DHTs are scalable, self-organizing, and adaptive to 
underlying topology changes, thus being a promising 
infrastructure for realizing efficient Web service 
discovery. Range queries play an important role in 
service discovery, and in recent years a number of DHT-
based range query schemes have been proposed. 
However, most of them suffer from high query delay and 
high processing cost. This paper presents ERQ, an 
Efficient scheme for delay-bounded Range Query 
processing over DHTs. We first design a balanced Kautz 
(BK) tree to uniformly map the m-dimensional data space 
onto DHT nodes, and then present a novel algorithm that 
processes range queries in a parallel fashion, where an 
on-the-fly space pruning mechanism is adopted to reduce 
the processing cost. In a DHT with N nodes, ERQ can 
answer any multi-attribute range query in less than 
logN(2loglogN+1) hops with low processing cost, 
irrespective of the queried range, the whole space size, or 
the number of queried attributes. The effectiveness of 
ERQ is demonstrated through extensive experiments. 
 
1. Introduction 
 

Over the last decade, we see an increasing trend of 
hosting large number of Web services in decentralized 
networks organized by a distributed hash table (a.k.a. 
DHT [1-3]) model. DHTs are scalable, self-organizing, 
and adaptive to underlying topology changes, thus being 
a promising infrastructure for realizing efficient discovery 
of various Web services [4-6]. The basic functionality 
provided by DHTs is exact-match query, which might be 
enough in some simple applications. For example, a file 
sharing service [4] may use filenames as keywords for 
service publication and discovery. However, the simple 
exact-match interface is not flexible enough for many 
more complicated services. For example, in an Internet 
RAM service [6] a customer might wish to find RAM 
providers satisfying “Memory ≥ 2GB”, and in a reputation 
management service a user might issue queries like “60 ≤ 
Reputation Score ≤ 80”, and so on.  

The above illustrated queries are called range queries, 
which play an important role in Web service discovery. 

Recently, a number of DHT-based schemes for range 
query processing have been proposed. One important 
category of DHT-based range query schemes is the 
layered schemes (e.g., [7-15]), which are built on top of 
existing DHTs and do not need to modify the underlying 
infrastructure, thus having a number of methodological 
merits such as being easy to design and error isolation. 
However, current layered schemes suffer from inefficient 
performance since they do not adapt the behavior of 
underlying DHTs to the requirement of range queries. In 
most proposed layered schemes, the query delay depends 
on both the size of the network (i.e. the number of nodes) 
and the properties of the query (such as the queried range, 
the whole space size and the number of queried attributes). 
As a result, these schemes cannot guarantee to return the 
results in a bounded delay (defined by [12]) that is 
relevant only to the size of the network.  

In this paper we present ERQ, an Efficient layered 
scheme for delay-bounded Range Query processing over 
DHTs. ERQ is built on top of DLG-Kautz (DK) [3], a 
high-performance constant-degree DHT. ERQ does not 
need to modify the underlying DK infrastructure, and thus 
directly inherits the desirable properties of DK such as 
low diameter, constant degree and low congestion. ERQ 
supports efficient range queries and can return all the 
results in a bounded delay, irrespective of the queried 
range, the whole space size, or the number of queried 
attributes.  

The contribution of this paper is three-fold.  
• We propose the balanced Kautz (BK) tree model to 

uniformly map the m-dimensional data space onto the 
network via a 1-dimensional Z-curve.  

• We present a parallel query processing algorithm that 
searches along the BK tree with an on-the-fly space 
pruning mechanism.  

• We theoretically analyze the delay and cost of ERQ, 
and demonstrate the effectiveness of our proposals 
through extensive experiments.  

ERQ can answer any range query in less than 
logdN(2logdlogdN+1) hops with low processing cost, 
where N and d are the size and base of the underlying 
DHT, respectively. This is very close to the asymptotic 
lower bound Ω(logdN) [12] for range queries over 
constant-degree DHTs.  



Up to now the most relevant work to ERQ is Armada 
[12], a novel delay-bounded scheme that supports range 
queries over the FissionE DHT [20]. The advantages of 
ERQ over Armada mainly include: (i) ERQ has a better 
load balancing property than Armada under dynamic load 
distribution changes, which are very common in real 
Internet environments; and (ii) ERQ can increase the base 
d to reduce the delay, while keeping a relatively small 
routing table size (2d) and maintenance overhead. In 
contrast, Armada can only have a fixed base d = 2.  

The rest of this paper is organized as follows. Section 
2 introduces the preliminaries. Section 3 presents the 
detailed design of ERQ, followed by theoretical analysis 
and extensive evaluations in Sections 4 and 5, 
respectively. Section 6 discusses related work and Section 
7 concludes the paper.  
 
