
Automated Lookahead Data Migration
in SSD-enabled Multi-tiered Storage Systems
Gong Zhang∗, Lawrence Chiu†, Clem Dickey†, Ling Liu∗ Paul Muench†, Sangeetha Seshadri†,

∗College of Computing
Georgia Institute of Technology, Atlanta, Georgia 30332
† IBM Almaden Research Center, San Jose, CA 95120

Abstract—The significant IO improvements of Solid State Disks
(SSD) over traditional rotational hard disks makes it an attractive
approach to integrate SSDs in tiered storage systems for perfor-
mance enhancement. However, to integrate SSD into multi-tiered
storage system effectively, automated data migration between
SSD and HDD plays a critical role. In many real world applica-
tion scenarios like banking and supermarket environments, work-
load and IO profile present interesting characteristics and also
bear the constraint of workload deadline. How to fully release
the power of data migration while guaranteeing the migration
deadline is critical to maximizing the performance of SSD-
enabled multi-tiered storage system. In this paper, we present
an automated, deadline-aware, lookahead migration scheme to
address the data migration challenge. We analyze the factors
that may impact on the performance of lookahead migration
efficiency and develop a greedy algorithm to adaptively determine
the optimal lookahead window size to optimize the effectiveness
of lookahead migration, aiming at improving overall system
performance and resource utilization while meeting workload
deadlines. We compare our lookahead migration approach with
the basic migration model and validate the effectiveness and
efficiency of our adaptive lookahead migration approach through
a trace driven experimental study.

I. INTRODUCTION
Recently, a number of storage systems supporting Flash

devices (SSDs and memory) have appeared in the marketplace
such as NetApp FAS3100 system [1] and IBM DS8000 [2].
In order to fully capitalize on the benefits of SSDs in a
multi-tiered storage system with SSDs working as the fastest
tier, it is important to identify the right subset of data that
needs to be placed on this tier given the limited capacity of
SSD tier due to high cost per gigabyte. Specifically, we want
to maximize overall system performance by placing critical,
IOPS-intensive and latency-sensitive data on the fast SSD tier
through two-way automated data migration between SSDs and
HDDs. By working with a variety of enterprise class storage
applications, we observe that many block-level IO workloads
exhibit certain time-dependent regularity in terms of access
patterns and temperature of extents (hot or cold). For example,
in banking applications, IO workloads for account access and
credit verification are typically heavier during certain hours
of a day. However, such patterns may change from day-time
to night-time, from day to day, from weekdays to weekends
or from working days to public holidays. Thus, block-level
IO profiling is the first step for building an automated data
migration system. The next big challenge is to devise strategies

and methods of how to utilize the capability of storage
virtualization and multi-tiered storage to perform effective and
non-intrusive data migration in order to maximize the overall
storage performance and resource utilization.
In this paper, we present an automated lookahead data

migration scheme, called LAM, which aims to adaptively
migrate data between different tiers to keep pace with the IO
workload variations, to maximize the benefits of the fast but
capacity-limited SSD tier, and to optimize the overall system
performance in terms of response time and resource utilization,
while limiting the impact of LAM on existing IO workloads.
Based on workload variations and temperature of block

level IO access (e.g., hot or cold extents) learned through IO
profiling, we predict shifts in hot-spots of block-level extents
and proactively migrate those data extents whose temperature
expected to rise in the next workload into the fast SSD tier dur-
ing a lookahead period. A key challenge in the LAM design is
to understand and tradeoff multiple factors that influence the
optimal lookahead migration window. We have implemented a
prototype of LAM in an operational enterprise storage system.
Our experience shows that lookahead migration between fast
tiers and slow tiers effectively improves the utilization of
scarce resource like SSDs, provides faster average access
speed with reduced average cost, and significantly enhances
the overall response time of the system.
The main contributions of this paper are two folds. First, we

