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Abstract—In location-based, mobile continual query (CQ) scalable manner [3], [4], [5], [6], [7], [8], [9], [10], [11][12],
systems, two key measures of quality of service (QoS) are:[13], the focus of these works is primarily on efficient index
freshnessand accuracy To achieve freshness, the CQ server must 5, query processing techniques, not on the accuracy miess
perform frequent query re-evaluations. To attain accuracy, the of the query results '

CQ server must receive and process frequent position updates A . . d based th t of
from the mobile nodes. However, it is often difficult to obtain ccuracy (inaccuracy) is measured based on the amount o

fresh and accurate CQ results simultaneously, due to (a) limited Mobile node position errors found in the query resattthe time
resources in computing and communication and (b) fast-changing of query re-evaluation. This accuracy measure is strongly tie
load conditions caused by continuous mobile node movement.to the frequency of position updates received from the neobil
Hence, a key challenge for a mobile CQ system is: How do we nodes. Although one can also use a higher level concept to
achieve the highest possible quality of the CQ results, in both L aq5ure accuracy, such as the amount of containment evtors f

freshness and accuracy, with currently available resources? In . . . o . .
this paper, we formulate this problem as aload sheddingone, and in the query resulfs including both false positives (inclusion

develop MobiQual — a QoS-aware approach to performing both errors) and false negatives (exclusion errors), we argaieusing
update load shedding and query load shedding. The design of Mo- Position update errors for accuracy measure will providégaér
biQual highlights three important features. (1) Differentiated load level of precision. This is primarily because by utilizinget
shedding We apply different amounts of query load shedding and amount of node position errors as the accuracy measure, one
update load shedding to different groups of queries and mobile can easily bound the inaccuracy by a threshold-based positi
nodes, respectively. (2Per-query QoS specificationndividualized reporting scheme [3], [14]. Note that certain applicatidrave

QoS specifications are used to maximize the overall freshness, . - . . .
and accuracy of the query results. (3)Low-cost adaptation higher tolerance to inaccuracy in position updates, suckgien-

MobiQual dynamically adapts, with a minimal overhead, to based traffic density monitoring; whereas certain othegsiire
changing load conditions and available resources. We conduct a higher accuracy, such as path-based location tracking.

set of comprehensive experiments to evaluate the effectivesseof Freshness (staleness), on the other hand, refers to thefage o
MobiQual. The results show that, through a careful combination  the query resultsincethe last query re-evaluation. It is dependent
of update and query load shedding, the MobiQual approach leads 4, the frequency of query re-evaluations performed at theese

to much higher freshness and accuracy in the query results in g 1 ohije nodes continue to move, there are further deviatio

all cases, compared to existing approaches that lack the QoS- . - .

awareness properties of MobiQual, as well as the solutions that MOPile node positions after the last query re-evaluatiaowéver,
perform query-only or update-only load shedding. such post-query-re-evaluation deviations are not ateibuto
inaccuracy. Hence, freshness can be seen as a metric ogpturi
these deviations. It is important to note that higher fresisn
does not necessarily imply higher accuracy and vice verka. T
concepts of freshness and accuracy in mobile CQ systems are,
|. INTRODUCTION to some extent, similar to those of timeliness and compésten

Today, we are experiencing a world where we can stay cofgspectively, in the web information monitoring domain ]{15

nected while on-the-go because there are (1) myriads aidaffoe Note that certain applications have higher tolerance terséss
mobile devices and (2) ever increasing accessibility ofless I GUErY results, such as monitoring slowly changing terapor
communications for these devices. Combined with the aviitia  299regates like traffic rates; whereas certain others medpgher

of low-cost positioning devices, like GPS, this has created freshness, such as location based alerts and triggers.
new class of applications in the area of mobile locatiorelas Accuracy and freshness are not completely independentof ea

services (LBSs). Examples include location-aware infdiona other in the sense that both reflect the uncertainty abouytréese

delivery and resource management, such as transportaticices locations of the moving objects at a given time. Howe\_/er, we
(NextBus bus locator [1], Google ride finder [2]), fleet ma@ag use accuracy and freshnes§ separately to captur_e the impact
ment, mobile games, and battlefield coordination. such uncertainty from two independent perspectives. Asagur