2. Preliminaries 

 
In this section we first introduce the background of 

DK on which ERQ is based, and then present an 
overview of ERQ.  

 
2.1. Background: the DK DHT 

 
DK is a Kautz graph-based DHT that was proposed in 

our previous work [3]. Let Zd = {0, 1, 2, …, d−1} be an 
alphabet of d letters. A Kautz string a of length k and base 
d is defined as a = a1a2…ak, where ai∈ Zd+1 with 1 ≤ i ≤ k 
and aj ≠ aj+1 with 1 ≤ j ≤ k−1. The Kautz name space KS(d, 
k) is the set that contains all Kautz strings of base d and 
length k. The Kautz graph K(d, k) is a directed graph in 
which each node is labeled with a Kautz string in KS(d, k) 
and has d out-neighbors: for each β ∈ Zd+1 and β ≠ uk, 
node u = u1u2…uk has one out-edge to node v = v2v3…vkβ 
(denoted by u v→ ). Figure 1(a) shows an example of 
Kautz graph K(2,2). The routing path in a Kautz graph 
from node u = u1u2…uk to node v = v1v2…vk is:  

1 2 2 1 1 2... ... ...k k ku u u u u u v v v v v= → → → =L . 
In a DK DHT with base d, node identifiers are Kautz 

strings with base d and the identifier lengths might be 
different. Let | u | denote the identifier length of node u. 
DK utilizes a mechanism called edge-node transition to 
deal with node joining/departure. For example, suppose 
that the current topology of DK is as shown in Figure 1(a). 
When a new node p joins, it first looks for a DK node u 
that satisfies | u | ≤ | v | for all the neighbors v of u. Let u = 
10 in this example. Then the edge from 21 to 10 will turn 
into node 210 that corresponds to node p, and the edge 
from 01 to 10 will turn into node 010 that corresponds to 
node u. The new topology is shown in Figure 1(b). By 
this means DK would get a series of topologies, the first 
three of which are illustrated in Figures 1(b), (c), and (d). 
All nodes in DK are organized into an approximate Kautz 

graph according to their identifiers. Each node has d out-
neighbors: node u = u1u2…um has one out-neighbor 
ut…u2u3…umβ (1 ≤ t ≤ 3) for each β ≠ um.  

     
      (a) Kautz graph K(2, 2)                  (b) DK topology (i) 

     
         (c) DK topology (ii)                   (d) DK topology (iii) 
Figure 1.  Kautz graph K(2,1) and DK topologies.  
 
2.2. ERQ overview 

 
To facilitate Web service look up and discovery, we 

model a service in terms of the set of attributes to specify 
the properties of the service. For example, consider a 
computing service with two attributes: the CPU frequency 
(CPU) and the memory capacity (Memory). All possible 
service instances form a two-dimensional data space and 
a specific service corresponds to a data point in the space. 
A service customer might lookup services satisfying 
“CPU ≥ 1GHz & Memory ≥ 2GB”, which is a typical 
range query.  

DHTs are a promising infrastructure for realizing 
efficient Web service discovery. However, most DHTs 
cannot directly support such range queries since their 
hash functions destroy the original order relationship 
(either “<” or “>”) between attribute values. This paper 
addresses the problem and proposes an Efficient Range 
Query scheme (ERQ) that is layered on top of the DK 
DHT.  

The main advantage provided by the layered design is 
that the underlying DHT eases the burden of dealing with 
topology maintenance and message routing. Thus, ERQ 
needs only to focus on the range query-related issues, 
namely, publishing and searching.  

In the publishing phase, the services are published by 
the following operations. (i) Map the multi-attribute data 
points to a 1-dimensional Z-curve; and (ii) Map the Z-
curve to the nodes organized by a BK tree. For example, 



suppose that the computing service is deployed in a 
network as shown in Figure 1(a) and node 21 is a 
provider with attributes “Memory = 3GB & CPU = 
1.5GHz”. After the publishing phase, this information 
would be published to its responsible node, say node 10, 
together with the provider address “ProviderID = 21”.  

In the searching phase, the query node issues a range 
query and ERQ propagates the query along the BK tree in 
a parallel fashion, where an on-the-fly space pruning 
mechanism is adopted to reduce the processing cost. For 
example, suppose that in the network as shown in Figure 
1(a) node 02 wants to look up services satisfying “CPU ≥ 
1GHz & Memory ≥ 2GB”. The searching phase would 
propagate the query to node 10 and return the result 
(“ProviderID = 21”).  
 
3. Design 
 

This section presents the detailed design, including 
service publication and query processing, of ERQ. 
 
3.1. Service publication 

 
This subsection first discusses the linearization of 

multi-attribute values, then presents the balanced Kautz 
tree, and at last proposes the service publication algorithm. 