describe the need and the impact of adaptive deadline aware
data migration through observation and analysis of IO work-
load scenarios from real world storage system practice. By
introducing the basic data migration model in an SSD enabled
multi-tiered storage system, we study the characteristics and
impacts of several factors, including IO profiles, IO block level
bandwidth, and the capacity of SSD tier, on improving overall
performance of the tiered storage systems. Second, we present
a “lookahead migration” framework as an effective solution
for performing deadline aware, automated data migration, by
careful managing the performance impact of data migration
on existing runtime application workloads and maximizing the
gains of lookahead migration. A greedy algorithm is presented
to illustrate the importance of determining a near optimal
lookahead window length on the overall system performance
and a number of important factors, such as block level IO
bandwidth, the size of SSD tier, the workload characteristics,

978-1-4244-7153-9/10/$26.00 c©2010 IEEE

Fig. 1. Multitier Storage Architecture

and IO profiles. Our experiments are conducted using both
the IO trace collected from benchmarks on a commercial
enterprise storage system and the simulation over the real
trace. The experimental study demonstrates that the adaptive
lookahead migration scheme not only enhances the overall
storage system performance but also provides significantly bet-
ter IO performance as compared to both basic data migration
and constant lookahead migration strategies.

II. LAM OVERVIEW
A. Multi-tiered Storage Architecture
Figure 1 gives a sketch of an SSD-based multi-tiered storage

system architecture, in which SSD provides the high speed IO
access as tier 0, and SATA disks and SCSI disks work as
tier 1 to provide mass storage. Applications supported by the
storage system operate the data in the unit of “logical extent”
at storage virtualization level. Each logical extent is mapped
to the physical extents contained at each tier in the storage
hierarchy. In a nutshell, the multi-tiered storage provides a
pool of physical extents of fixed size and applications organize
their data in the form of logical extents of fixed size. It is
the task of the storage controller to manage the mapping of
logical extents in virtual disks to physical extents on physical
disks. As we move data downward from tier 0 to tier 1,
both cost and access speed in IOPS drop accordingly. In
contrast, moving data upward from tier 1 to tier 0 provides
applications with higher access speed but also higher price in
terms of per GB access cost. Clearly, automated lookahead
data migration between multi-tiered hierarchical concoctions
of different types of storage devices can offer great flexibility
in operating and tuning the tradeoffs between access speed and
cost, ultimately improving the overall performance of multi-
tiered storage systems.

B. Motivation Scenario and Assumptions
Through our experiences working with a number of

enterprise-class storage system applications in banking and

retail store industries, we observe that many IO workloads
exhibit time-dependent workflow patterns in terms of random
IO reads, random IO writes, and batch IO reads. Furthermore,
many applications have similar IO workloads as those in
banking or retail stores in terms of transaction processing,
write-ahead logging, and real-time data analytics. Another
interesting observation is that such IO workloads typically
alternate between periods of high activities and low activities.
Furthermore, the workload characteristics may change from
daytime to night time activities, or from weekday to weekend
activities.
For example, in a commercial banking environment, the

workloads during the business hours primarily focus on the
transaction processing tasks, such as account updates, credit
verification. These tasks typically create intense accesses to
indices and some metadata out of the large banking data col-
lection. However, during the non-business hours, the workload
type is often switched into report generating style and the
high access frequency data may include different indices or
different access logs, and different sets of metadata. Such
workload patterns alternate from one period to another. Thus,
hot data extents move from time to time, demanding adaptive
data migration strategies to make the hot extents, such as
frequently accessed indices, transaction logs, available in the
high speed SSD tier. Improving the access speed for these “hot
data” is highly critical to the overall performance enhancement
of the entire multi-tiered storage system. Furthermore, we run
the Industry standard IO benchmark SPC1 and TPCE for a
duration of time on a proprietary enterprise storage system
respectively and confirm the stability of hot data band for
a given workload during its running cycle. We obtain two
interesting observations from these experiments. First, for the
two different workloads, the hot extents bands are totally
different. Second, there exists stability of hot data and cold
data within each workload cycle for both SPC1 and TPCE
workloads. Readers may refer to our technical report [3] for
further detail on the stability phenomenon.
The high disparity of access speed between traditional

HDDs and SSDs and the highly cyclic behaviors of IO
workloads motivate us to proactively migrate the hot data,
like indices, into SSD for each workload type and thus
significantly improve the access speed for hot data. To address
the data migration problem that is constrained by the workload
deadline, we identify the following set of assumptions:
1) The dominating IO workloads often exhibit cyclic be-
havior such that one type of workloads ends and another
type of workloads start to dominate in terms of IO access
density.