A key challenge for LBSs is: How to design a scalable locatiofi used to capture the effect of uncertainty due to location-

monitoring system capable of handling a large number of taobf!Pdate frequency on the mobile _dewces, while freshness_sesl u
nodes and processing complex queries over their positidihs? to capture the effect of uncertainty due o query re-evanat

though several mobile continual query (CQ) systems have befée_lguert;cy_ 0? thﬁ Server. Its. the C |
proposed to handle long-running location monitoring taiska 0o t_aln resher query resu s, the CQ Server must re-_atau
the continual queries more frequently, requiring more cotimg
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mobile nodes at a higher rate, demanding communication d4s we Il. RELATED WORK

as computing resources. However, it is almost impossibleafo  pyeyious work on mobile CQ systems have focused on roughly
mobile CQ system to achieve00% fresh and accurate resultsgy e major categories with respect to scalability and pentamce.
due to continuously _changlng posmons_of moblle_nodes. A k_el'hese are: (a) indexing schemes to process position upaiates
chall_enge therefore is: How _do we achieve the highest p_l‘ess'léfﬁciently [4], 6], [8], [7], [12]; (b) query processing taniques
quality of the query results in both freshness and accuriacy, i, eyaluate continual queries more efficiently [9], [13]}, [B.1],

the presence of changlng availability of.resourcgs and gihgn [17]; (c) motion modeling techniques to reduce the number of
workloads of location updates and location queries? position updates received from the mobile nodes, while iegp

. . i . the position accuracy high [3], [14]; (d) load shedding a@mhes
In this paper, we present MobiQuala resource-adaptive anolthat achieve scalability on the server side by only proogssi

QoS-aware load shedding framework for mobile CQ systems. . . P ) "
MobiQual is capable of providing high-quality query resuItSpeC'a”y defined significant updates [18], [19]; and (e}ritiated
by dynamically determining the appropriate amount of upda
load shedding (discarding certain location update mesjagel
query load shedding (skipping some query re-evaluatiom$)et
. L o system [20], [10], [21].

performed according to the application-level QoS speditioa yThe n[1aj(1ri£y gf Ehe]se works, with the exception of the works
of the queries. An obvious advantage of combining query qu.d ’

shedding and update load shedding within the same framewcé%;de g??h(:mcggigggn(cegé i:gtggioii:g I\/(l)g[bhi(()ggu(;rllilelta(:ivzgl v;ork
is to empower MobiQual witldifferentiated load sheddingapa- P v

bility, that is configuringquery re-evaluation periodand update For instance, MobiQual can use a TPR-tree [4] as its undiglyi

. o . . index structure on the server side, can make use of advanced
inaccuracy thresholdr achieving high overall QoS with respect ™" . : . .

motion modeling techniques [3] on the mobile node side, amd ¢
to both freshness and accuracy.