 
3.1.1. Linearization of multi-attribute values. Range 
queries can be classified into single-attribute queries and 
multi-attribute queries [12]. ERQ processes both single-
attribute and multi-attribute queries in a unified way by 
linearizing the multi-attribute values to a one-dimensional 
Z-curve [21].  

Suppose that a data point X has m attributes Xi = xi 
with 0 ≤ i < m, and X is denoted as a vector X = <x0, x1, …, 
xm−1>. Let the entire interval of attribute Xi be xi(min) ≤ Xi < 
xi(max), denoted as Xi ∈ [xi(min), xi(max)). We first use a k-digit 
base d number xi' to normalize xi as  
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Clearly xi' satisfies 0 ≤ xi' < dk. For simplicity, in the 
following we will not distinguish xi and xi', and assume 
that all attributes have the same entire interval [0, dk).  

DEFINITION 1. Z-mapping [22,23]. Suppose that a data 
point X has m attributes, namely Xi = xi with 0 ≤ i < m. 
Let xi be a k-digit base d integer 0 1...i i ikx x x , then  
 00 10 ( 1)0 01 11 ( 1)1 0 1 ( 1)( ) ... ... ... ...m m k k m kZ X x x x x x x x x x− − −=  (2) 
is called Z-mapping from the m-dimensional space to a 
one-dimensional Z-curve.  

Let n represent the length of Z(X). Clearly n = k× m 
and 0 ≤ Z(X) < d 

n. Then, a data point X is mapped by (2) 
to a unique n-digit integer Z(X) on the Z-curve.  
 

3.1.2. Balanced Kautz tree. This subsection designs the 
BK tree by emulating the PHT structure [13] in DK.  

A node (including inner nodes and leaves) in a BK tree 
represents an m-dimensional space S and corresponds to a 
string s that is a common prefix of Z(P), where P 
represents all possible data points in S. The node will be 
labeled as KHash(s), the Kautz hash value [3] of string s.  

The root at layer 0 represents the whole m-dimensional 
space 0 ≤ Xi < dk with 0 ≤ i < m, which is denoted as [0, 
dk)m. The root corresponds to a null string, thus being 
labeled as “NULL”. Suppose that a node A at layer h 
corresponds to a common prefix s and is labeled as 
KHash(s). Then node A represents a multi-attribute value 
space that consists of all data points Y, which satisfy s is a 
prefix of Z(Y). We also say that node A represents prefix s. 

Each node in the tree has 0 or d children. If node A has 
d children, say nodes Bj with 0 ≤ j < d, then node Bj will 
correspond to the concatenation of string s and letter j 
(denoted as s o j) and is labeled as KHash(s o j). Note that 
node Bj corresponds to a prefix one more digit than s. Let 
i = h mod m, then the ith-dimension of the data space 
represented by node A is divided into d equal shares, each 
of which is assigned to a children Bj. The intervals of 
other d−1 attributes Xi' (i' ≠ i) represented by the children 
of node A are the same as that represented by A.  

In the following we will use the term tree node (inner 
node or leaf node) to represent a node in the BK tree, and 
use the term DK node (node for short) to represent a real 
node in the DK DHT.  

Suppose that a tree node R represents an m-
dimensional data space S and the corresponding common 
prefix s. R is emulated by the DK node that is responsible 
for the label (KHash(s)) according to the following policy 
[3].  

Let the DK node be u = u1u2…um and the label s = 
s1s2…sn. Define M(u,s) as the maximum value of all 
integers i (0 ≤ i ≤ min(m, n)) that satisfy um−i+j = sj for any 
j (0 ≤ j ≤ i). E.g., M(10121, 012120) = 4, M(10121, 12120) 
= 3. The tree node R is emulated by a DK node u, iff  
 ( , ) | |M u s u= ; or 1 *( , ) | | 1M u s u u s= − ∧ = ,   (3) 
where s* = sn if sn ≠ u2, or s* = sn−1 if sn = u2.  

In the following we will use r(x) to denote the DK 
node that emulates the tree node with label x. For 
example, suppose that the current topology of DK is as 
shown in Figure 1(b), and node u = 010, u' = 210, label t 
= 010201 and s = 101202. Then r(t) = u, i.e. the tree node 
of t is emulated by u, since M(u,t) = 3 = | u |; and r(s) = u' 
since M(u',s) = 2 = | u | − 1 and sn = 2 = u'2 ∧  sn = 2 = u'1.  

 
3.1.3. Publication in the BK tree. A data point is 
assigned to a leaf in the BK tree that represents the space 
containing the point. A leaf contains at most MAX points 
to limit the maximum load of a node. If a leaf node, say 
node A, contains more than MAX points since new points 
are published onto it, node A will generate d children as 



described above and divide its load to its d children 
according to their Z-mapping values: a point X will be 
assigned to the child that corresponds to a prefix of Z(X). 
Then, A will contain no points and it will turn into an 
inner node. Moreover, node A will add d links to its 
routing table, each of which points to a child.  