2) The data access patterns, especially the hot data, can be
identified by analyzing historical access information.

3) Data migration for each specific workload pattern may
be bounded by certain deadline. For example, in a
banking environment, data migration scheduled to speed
up the customer transactions during the business hours
should finish before the desired migration deadline,
which is before the non-business hour workload (check

Fig. 2. Migration Computation Model

processing and report generation) starts.
Based on the above assumptions, we develop an adaptive

deadline-aware lookahead data migration framework − LAM,
aiming at improving overall system performance and resource
utilization through adaptively migrating hot data between fast
storage tier and slow storage tier while meeting the deadline
requirements.

C. Storage Utility Cost
In multi-tiered storage systems, response time is the major

performance optimization goal for most of the users. Thus, the
storage utility cost for a given time period is defined based on
the response time over that period. We first define the response
time function for a given time period as follows:

Definition 1. A function recording the response time during a
time period from t1 to t2 for the multi-tiered storage system
is called “response time function” and is denoted as f(t), t ∈
[t1, t2].

Apparently, the mean or average response time over the
system running period is a critical indicator of the system
performance. The smaller the cumulative response time level
is, the better the system performance. We denote this concept
as the “system utility cost”, which is defined as follows:

Definition 2. The system utility cost, denoted by U , is the
summation of the response time of the multi-tiered storage
system at each time t over the entire time period of [t1, t2]

and t ∈ [t1, t2]. That is, Ut1,t2(t) =
∫ t2

t1
f(t)dt.

For example, the solid curve in Figure 2 shows a response
time function f(t) and the shaded area highlights the util-
ity cost. Our goal is to minimize the system utility cost
while guaranteeing the migration deadline. If migration is
not employed, then the system response time is retained at
its unoptimized level, which is slower compared with the
improved response time through data migration.

D. Basic Migration Model
Basically, the migration process can be divided into three

phases based on its impact on the overall response time of the
system.

Fig. 3. Peak response time unreduced in the case without lookahead migration

(1) Workload learning phase: In this phase, the heat
of the extents are collected and highly frequently accessed
data areas are identified and aggregated into the heat data
list. It is important to note that very limited system resource
is allocated to this process such that the impacts of the
heat collection activities are reduced to the least extent. The
statistics collected in this phase update the heat information
of the data extents, which guide the actual data migration
activities in the subsequent phases.
(2) Data migration: Data migration starts from the hottest

data such that the migration sequence corresponds to the heat
order of data extents. One important observation from this
phase is that the migration impacts on the response time ob-
serves the law of “diminishing marginal returns”. For the same
volume of data migrated, initially response time is reduced at
a more rapid rate and later the reduction speed is gradually
slackened, and ultimately further data migration causes very
little reduction in response time, namely a “convergence point”
is reached. This is rooted in the ordered manner in which data
is migrated, i.e., migration is employed in the descending order
of heats.
(3) Optimization Phase: After the migration phase reaches

the “convergence point”, the system enters the “optimization
phase”, during which response time of runtime transactions
maintains at the stable minimum level until the existing
workload reaches its deadline and finishes its running period.
Figure 2 illustrates the three phases that a workload will

experience in our basic migration model.