employ incremental query processing techniques [13] fargu
Another salient feature of MobiQual design is its ability td€-€valuation. Unlike the set of works listed under catgd@),
perform dynamic update load shedding and query load ShgddMobl(_Qual_recewesf updates from all the nodes, so that a(_j-hoc
according to changing workload characteristics and resou@nd historical queries can also be supported. However, @lodli
constraints, and its ability to reduce or avoid severe perémce Prefers to shed position updates from regions that havenmaini
degradation in query result quality under such conditidnebi- impact on the currer_ltly installed queries, thus achieviegt to_f _
Qual employsquery groupingand space partitioningtechniques both qulds. T_hose in category (g) are, tolsomelgxtent, aimil
to reduce the adaptation time required for re-configurirggys- © MobiQual, in terms of shedding load in position updates.
tem in response to high system dynamics, such as the numbeig¥vever. they use different techniques for load sheddingreM
queries, the number of mobile nodes, and the evolving momemdMPortantly, they do not consider query load shedding. _
patterns. To the best of our knowledge, none of the existin}%;-'—o,the best of our knowledge, none of the previous works in
work has exploited the potential of performing load sheddirine field of mobile CQ systems has addressed the problem of
to maximize the application-level freshness and accuraty @0S-aware query management. MobiQual addresses thishgsue
mobile queries. In contrast to existing work on scalablergueintroducing a novel load shedding framework. Note that reobi
processing and indexing techniques, MobiQual provides &-Qd0de movement is not discrete, but continuous. As a rese@ z
aware framework for performing both update load sheddir aft@/éness and inaccuracy in the query results is impossible
query load shedding, in order to provide highly accuratefeegh achleve with finite resources. Thus, a solutlon_ is required t
query results, even under limited resources or overloaditions. 2diust the balance between the update processing and cgiery r
Moreover, as a complementary solution, MobiQual can ek evaluation components in mobile CQ systems. Moreover, this

advantage of existing query processing and indexing teciesi. balance is dependent on the tolerance of the individualiegier
to staleness and inaccuracy in the query results. Prior svork

We have conducted detailed experimental studies on the Bfobile CQ systems not only have overlooked the QoS aspect of
fectiveness of MobiQual. Our results show that (1) a careftfie problem, but also either have not address how frequent th
combination of location update load shedding and locatioeryg POsition updates should be received from the mobile nodes or
load shedding can significantly outperform the approachas thave not specified how frequent query results should be apdat
are based on query-only or update-only load shedding; aR¥ re-evaluating the queries. However, as we show in thiepap
(2) MobiQual provides higher quality guarantees compared &n integrated, QoS-aware approach is essential for acigiénvgh
the approaches that lack the supports of QoS awareness @Hality query results.
differentiated load shedding.

[nobile CQ systems that achieve scalability by performingrgu
aware update filtering on the mobile node side to receive tegda
that only relate to the current set of queries installed ia th

| Cih 5 't . q I1l. DESIGN OVERVIEW
A preliminary version of the MobiQual framework was de- L .
scribed in [16]. In the current paper, we have substantial@' Load Sheddlng in Mobile CQ Systems _ N
expanded the MobiQual framework by providing & complete  In @ mobile CQ system, the CQ server receives position update
description of QoS-aware update load shedding in Sectign Wom the mobile nodes through a set of base stations (seed=lgu
which includes the @IDREDUCE algorithm for performing space and periodically evaluates the installed continual qefseich as
partitioning VI-B; (i7) several additional sets of experiments in 5 i on of thi JIEEE ICDE 2008 [16]

; ; B i A preliminary version of this paper appeared|EEE ICDE 16].
Section IX, evaluating a MobiQual-Light scheme that fociisa We greatly extended and revised the earlier version by, artreys, adding

Update_|oad shgdding_; andd) a reVise_d perfo_rmance COMPArisOfsections VI-B and IX. Moreover, almost all the experiments &ct®n X
of MobilQual with various schemes in Section X. were redone to compare MobiQual with MobiQual-Light.
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@ mobilenodes  base station CQ server per-query QoS specifications and subject to processingcitgpa
@ T (@) e constraints. The QoS specifications are defined based oratwo f
@ o () g 0 tors: accuracy and freshness. In MobiQual, the QoS spetifitsa
.7 are used to decide on not only how to spread out the impact of
@ /\/ \j& load shedding among different queries, but also how to find a
for 7 TN pdte processing balance between query load shedding and update load slyeddin
update reportingd position updates The main idea is to apply differentiated load shedding tasid]
the accuracy and freshness of queries. Namely, load stgddin
Fig. 1. Mobile CQ system and load shedding on position updates and query re-evaluations is done in auch
way that the freshness and accuracy of queries are nonromyfo
impacted.