All service providers periodically invoke the 
procedure and a service is considered stopped when the 
leaf node can no longer receive any messages from its 
provider. Note that if the total number of points of the d 
children is less than MAX they will move their points to 
their parent A and A will again become a leaf node, the 
procedure of which can be viewed as a counterpart of the 
split procedure and is omitted here.  

 
3.2. Range query processing 

 
Suppose that the queried range is xi

(1) ≤ Xi < xi
(2) with 0 

≤ i < m, which is denoted as [X(1), X(2)) with X(1) = <xi
(1)> 

and X(2) = <xi
(2)>. Let Zmin = Z(X(1)), Zmax = Z(X(2)), and let 

ComPrefix(Zmin, Zmax) denote the common prefix of Zmin 
and Zmax. To reduce the search space, ERQ’s query 
processing consists of two phases, namely, (i) locating the 
representing node A for ComPrefix(Zmin, Zmax), and (ii) 
searching down the BK tree from A.  

 
3.2.1. Locating the representing node. Let ComPrefix 
(Zmin, Zmax) = z1z2...zp. Then there are p+1 possible strings 
to be a prefix of z1z2...zp, namely, z1z2...zp, z1z2...zp−1, …, z1 
and null. An intuitive method to locate the representing 
node is to travel a top-down path along the BK tree: root 
→  r(KHash(z1)) →  r(KHash(z1z2)) → …, until the 
current node is r(KHash(z1z2...zp)) or a leaf. However, 
clearly in this way the tree root tends to be a performance 
bottleneck when there are large amounts of queries.  

To address this problem, ERQ utilizes a variation of 
the binary search algorithm as follows. Let a = /p d⎡ ⎤⎢ ⎥ , 
the query node first issues d queries to check whether 
some of the d DK nodes, namely, r(KHash(z1z2...za)), 
r(KHash(z1z2...z2a)), …, r(KHash(z1z2...zda)), exist in the 
network. If so, the node with the maximum identifier 
length will be the representing node for ComPrefix(Zmin, 
Zmax) and the first phase is finished. Otherwise, Let b = 

/a d⎡ ⎤⎢ ⎥  and the query node will start a similar procedure 
to check whether some of the d nodes, r(KHash(z1z2...zb)), 
r(KHash(z1z2...z2b)), etc., exist. By parity of reasoning, 
this algorithm ensures that the representing node for 
ComPrefix(Zmin, Zmax) can be found in at most logp ≤ 
logdlogdN steps. The algorithm for locating representing 
node is referred to as d-Search.  

Note that if the bandwidth allows checking all possible 
strings simultaneously, ERQ can locate the representing 
node in one step. Similarly, if the bandwidth is limited 

that ERQ can only check all possible strings one by one, 
this phase can be finished in at most p ≤ logdN steps.  

 
3.2.2. Parallel searching. If the representing node (say 
node A) for ComPrefix(Zmin, Zmax) is a leaf node, then 
ERQ can easily finish the processing at A. Otherwise 
ERQ needs to perform a top-down search along the BK 
tree from the inner node A.  

As shown in Theorem 1 (presented in the next section), 
for subinterval [X(1), X(2)) in the m-dimensional space the 
corresponding interval of the Z-mapping might be only a 
subset of [Z(X(1)), Z(X(2))). Therefore, from an inner node, 
say node B, an on-the-fly space pruning mechanism can 
be conducted as follows. (i) For each child of B, say node 
C, check whether its represented space intersects with the 
queried range. (ii) If there are some intersections, then the 
query will be sent to child C; Otherwise C and its sub-tree 
will not be queried any more.  

Procedure Parallel-Search (Value X(1), Value X(2))  
01 A = d-Search (X(1), X(2));     
02 if (A==NULL) {return; }   
03 if (A is a leaf node) {   
04     LocalSearch (X(1), X(2)); return; }  
05 Prune (A, X(1), X(2));    
06 return;  
 
Procedure Prune (Node B, Value X(1), Value X(2)) 
01 if (B is a leaf node) {   
02     LocalSearch (X(1), X(2)); return; }  
03 else {       
04     s = GetString (B); len = Length (s);  
05     for each C ∈Children (B) {   
06         if (Check(C, len, X(1), X(2)) ) {  
07             Prune (C, X(1), X(2)); } } }  
08 return;  
Figure 2. Range query processing and on-the-fly 
space pruning.  

 
The complete algorithm for range query processing in 

ERQ (named Parallel-Search) is summarized in Figure 2, 
together with the space pruning algrithm (named Prune).  
 