III. AUTOMATED LOOKAHEAD DATA MIGRATION
By utilizing the data heat stability we discussed earlier, one

can turn on the learning phase in the beginning workload
cycles. Once the data heat is stabilized, the learning phase
can be reduced for the subsequent workload cycles by reusing
the IO profile information learned at the beginning rounds
of workload cycles. The reduction of learning cycles cuts
off the redundant learning cost and enables the system to
enter the optimization phase earlier than the basic migration
model. Figure 3 displays the continuous workload cycles
for two workloads in which the learning phase is reduced.
Although this improvement reduces the redundant learning

Fig. 4. Lookahead migration

phase, it offers no optimization after the workload reaches
its convergence point. Thus, an important question is can we
optimize the data migration performance after the convergence
point is achieved and how should it be done. In this section,
we propose an automated lookhead migration framework as
an effective approach to optimize the post-convergence data
migration stage.

A. Lookahead Migration

We base the learning phase reduced data migration model
to illustrate lookahead migration in the context of Figure 4.
The blue solid curve in w1 workload time and the green solid
curve in w2 workload time represent the evolving process of
response time of w1 and w2 respectively. The dash green line
and the solid green line in w2 workload time together shows
the effects of migration on response time of workload w2
with a configurable lookahead time window of size α. More
concretely, after workload w1 enters the convergence stage,
the data migration for w2 starts with α as the lookahead
time window, namely the migration starts α units of time
ahead of the time point when the w1 workload cycle reaches
its deadline. The main reason that the lookahead migration
is beneficial in this case is due to the fact that further
data migration for ongoing w1 workload no longer generates
response time reduction. Thus, it is more cost-effective if we
start migrating the hottest data extents of w2 into the faster
SSD tier ahead of activation time of w2.
Given the price per GB difference between HDD and SSD,

and SSD tier has limited capacity in the multi-tiered storage
hierarchy, thus it is very likely when the lookahead migration
for w2 workload is activated, SSD has already been filled with
the data extents of w1. In this case, the lookahead migration
for w2 workload involves replacing the relatively cold w1
extents with the hottest w2 extents. This swapping process may
increase the response time of ongoing workload of w1 to some
extent. In Fig. 4 we observe the slightly bending upward of the
solid response time curve of w1 after the lookahead migration
of w2 begins. It is interesting to note that the dashed green line
in the w2 cycle indicates that the lookahead migration with
α as the lookahead window length reduces the peak response

time of w2 workload experienced by the client applications
by the amount of Δγ . Also the time duration that it takes to
reach the convergence point perceived by the clients is reduced
from a large α + β in the case of no lookahead migration to
a smaller β under the lookahead migration for workload w2.
In terms of resource utilization gain represented by the

shaded green area, denoted by Δw2 and the resource utilization
loss represented by the shaded blue area, denoted by Ωw1,
although with the achieved system utility gain Δw2 in w2, w1
experiences a small amount of system utility loss Ωw1, as long
as the gain by Δw2 is greater than the loss of Ωw1, namely
the condition of Δw2 > Ωw1 holds, lookahead migration
with window size α will be cost-effective in terms of system
utilization. With proper choice of the time window size α,
we can maximize the difference of Δw2 and Ωw1, because
we trade the relative cold extents in the end of the hot extent
list of workload w1 with the hottest extents in the top of the
hot extent list of w2. In terms of peak response time, similar
condition of the difference of Δγ and Δθ holds. One can
theoretically prove that the gain of Δw2 over the loss of Ωw1

can be maximized by a proper setting of α and the quality
of the heat information of the data extents. Due to the space
constraint, we omit the theoretical proof and the details of the
optimization algorithms in this paper. Readers may refer to
our technical report [3] for further detail.