continual range or nearest neighbor queries) over the BBVR £ the perspective of update load shedding, we make two
positions of the mobile nodésSince the mobile node positions yycarvations to show that non-uniform result accuracy can i

change continuously, motion modeling [3], [14] is oftendise coa5e the overall QoS. First, different geographicaloreghave
reduce the number of updates sent by the mobile nodes. Thg,

. ¢ _ erent numbers of mobile nodes and queries. Secondrdiit
server can predict the locations of the mobile nodes thrabgh

. 2 ) ' queries have different tolerance to position errors in theryg
use of motion models, albeit with increasing errors. Mobiteles o5 its. This means that shedding more updates from a region

generally use a threshold to reduce the amount of updates,jg, 5 higher density of mobile nodes and a lower density of
be sent to the server and to limit the inaccuracy of the qUefY\eries can bring a higher reduction on the update load and ye
results at the server side below the threshold. Smallestiotds |56 4 smaller impact on the overall query result accurdug i
result in smaller errors and higher accuracy, at the expefise ogpecially true if the queries within the region have legagent
higher load on the CQ server. This is because a larger NUMSSs gpecifications in terms of accuracy. Thus, in MobiQual we
of position updates must be processed by the server, f@mniost om0y QoS-aware update load sheddinge use inaccuracy

to maintain an index [4], [8]. When the position update ratqgesholds from motion modeling as control knobs to adjbst t
are high, the amount of position updates is huge and the rseryg, o nt of update load shedding to be performed, where the
may randomly drop some of the updates if resources are mit3me amount of increase in inaccuracy thresholds for difter
Thls_can cause unbounded inaccuracy in the query resu'_ts'glébgraphical regions brings differing amounts of load otion
MobiQual, we use accuracy-conscious update load sheddingah4 oS degradation with respect to accuracy. We refer to the
regulate the load incurred on the CQ server due to positioReD |5, shedding that adjusts the inaccuracy thresholds hasée
processing by dynamically configuring the inaccuracy thoifs  yensities of mobile nodes and queries to maximize the agerag

at the mobile nodes. _ accuracy of the query results under the QoS specifications as
Another major load for the CQ server is to keep the queRyos-aware update load shedding

results up to date by periodically executing the CQs oventbe
bile node positions. More frequent query re-evaluationadiate

into incr freshn in th ry results, al t . . .
0 increased freshness € query results, also at thense in the query results can increase the overall QoS of the mobil

of a higher server load. Given limited server resources,mthe CQ system: (1) Different queries have different costs imteof

rate of query re evaluations is high, the amount of quewelset the amount of load they incur. (2) Different queries havéedént
re-evaluated is vast and the server may randomly drop some, : o .

: . tolerance to staleness in the query results. Thus it is nfteetise
the re-evaluations, causing stale query results (low fress$). In

. - . to shed load (by sacrificing certain amount of freshness) on a
MobiQual, we utilize freshness-conscious query load simedd - : g . o
. costly query than an inexpensive one. This is especiallgfical
to control the load incurred on the CQ server due to query re- -
. — . . If the costly query happens to be less stringent on freshbasgd
evaluations by configuring the query re-evaluation periods

. . on its QoS specification. Bearing these observations in mind
In general, the total load due to evaluating queries andgsoc . Q P g . m
. . . . .~ MobiQual we employQoS-aware query load shedding/e use
ing position updates dominates the performance and stibjaiji

. uery re-evaluation periods as control knobs to performngue
the CQ server and thus shoulq be bou_nded by the_ capacity of 0&d shedding, where the same amount of increase in query re-
CQ server. Furthermore, the time-varying processing desaf