4. Analysis 
 

This section analyzes the properties of query delay and 
processing cost in ERQ.  

For two data points X = <xi> and Y = <yi> with 0 ≤ i < 
m, we say that X is smaller than Y (denoted as “X < Y”) if 
there exists an integer t (0 ≤ t < m) satisfying: for each j 
(0 ≤ j < t), xj = yj and xt < yt.  

The following Theorem 1 gives the upper bound for 
the range query delay in ERQ. 



Theorem 1.  Any range queries in ERQ can be 
answered in less than logdN(2logdlogdN+1) hops, where N 
and d are the size and base of the DHT, respectively.  

Proof.  Let the queried range be [X(1), X(2)). Let Zmin = 
Z(X(1)), Zmax = Z(X(2)). As described in Section 3.2.1, the 
d-division algorithm can locate the tree node representing 
ComPrefix(Zmin, Zmax) within at most logdp ≤ logdlogdN 
steps.  

According to [5], the diameter of DK is less than 
2logdN, thus one step corresponds to at most 2logdN DHT 
hops and the delay (D1) of the first phase (locating) 
satisfies  
 1 2 log log logd d dD N N≤ .  (4) 

On the other hand, since the height of ZK tree is at 
most logdN and for each branch in the tree there is a link, 
the delay (D2) of the second pruning phase satisfies 
 2 logdD N< .  (5) 

By (4) and (5), the delay (D) of any range queries in 
ERQ satisfies  
 log (2 log log 1)d d dD N N< + .  (6) 

Therefore, Theorem 1 holds.        ■ 
From Theorem 1 it is easy to see that ERQ guarantees 

to return the results within a bounded delay, which is only 
relevant to the size of the network but independent of the 
queried range, the whole space size or the number of 
queried attributes. This delay is very close to the 
asymptotic lower bound O(logdN) for range queries over 
constant-degree DHTs.  

The following Theorem 2 gives the average message 
cost of single-attribute range query processing in ERQ.  

Theorem 2.  The average message cost of single-
attribute range query processing in ERQ is no more than 
O(logdNlogdlogdN+βN), where N and d are respectively 
the size and base of the DHT,  and β represents the ratio 
of the queried range to the entire interval.  

Proof.  Let the queried range be S = [X(1), X(2)). Let 
Zmin = Z(X(1)), Zmax = Z(X(2)). By the definition of Z-
mapping, for Z(X) and any two values X and Y in S, if X < 
Y then Z(X) < Z(Y); and for S the corresponding interval 
of Z is [Z(X(1)), Z(X(2))).  

Therefore, the range query for S is equal to searching a 
set of neighboring tree nodes, which represent a 
consecutive interval [Z(X(1)), Z(X(2))).  

As discussed in the proof of Theorem 1, the delay of 
the first phase (locating) is no more than 2logdNlogdlogdN, 
and thus the cost (C1) of the first phase satisfies 
 1 2 log log logd d dC d N N≤ .  (7) 

Suppose that the ZK tree has k layers. On average we 
have k = logdN. Suppose that the tree node representing 
ComPrefix(Zmin, Zmax) is at layer h. Then in the second 
phase (pruning search) all the message forwarding paths 
can be approximated as a k−h layer base-d tree, in which 
the number of tree nodes is equal to the cost (C2) of the 
second phase. Clearly C2 satisfies 

 
1

2
2

11
1

k h
k h dC d d d

d

− +
− −

≈ + + + + =
−

L .  (8) 

Since the ratio of the queried range size to the entire 
interval is β, on average there are βN nodes involved in 
representing the interval [Z(X(1)), Z(X(2))). Thus we have 
 logdk h Nβ− ≈ .  (9) 

By (7) ~ (9), it is easy to infer that the average cost is 
no more than O(logdNlogdlogdN+βN) messages, and this 
completes the proof.           ■ 

From Theorem 2 we conclude that the average cost of 
single-attribute range query processing in ERQ is close to 
the asymptotic lower bound O(logN)+βN [12]. We will 
evaluate the average cost of multi-attribute range queries 
through experiments in the next section.  

 
5. Evaluation 

 
This section evaluates ERQ by extensive experiments. 
 

5.1. Methodology 
 
We evaluate the properties of ERQ by modifying the 

DK simulator [3]. Among the well-known layered range 
query schemes, only Armada [12], PlaceLab [13] and 
DCF-CAN [14] (see Section 6) can support range queries 
over constant-degree DHTs. Since the performance of 
PlaceLab is much worse than others, we only compare 
ERQ with Armada and DCF-CAN in this section.  