B. Greedy Algorithm Based Deadline Aware Lookahead Data
Migration Approach
A naive approach of setting appropriate lookahead length is

to set up the lookahead window length as a system-supplied
constant, uniform for all types of IO workloads and IO profiles.
Although bearing the advantage of simplicity, this approach is
prone to set up a lookahead window length that is either too
long or too short. If the constant lookahead window length
is set to be excessive long, the response time of ongoing
workload may be degraded seriously because too few hot
data extents from the ongoing workload w1 are left in SSD.
Too short lookahead window length will refrain the lookahead
migration from the opportunities to produce the intended
objectives. Thus selecting a balanced lookahead length is
critical to harness the full power of lookahead migration.
Based on this observation, we design a greedy algorithm

to adaptively compute the optimal lookahead length based on
the IO profiles produced in the workload learning phase. The
greedy algorithm starts from the lookahead window length of
small scale. It computes the resource utilization gains from
migration of w2 hot extents from HDD to SSD, denoted by
the area marked by Δw2 in Figure 4, and the performance loss
of workload w1 due to the corresponding number of relatively
cold extents of w1 that have to be swapped out from the SSD,
denoted as the area marked by Ωw1. For lookahead length αi,
if the difference between the gain and the loss, i.e., lookahead
utility Γ(αi) = Δw2−Ωw1 is larger than the lookahead utility
of the previous lookahead length, Γ(αi−1), then we continue
to increase the lookahead length by one more time unit. The
algorithm repeats until a particular lookahead length achieves

smaller lookahead utility that its previous lookahead utility,
i.e., Γ(αi) < Γ(αi−1). The lookahead length obtained at (i−1)
is the near optimum lookahead window length in our migration
model.
This greedy algorithm is guaranteed to find the near opti-

mal value of the lookahead window length for a given set
of workloads. As workload changes or new workloads are
introduced, after a few workload cycles of learning, new near
optimal lookahead window length is obtained by using this
greedy algorithm. Furthermore, we build a theoretical model
of the lookahead data migration and the model is able to
compute the optimal lookahead window size based on the IO
profiles collected as an further improvement over this greedy
algorithm. For further details, please refer to our technical
report [3].

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup
To examine the benefits of lookahead migration, we first

collected IO trace from real enterprise storage controller
and implemented the lookahead data migration scheme in a
simulator that simulates the real enterprise storage system.
We developed a trace driven simulator, which consists of a
storage unit with dual SMP server processor complexes as
controllers, sufficiently large memory with large size cache,
multiple types of disk drives (including SATA, SCSI and SSD),
multiple FICON or ESCON adapters connected by a high
bandwidth interconnect, and management consoles. Its design
is to optimize both exceptional performance and throughput
in supporting critical workloads and around the clock service.
Our simulator simulates the IO processing functionalities of

the enterprise storage systems driven by the IO pressure trace
collected from running benchmark workloads on the real en-
terprise storage system. For the experiments in this paper, the
simulator simulates a multi-tiered storage hierarchy consisting
of SSD drives as tier 0 and SATA drives as tier 1 and the
total physical capacity is up to hundreds of terabytes in terms
of hundreds of disk drives. The simulator mainly provides
a simulation framework to plug in different data migration
components. The simulation framework allows flexibility such
that the data migration component can be directly moved to
the real enterprise storage system. For the experiments in this
paper, we run the simulations on a server machine with 4
processors and 12 GB memory running Linux Fedora 10.
IO traces for the simulator were generated by running the

Industry standard IO benchmark SPC1 and TPCE on the
referred proprietary enterprise storage system for a durat ion of
24 hours. In all the following experiment, “Average response
time” refers to the average of the cumulative response time of
all the requests for a extent in the extents pool at a particular
time point and it is in the unit of miliseconds.

B. The Impacts of SSD Size on Data Migration
The number of SSDs impacts the data migration directly

because more SSDs can provide faster access for more extents.
In this set of experiments, we fix the data migration bandwidth

and change the SSD size to observe the impacts on response
time on the two workloads. Figure 5 shows the impacts of
SSD size on 24 hours TPCE trace when we fix the migration
bandwidth to 4GB/5mins. The solid line represents the
baseline response time when data migration is not employed.
As we increase the number of SSDs, the response time is
further reduced. The figure shows that using 1 SSD enables
the system to reach minimum response time around 3700ms
and achieve 17.8% improvement over the baseline case where
only HDD is used. Similarly, 2 SSDs further reduces the stable
minimum response time to the scale of 1840ms and improves
the response time to 58%. Using 3 SSDS continues to improve
the response time by 62.3% over the baseline case. When the
SSD capacity is large enough to hold the majority of the hot
extents, the impacts of increasing SSD size on the response
time reduction is saturated, exemplified by the fact that the
gap in stable response time between 2 SSD and 3 SSDs is
smaller than the gap between 1 SSD and 2 SSDs.