. . evaluation periods for different queries brings differiagiounts
a mobile CQ systgm entails that update and query load sl‘@d%q load reduction and QoS degradation with respect to fresfin
should be dynamically balanced and adaptively performed In
order to match the current workload with the server's cdpaci

while meeting the accuracy and freshness requirementseoiegu

Similar to update load shedding, we make two observations
regarding query load shedding to show that non-uniformhiness

no update load shedding: lower inaccuracy owing to frequent position updates
heavy query load shedding: higher staleness due to less frequent query evaluation

query-only
load shedding
best of both worlds
update & query
p load shedding
&

s

staleness

B. The MobiQual Approach

The MobiQual system aims at performing dynamic load shed-
ding to maximize the overall quality of the query resultssdzhon

zero query load shedding: lower staleness owing to frequent query evaluation

freshness and accuracy
are query specific metrics

heavy update load shedding: higher inaccuracy due to less frequent position updates
3In certain CQ systems, a position update can be used to detemhiich

user queries are affected, by running it against an indexummies — hence load shedding

query re-evaluation is not required. However, sgdlery-indexingapproaches :

(like [5]) can easily take advantage of MobiQual. The quegrtiioning inaccuracy

scheme applied in MobiQual can be used on the query index, tha¢mot ) ] ]

all location updates are taken through all the queries alltitine. Fig. 2. QoS-aware update load shedding and QoS-aware cpetyshedding




IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NOXX, XXX 2009 4

64?’? € }g set ?f fsheddlng reglonﬁs,fo][‘hthem nodes, it is inefficient, even if it is possible, to adjust atymhami-
3J E K] inaiiu?ac?/utirr{egrzgr dp?grono dg;nm cally maintain the re-evaluation periods for queries aradduracy
P; re-evaluation period for queries i, thresholds for mobile r\odes individually..lln MobiQual, qu
7. query evaluation cost function total number ofn. mobile nodes, we partition the geographical
I position update cost function area of interest intd regions, denoted by;,: € [1..]], where the
z throttle fraction number of mobile nodes if; is denoted by:; and>>!_, n; = n.
qgeEQ,m set of queriesyn of them The mobile nodes within the same regioty use the same
Sq quality of service function foy inaccuracy threshold;. A queryq, whose result lies completely
Tq staleness in query result of within region A; will have ¢, = A;. For queries whose results
T, 74 lower and upper staleness bounds contain mobile nodes from different regions, is given by a
6:(164 Iow:ar;a;rfgrl?%;? i?wl;?:::{lrr:s;%oun IS weighted average oh; v_alues of the involved_ regions. _
\I',\I/,u,\lfv overall QoS, freshness QoS, accuracy QoS We denote_ the frgctlon of updates received from a region
V, freshness component &, A, \_Nhen using an inaccuracy threshald;, as f-(A;). .fT is
U, accuracy component &, relative to the ideal case where al|’s are equal to the minimum
% aggregated freshness QoS foy position errore-. Thus we havefr(e-) = 1 > fr(eq). fr
u; aggregated accuracy QoS fdr; is a non-increasing continuous function with a positiveosec
TABLE | derivative. More detailed characterization of such fuorcsi exist
MAJOR NOTATION USED IN THE PAPER for specific motion modeling and prediction schemes [3],].[22

A key challenge for update load shedding is how to partitive t
geographical area of interest intaegions and how to compute
the inaccuracy threshold; for each region4; (i € [1..0]).
We refer to the load shedding that uses query re-evaluadoogs Similarly, we divide the set ofr queries intck groups, denoted
to maximize the average freshness of the query results uhder by C;, j € [1..k], where the number of queries @; is denoted
QoS specifications aQoS-aware query load shedding by m; and Z;?:l m; = m. The queries within the same group
MobiQual dynamically maintains ahrottle fraction which C; share the same re-evaluation periBg i.e. we havevg, €
defines the amount of load that should be retained. It pesforrUj,Tu = P;. We denote the one-time cost of processing the set
both update load shedding and query load shedding to cdh®ol of queries inC; as f.(C;), which is simply the sum of one-
load of the system according to this throttle fraction, whitax- time processing costs of individual queries. The usage ttst
imizing the overall quality of the query results. As illusied in - model in MobiQual does not require absolute values of query
Figure 2, MobiQual not only strikes a balance between fresin costs and can work with relative values for cost-based aisalp
and accuracy by employing both query and update load-sheddikey question for query load shedding is how to divide the igser
but also improves the overall quality of the results by =iflg into £ query groups and how to compute the re-evaluation period
per-query QoS specifications to capture each query’s difter P; for each query grou; (j € [1..k]).
tolerance to staleness and inaccuracy. Table | lists the major notation used throughout the papenes
of which are introduced in later sections.