There are four configurable parameters involved in our 
experiments, namely, the network size (N), the size of the 
whole space (S), the ratio of the queried range to the 
entire interval in each dimension (β), and the number of 
queried attributes (m). In our experiments,  
• The network size is varied from 1K to 10K;  
• The entire interval in each dimension in the data space 

is [0, 1000);  
• The ratio is varied from 0.05 to 0.4; and 
• The number of queried attributes is set to 1 (single-

attribute) and 6 (multi-attribute). 
In the rest of this section we vary these parameters one 

at a time, and in turn evaluate the query delay and 
processing cost of ERQ. The experiment for each 
property is repeated at least 1000 times.  

 
5.2. Query delay 

 
We first evaluate the average delay of single-attribute 

range queries (as a function of the network size) in ERQ, 
Armada and DCF-CAN, which are designed on top of 
DK [3], FissionE [20] and CAN [2] respectively. In the 
three underlying DHTs, the base (d) of DK and CAN can 
be set to any integer (≥ 2), while the base of FissionE can 
only be 2. Since all the three DHTs have the same 



average degree 2d, we can say that they have the same 
routing table size if their base is equal. In our experiments 
the base of DK and CAN is set to d = 2 and d = 4, and the 
base of FissionE is set to d = 2.  

In each experiment we randomly select a node to 
initiate a range query. The queried range is randomly 
selected from [0, 1000) with a fixed ratio β = 0.2. The 
results are shown in Figure 3.  
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Figure 3.  Average query delay (m = 1). 

 
Our conclusion for Figure 3 is two-fold. 
First, the query delay of ERQ is considerably less than 

that of DCF-CAN when they have the same base. This is 
mainly because ERQ and DCF-CAN have different delay 
functions (O(logdNlogdlogdN) and O(N1/d) respectively) of 
the network size.  

Second, the query delay of ERQ is a little greater than 
that of Armada when d = 2, but ERQ outperforms 
Armada when d = 4. This result proves the second 
advantage of ERQ over Armada (discussed in Section 1), 
that is, ERQ benefits from the configurable base of its 
underlying DK DHT, in contrast Armada can only have a 
fixed base d = 2. Note that (although not shown in this 
figure) ERQ can adopt a larger base d to further reduce 
the delay, and the effect would become more pronounced 
for considerably large values of the network size (for 
example, millions of nodes).  
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Figure 4.  Average query delay (m = 6). 

 
We then evaluate the average delay of multi-attribute 

range queries with m = 6. Other parameters (N, S, β and d) 
are the same as the previous experiment. Since DCF-
CAN can only support single-attribute range queries, only 
ERQ and Armada are evaluated.  

The results are shown in Figure 4. From this figure we 
can deduce similar conclusions to Figure 3, which are 
omitted here due to lack of space.  

We then evaluate the impact of the queried range ratio 
(β) on the performance of ERQ (with d = 2 and d = 4). 
The network size (N) is fixed to 6000, the number of 
attributes (m) is 6, and the ratio in all dimensions is 
simultaneously varied from 0.05 to 0.4. The results are 
shown in Figure 5.  

5

10

15

20

25

30

1 2 3 4 5 6 7 8
β(*0.05)

Qu
er
y 

de
la
y 

(h
op

s)

ERQ(d=2)
ERQ(d=4)

 
Figure 5.  Impact of queried range ratio on the 
query delay of ERQ.  

 
From Figure 5 we can see that the query delay of ERQ 

almost keeps a constant regardless of the ratio (β). We 
conclude that the queried range ratio affects little the 
performance of ERQ, which demonstrates ERQ’s delay-
bounded property.  

 
5.3. Processing cost 

 
We evaluate the average processing cost of ERQ, as a 

function of the network size, and compare it with Armada. 
In our experiments, the base, the number of attributes and 
the queried range ratio are set to d = 4, m = 6 and β = 0.2, 
respectively.  

The results are shown in Figure 6. Our conclusion for 
this figure is two-fold.  

First, from this figure we observe that the average cost 
of ERQ increases slowly with the network size, which 
illustrates ERQ can efficiently processing range queries 
with a low overhead.  

Second, the average cost of ERQ is always less than 
that of Armada. This is because ERQ’s BK tree has fewer 
levels compared with Armada’s forwarding tree, which 
demonstrates ERQ’s advantage of the configurable base d.  
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Figure 6.  Average processing cost (m = 6). 

 
We evaluate the impact of the queried range ratio (β) 

on the processing cost of ERQ with d = 4, N = 6000 and 
m = 6. The ratio in all dimensions is simultaneously 
varied from 0.05 to 0.4. The results are shown in Figure 7.  
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Figure 7.  Impact of queried range ratio on the 
processing cost of ERQ and Armada.  

 
From this figure we can see that the processing cost of 

ERQ increases nearly exponentially with the queried 
range ratio (β), which is mainly because the number of 
nodes involved in the queried range is exponential to β. In 
this experiment ERQ again outperforms Armada due to 
the lower Balanced Kautz tree and the less number of 
involved nodes.  