C. Migration Bandwidth and Optimal Lookahead Length
Fig.6 examines the lookahead utility achieved by looka-

head migration on a TPCE-SPC1 conjunct workload scenario
and it confirms that greedy algorithm is able to identify a
near optimal lookahead length. For example, when bandwidth
3GB/5mins, 4 hours lookahead window achieves near optimal
lookahead utility. Fig.7 examines peak response time on the
second workload w2 under increasing migration bandwidth
from 2GB/5mins to 8GB/5mins while varying the lookahead
length from 1 hour to 16 hours. The dotted line represents the
peak response time measurement over lookahead length when
2GB/5mins is set to be the migration bandwidth. As lookahead
length is increased from 1 to 6, the peak response time is
significantly reduced by as much as 58%. Further increase of
lookahead length larger than 6 hours only produces limited
reduction on the peak response time. The dash curve shows
a similar trend in the scenario when we set the migration
bandwidth to be 4GB/5mins. The peak response time is
reduced continuously at a dramatic rate until the lookahead
lengh reaches 4 hours. The solid line shows the setting of
8GB/5mins, in which the impacts of increasing lookahead
length on peak response time reduction is also saturated around
4 hours, except that because of higher migration bandwidth,
for the same amount of lookahead length increment, the peak
response time reduction is larger and quicker than the scenario
with 4GB/5mins or lower migration bandwidth.

D. SSD size on Fixed Lookahead Length
Fig.8 shows the response time reduction process when we

use SSD size ranging from 1 to 4 SSDs. As the SSD size
increases, the converged response time is further reduced. The
larger the SSD size is, the lower the peak response time will
be. As the size of SSD tier increases, more and more hot
extents are migrated into the SSDs. Given that the majority of
the hot extents are migrated into the SSDs, further increasing
the SSD size does not help to further reduce the response
time. This can be exemplified by the overlap of the dotted

150 300 450 600
0

1000

2000

3000

4000

5000

Time (minutes)

A
ve

ra
ge

 re
sp

on
se

 ti
m

e

SSD size on data migration with TPCE trace

No data migration
1 SSD
2 SSDs
3 SSDs

Fig. 5. Data migration with differ-
ent SSD sizes with TPCE trace with
32 HDDs and 4GB/5mins migration
bandwidth allocated

1 2 3 4 5 6 7
0

0.5

1

1.5

2 x 106

Lookahead length (hours)
Lo

ok
ah

ea
d

ut
ili

ty
 (m

s*
m

in
s)

Lookahead utility

Lookahead utility

Fig. 6. Lookahead utility on in-
cremental lookahead length over with
bandwidth as 3GB/5mins for TPCE-
SPC1 workload with 3 SSDs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2000

4000

6000

8000

10000

12000

14000

Lookahead length

P
ea

k
re

sp
on

se
 ti

m
e

Peak response time with different bandwidth with 3 SSDs

Bandwidth=2GB/5mins
Bandwidth=4GB/5mins
Bandwidth=8GB/5mins

Fig. 7. Peak response time reduction
on incremental lookahead length un-
der different migration bandwidth in
the second workload (SPC1) of TPCE-
SPC1 trace with 3 SSDs

150 300 450 600
0

2000

4000

6000

8000

10000

Time (minutes)

A
ve

ra
ge

 re
sp

on
se

 ti
m

e

SSD size on fixed lookahead length with SPC1 trace

1 SSD
2 SSDs
3 SSDs
4 SSDs

Fig. 8. SSD size on response time
in fixed 4 hours lookahead length in
SPC1 workload (w2) in TPCE-SPC1
with 32 HDDs and 4GB/5mins migra-
tion bandwidth allocated

line representing the 3 SSD scenario and the dash-dotted line
representing the 4 SSDs scenario. Such overlap shows that
although 4 SSDs has larger capacity than 3 SSD, 3 SSDs is
large enough to accommodate the hot extents of the SPC1
workload, and thus any further increase of SSD size to 4
cannot lead to further reduction on response time.