C. Notation and Fundamentals

The set of continual queries installed in the system is dmhotD. Trade-offs in Setting k and |
by Q. For each queryg € @, there is an associated QOS |n general, the larger the number of query groups e
specificationS;. The QoS functionS,(7y, ;) takes a value in have, the higher the quality of the query results is in terrhs o
[0,1], wherel represents perfect quality in terms of freshness afgbshness, as it enables performing differentiated loaztiging
position error, and) represents the worst, ande, are used to jth finer granularity. The only restriction in setting thalve
denote the degree of staleness and inaccuracy in the queryste of  is the computational cost (which forms a major part of the
respectively.7, corresponds to the query re-evaluation periogdaptation cost) of finding an effective setting for the vakeation
for g, wherease, corresponds to the average of the inaccuragyeriods P, < [1..k]. Similar trade-off is observed in setting
thresholds used in motion mOde”ng for the mobile nOdeSiWiththe number of regionslx and thus the number of inaccuracy
the query result of. At any given time, the result of quegycan thresholds, with one exception. Since the changes in imacgu
be at mostr, seconds old and at the time of query evaluatiothresholds have to be communicated back to the mobile nodes
the position of a mobile node in the query result can deviafrough control messages (broadcasts from base statites}
from its actual position by, meters on average. The mobile CQs a second dimension to this trade-off: The larger thealue
system supports a minimum staleness valug-cdnd a minimum s, the higher the control cost of the adaptation step will Ibe
position error ofei. For any queryg, we haveS,(r-,e-) = 1. Section X, we experimentally evaluate the benefit/costetraitl
Similarly, we introduce a maximum staleness value, denbted in setting’ (see Figs. 15-16) ant(see Figs. 8-10) to show that

74, and a maximum position error, denoted by The staleness with lightweight adaptation we can achieve high quality yue
in the query results cannot exceed the maximum thresholeevalegyits.

of 7, at which point the results are assumed to be useless.

Also the position error is bounded hy,. In summary, we have

Tq € [m-,74] andeq € [e-,e4]. The minimum and maximum _ _ _

staleness and position error thresholds are system paresmet There are three functional components in the MobiQual syste
Since a scalable mobile CQ system should be able to hanfguction aggregation andadaptation

tens of thousands of queries and hundreds of thousands afemob- Reduction includes the algorithm for grouping the queries

E. Solution Outline
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into & clusters and the algorithm for partitioning the geograghic We approximate th&, functions using piece-wise linear func-
space of interest intd regions. The query groups are incrementions of x equal-sized segments along the input domjain ).
tally updated when queries are installed or removed from tfihis enables us to represent the aggregate QoS functigis) (
system. The space partitioning is re-computed prior to gr@gic as piece-wise linear functions af segments as well. Figure 3

adaptation. gives an example of aggregating two piece-wise linear fanst
— Aggregation involves computing aggregate-QoS functions foPf 4 segments each.
each query group and region. The aggregated QoS functions fo , ,

each query group represent the freshness aspect of thgyquibg
aggregated QoS functions for each region represent theaaycu

aspect of the quality. We argue that the separation of thes o = 1
two aspects is essential to the development of a fast ahgorit* *
for configuring the re-evaluation periods and the inacgurat®
thresholds to perform adaptation. QoS-aggregation isaiteﬂe 0 025 05 075 1 % oz 05 o 1 % oz 05 o075 1

only when there is a change in the query grouping or the space ) )
partitioning. Fig. 3. Example of QoS function aggregation