 
6. Related work 
 

DHT-based range query schemes could be classified 
into two categories, namely, layered schemes and 
customized schemes. The layered schemes [7-15] refer to 
the ones that are layered over existing DHTs and do not 
need to modify the topology or behavior of underlying 
DHTs. In contrast, the customized schemes [16-19] refer 
to the ones that have a clean-slate design of the 

underlying DHTs, which are tightly coupled with their 
query processing methods.  

 
6.1. Layered schemes 

 
Squid [7] provides range query functionality based on 

Chord [1]. Squid uses a space-filling curve (SFC) to map 
data points to nodes and performs range queries by 
searching SFC clusters recursively. The query delay of 
Squid is about O(h*logN), where h is related to the depth 
of SFC clusters and the specific query. Gupta et al. [8] 
proposes a probabilistic scheme that uses locality 
sensitive hashing to support single-attribute range queries 
on Chord. SkipNet [9] is a DHT that directly supports 
single-attribute range queries, and has a query delay of 
O(logdN + n), where n is the queried range size. 
Brushwood [10] provides multi-attribute range query 
functionality based on SkipNet with a high query delay. 
March et al. [11] focuses on multi-attribute range query 
processing over read-only DHTs.  

Among the well-known layered range query schemes, 
only Armada [12], PlaceLab [13] and DCF-CAN [14] are 
built on top of constant-degree DHTs.  

In our previous work [12] we proposed Armada, a 
delay-bounded range query scheme based on the FissionE 
DHT [20]. Armada can return the results for any range 
query within 2log2N hops in a network of N nodes, with 
an average processing cost of O(log2N). As shown in 
Section 5, however, the fixed base d (= 2) prevents 
Armada from further reducing the query delay even if the 
bandwidth allows a larger base. Moreover, Armada 
utilizes historical statistical information to predict the load 
distribution, inevitably inducing inaccuracy problems 
under dynamic load changes, which are common in real 
Internet applications. In contrast, ERQ directly inherits 
the load balancing property from the PHT technique. MR-
FissionE [22] is a variation of Armada and supports 
multi-attribute range queries on top of FissionE [20] with 
a fixed base d = 2. However, it suffers from a long query 
delay similar to Armada.  

DCF-CAN [14] uses CAN [2] as the underlying DHT. 
When a node P invokes a range query [l, u] in DCF-CAN, 
it first routes the query to the node in charge of the 
median value, i.e. (l+u)/2, and then starts two “waves” of 
propagation. In the first wave, the current node 
propagates the query only to the neighbors that intersect 
the query and have a “higher” interval than the current 
node. Then, the current node propagates the query to the 
neighbors with a “lower” interval. The directed controlled 
flooding (DCF) mechanism can achieve a good tradeoff 
between query delay and overhead. DCF-CAN can only 
support single-attribute range queries.  

Chawathe et al. designed the PHT structure to support 
range queries in PlaceLab [13]. The PHT structure is a 
prefix hash tree in which leaf nodes are keys and each 



internal node corresponds to a distinct prefix, which is 
similar to the BK tree. The BK tree differs from the PHT 
structure mainly in two aspects: (i) the BK tree node 
labels are Kautz strings; and (ii) the inner nodes have 
direct DK links to its children. PlaceLab achieves good 
load balancing by branching the leaves where attribute 
values are densely populated. However, each hop in the 
tree in PlaceLab corresponds to a DHT routing, and the 
diameter and average degree of the underlying DHT of 
PlaceLab are both O(logN). Thus the query delay in 
PlaceLab is about O2(logN). Recently Tang et al. 
proposes LHT [15] that redesigns the indexing scheme of 
PHT to reduce the maintenance cost. LHT and PHT have 
similar range query delay.  

 
6.2. Customized schemes 

 
Among the customized range query schemes, Mercury 

[16] and SWORD [17] provide multi-attribute range 
queries by indexing the data set along each individual 
attribute; Liu et al. [18] propose NR-tree, which extends 
R*-tree index to support range queries and k-nearest 
neighbor queries in super-peer P2P systems; P-tree [19] 
builds specific P2P networks to support range queries 
based on B+-tree. Since customized range query schemes 
requires a clean-slate design of underlying DHTs which 
are complicated and error-prone, our ERQ has an obvious 
methodological advantages over these schemes. 
 
7. Conclusion 
 

This paper presents ERQ, a DHT-based, delay-
bounded range query scheme for efficient Web service 
discovery. ERQ designs a balanced Kautz tree to 
uniformly map the m-dimensional data space onto DHT 
nodes, and presents a parallel query processing algorithm 
with an on-the-fly space pruning mechanism.  