V. RELATED WORK AND CONCLUSION
Recently two trends are presented in integrating SSDs into

storage systems: on one hand, there have been some proposals
on using SSD as one component of storage systems. On
the other hand, designing a storage system which entirely
comprises of SSDs is discussed in [4]. In this paper we
promote the integration of SSDs as the high speed tier in
multi-tiered storage systems. Further we argue that automated
lookahead migration is critical for effective integration of
SSDs into multi-tiered storage systems. In the literature, there
are sereral migration techniques proposed. For example, [5]
propose a storage system which evaluates the component’s
ability in supporting ongoing workload, and selects the can-
didates to migrate, aiming at satisfying the workload require-
ments. However, the migration scheme they proposed lacks
of consideration on IO bandwidth, SSD size, and migration
deadline and other constraints. QoSMig[6] proposes an adap-
tive admission control scheme to achieve the balance between
client performance and migration objectives in the process of
bulk data migration. However, none of them have investigated
how to improve system performance and resource utilization
through automated data migration in SSD-enabled multi-tiered
storage systems.
In this paper, we have developed a lookahead migration

scheme for efficiently integrating SSDs into the multi-tiered
storage systems through deadline aware data migration. We
present a greedy algorithm that finds the near optimal migra-
tion window size by adaptively tuning the lookahead window
size and optimizing the lookahead impacts on improving
overall system performance and resource utilization.
Our research continues along several directions. First, we

argue that an important factor to be considered in any data
migration mechanism is the choice of the right granularity of
migration. The optimal granularity of migration is determined
to a large extent by the actual application, data placement

on the media, locality of accesses in the workload, workload
characteristics (random vs. sequential, IO Size), acceptable
metadata overhead and the total size of the system. At the
granularity of an extent (1GB), our implementation required
hundreds of MBs of memory to store metadata information
for millions of extents. One of our ongoing research is on
identification of the right granularity of migration based on the
above characteristics. Another direction that is currently under
investigation is effectively identifying hot data from IO profiles
and evaluating the accuracy of our classification. In order to
identify hot data based on workload IO profiles, a large amount
of historical data needs to be collected and maintained to
identify long-term trends in the workload. Furthermore, the
sequence of when hot data extents become hot is another
important factor for lookahead migration. We are investigating
various summary statistics measures that can be utilized to
address this concern.

VI. ACKNOWLEDGMENTS
The work performed by Gong Zhang and Ling Liu are

partially supported by grants from NSF NetSE and NSF
CyberTrust, an IBM faculty award, an IBM SUR grant, and a
grant from Intel Research Council.

REFERENCES
[1] “NetApp FAS3100 System,” http://www.netapp.com/us/products/

storage-systems/fas3100/.
[2] “IBM DS8000,” http://www-03.ibm.com/systems/storage/disk/

ds8000/.
[3] G. Zhang, L. Liu et al., “Automated lookahead data migration

in SSD-enabled multi-tiered storage systems,” Technical Report,
2010.

[4] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou, “Transactional
flash,” Proceedings of the 8th USENIX Symposium on Operating
System Design and Implementation, December 2008.

[5] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. R. Karlin, J. Saia,
R. Swaminathan, and J. Wilkes, “An experimental study of data
migration algorithms,” 2001.

[6] K. Dasgupta, S. Ghosal, R. Jain, U. Sharma, and A. Verma,
“Qosmig: Adaptive rate-controlled migration of bulk data in
storage systems,” Data Engineering, International Conference
on, vol. 0, pp. 816–827, 2005.