— Adaptation is performed periodically to determinei) (the  Recall that the set of queries that intersect a regigncan
throttle fractionz € [0, 1], which defines the amount of load thatgyerjap with the set of queries that intersect a differeiiame,
can be retained relative to the load of providing perfectligua since a query; can intersect more than one region. Let (i)
(e, Vjepn.iPj = m and Viep. A = & ); (i) the setting  genote the fraction of’s query region that lies withint; and Q
of re-evaluation periods’;,j € [1..k]; and §ii) the setting of genotes the set of queries in the system. Then, we have:
inaccuracy thresholda;,: € [1..]]. The latter two are performed

0.8

0.2

with the aim of maximizing the overall QoS. The computatién o Ui (A) = > (1 —aq) -mq(i) - Ug(Ai)  (4)
the throttle fraction is performed by monitoring the penfiance g€, s:t.mg(i)>0
of the system and adjustingin a feedback loop. The equality in Equation 4 holds when (&),’s are linear

In the remaining sections, we first present the aggregatiinctions? or (b) i,’s are piece-wise linear functions and there
of QoS functions, assuming that the query grouping and spage no queries crossing the region borders. However, itills st
partitioning are performed (Section 1V). We then presere thh good approximation for the general case of piece-wisetine
formulation of the QoS-aware query load shedding probleth afunctions if the crossings are not frequent. Because the afiza
present thequality loss based clusteringQLBC) algorithm for  region is significantly larger than that of a query, queryssings
clustering the queries inté groups (Section V). Then we for- are indeed infrequent. Like's, we also represent;”’s as piece-
malize the QoS-aware update load shedding problem anddeowjyise linear functions with: segments. Based on this analysis, the
a brief description of the QoS-aware space partitioningrtign  Equation 1 can be written in the following form:
for dividing the geographical space of interest iftaegions . .

(Section VI). Finally, we present the formulation of the Iplem 1 ~ 5 .
of combining query load shedding with update load shedding, V= m (Zl Vi (By) + ;Ul (AZ)) ®)
present theninimum quality loss per cost stép!QLS) algorithm = =

for performing the adaptation step (Section VII). Note that, for a givery € [L..k], V] is independent ofA;’s
(z € [1..1]). Similarly, for a giveni € [1..[], U is independent
IV. AGGREGATING THEQOS FUNCTIONS of P;’s (j € [1..k]). This separation allows us to operate at the

. L . anularity of query groups for configuring query load shedd
The aim of QoS aggregation is to associate an aggregaté . . S
function v} (P;) for each query group’;, and an aggregate and at the granularity of regions for configuring the updatsl|

: . shedding.
functioni;" (A;) for each regiond;, such that the overall QoS of S . - .
the system, denoted by, is maximized. We define: It is critical to note that the queries withi@; may intersect

a number of different regions, and similarly queries within
U = 1 qu(Tq,eq)’ (1) may be gonfuned in a n_umber of dlffer(?nt query groups. As
m o a result, ifi;’s were not independent aP;’s, altering the re-

. . evaluation periodP; for queries withinC; may have altered
wherem is the total number of queries ai®} (4, ¢4) denotes P v q ! y

e : more thanm, different aggregate QoS functions belonging to
the QoS specification for queryand can be defined as fOIIOWS:different regijons. A similar argument is valid for alteririge

Sy(1g,€q) = ag - Va(rg) + (1 — ag) - Uy(eq) (2) inaccuracy thresholdy; for A; when V;-“‘s are not independent
of A;’s. Thus, without a clear separation of re-evaluation mkrio
and inaccuracy thresholds in aggregated QoS functions,nde e
up creating a significant overhead for system optimizatidnis