ERQ utilizes the d-Search algorithm to locate the 
representing node for the common prefix. In the future we 
plan to develop an adaptive algorithm to automatically 
adjust its search patterns (one-by-one, d-Search, or fully-
parallel search) according to the bandwidth limitation. We 
also plan to extend ERQ to support other complex queries 
on DK, such as top-k queries, skyline queries, and nearest 
neighbor queries.  
 
Acknowledgement 
 

This work is sponsored in part by the National Basic 
Research Program of China (973) under Grant No. 
2005CB321801, the National Natural Science Foundation 
of China under Grant No. 60673167 and 60703072. This 
work is also partially sponsored by grants from NSF 

CISE CSR program, CyberTrust Program, an IBM SUR 
Grant, and an IBM Faculty Award.  
 
References 
 
[1] I. Stoica, R. Morris, D. R. Karger, et al. Chord: A Scalable 

Peer-to-Peer Lookup Service for Internet Applications.  
IEEE/ACM Trans. Networking, 2003, 11(1): 17–32 

[2] S. Ratnasamy, P. Francis, M. Handley, et al. A Scalable 
Content Addressable Network. Proc. SIGCOMM 2001.  

[3] Y. Zhang, L. Liu, D. Li, et al. Distributed Line Graphs: A 
Universal Framework for Building DHTs Based on 
Arbitrary Constant-Degree Graphs. Proc. ICDCS 2008.  

[4] Y. Yang, R. Dunlap, et al. Performance of Full Text Search 
in Structured and Unstructured Peer-to-Peer Systems. Proc. 
INFOCOM 2006. 

[5] R. Cox, A. Muthitacharoen, R. T. Morris. Serving DNS 
Using a Peer-to-Peer Lookup Service. Proc. IPTPS 2002. 

[6] Y. Zhang, D. Li, et al. PIBUS: A Network Memory-based 
Peer-to-Peer IO buffering service. Proc. Networking 2007.  

[7] C. Schmidt, and M. Parashar. Enabling Flexible Queries 
with Guarantees in P2P systems. IEEE Internet Computing, 
Vol. 8, No. 3, pp. 19-26, May/June 2004. 

[8] A. Gupta, D. Agrawal, et al. Approximate Range Selection 
Queries in Peer-to-Peer systems. Proc. CIDR 2003.  

[9] N. Harvey, M. Jone, et al. Skipnet: A Scalable Overlay 
Network with Practical Locality Properties. Proc. USITS 
2003. 

[10] C. Zhang, A. Krishnamurthy, et al. Brushwood: Distributed 
Trees in Peer-to-Peer Systems. Proc. IPTPS 2005. 

[11] V. March, Y. M. Teo. Multi-Attribute Range Queries on 
Read-only DHT. Proc. ICCCN 2006.  

[12] D. Li, J. Cao, X. Lu, et al. Delay-Bounded Range Query in 
DHT-based Peer-to-Peer Systems. Proc. ICDCS 2006. 

[13] Y. Chawathe, et al. A Case Study in Building Layered 
DHT Applications. Proc. SIGCOMM 2005. 

[14] A. Andrzejak and Z. Xu. Scalable Efficient Range Queries 
for Grid Information Services. Proc. IEEE P2P Computing 
2002. 

[15] Y. Tang, S. Zhou. LHT: A Low-Maintenance Indexing 
Scheme over DHTs. Proc. IEEE ICDCS 2008. 

[16] A. R. Bharambe, M. Agrawal, S. Seshan. Mercury: 
Supporting Scalable Multi-Attribute Range Queries. Proc. 
SIGCOMM 2004.  

[17] D. Oppenheimer, J. Albrecht, et al. Distributed Resource 
Discovery on Planetlab with SWORD. Proc. WORLDS 
2004.  

[18] B. Liu, W. Lee, D. L. Lee. Supporting Complex Multi-
Dimensional Queries in P2P Systems. Proc. ICDCS 2005.  

[19] A. Crainiceanu, P. Linga, et al. PTree: A P2P Index for 
Resource Discovery Applications. Proc. WWW 2004.  

[20] D. Li, X Lu, J Wu. FISSIONE: A Scalable Constant-
Degree and Low Congestion DHT Scheme Based on Kautz 
Graphs. Proc. INFOCOM 2005.  

[21] H. V. Jagadish. Linear Clustering of Objects with Multiple 
Attributes.  Proc. SIGMOD 1990.  

[22] Y. Zhang, et al. Scalable Distributed Resource Information 
Service for Internet-Based Virtual Computing 
Environment. Journal of Software (in Chinese with English 
abstract). Vol.18, No.8, August 2007, pp.1933–1942.  



[23] K. Lee, B. Zheng, H. Li, and W. Lee. Approaching the 
skyline in Z order. Proc. VLDB 2007. 