In other words,Sy(7¢,¢q) is a linear combination of the
freshness QoS functiov, (74) and the accuracy orié;(e;). The

parametern, € [0, 1], called freshness weighis used to adjust |, defy reduction by makingv:'s and ;s dependent on a

the relative importance of the tw_o components_,_freshne_ds 48rge number of parameters, making their computation yostl
accuracyl,(rq) andidq(eq) are non-increasing positive functions, e downside of representing a query’s QoS specification as
whe_revq(n) =1 andify(er) = 1. ) a linear combination of a freshness-related QoS functioth an
Since the query groups are non-overlapping, we have:
4For Equation 4 to hold, we should be able to writd (eq) =
Vi(Pj) = > ag-Ve(Pj) () Ua(Ss gm0 ™) A = S (im0 Ma(d) - Uq (D). This can be done
qeC; if and only if U, is a linear function.
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an accuracy-related QoS function is the loss of certain amnoe call this measurguality lossper unit cost (glpc) metric. Let

of expressiveness, compared to the case of an unrestrici&d @ (q,z) denote the quality loss per unit cost for a given query
function of two parameters. Yet, the presented model stthages ¢ and a given throttle fractior. We defineG(q, z) using the

to capture a wide spectrum of QoS specifications, ranging frdfollowing formula:

staleness insensitiveyf = 0) to inaccuracy insensitivenf, = 1) d(Vy(r))
scenarios. As we will present in the rest of the paper, thig wa G(g,7) = “a " dr |T:Tk/z @)
of modeling the QoS specifications lends itself to an efficien ’ fe{a}) - d((li/f) | y

T T=Tr/2

plementation of the adaptive load shedding optimizatioakimg

it possible to adapt more frequently, with minor overhead. . i : ’
To better understand the problem of how to combine quefied Witha, whereasfc({¢})/7 is the cost function of. Setting
re-evaluation period to= 7 /= reduces the overall cost of re-

load shedding and update load shedding, We first discusy qu i . - -

load shedding and update load shedding separately in the re¢@luating; to = times the cost for the ideal case-of= 7. Since
two sections, and then present our final solution for comigini du€ries within the same group will share the same re-evatuat
them. period, Equation 7 captures the quality loss per unit casafér

increase in the re-evaluation period.

Clearly, a queryy with a smallG(q, z) value is a good choice
for shedding the query load, as it brings a small loss in QoS
We now focus on the QoS-aware query load shedding problefy a large amount of decrease in load. Therefore, if two igser
by only considering the freshness aspect of the quality &ed thave similary, functions, then the one with the larger evaluation

Note thatV,(7) is the freshness-related QoS function associ-

V. QOS-AWARE QUERY LOAD SHEDDING

cost of query re-evaluation. cost f-({q}) will be preferred for load shedding. However, if
two queries have similaf.({q}) values, then the query with the
A. Formalization of the Problem smaller (absolute) derivative of it8, function will be preferred

The aim of the query load shedding problem is to maximize tﬁ?r load shedding. Note that the derivative of the QoS florcti
. . - , 1S constant over each linear segment and thus Equation 7 can
first component of the overall quality from Equation 5, dexabt be simplified as follows, wherg? (i) denotes the slope of thith
by w,. Given k query groups, recalling thay;(P;) denotes 1 P linear se mént ob a P
the aggregation function for the query groap, and P; denote el 9 @
the setting of the re-evaluation period fof;, we define¥, as ag - Vo ([ff' T;jz_;:»—])
follows: Gl(gq,z) = 5
o ) —fel{a) - /)
v ];VJ (F3) ©) C. Grouping Queries witfQLBC
MobiQual uses the quality loss per unit cosfipc) metric
to define the similarity of queries, and the Euclidean distan
function defined between twaipc vectors (see Equation 9 below)
for clustering queries into desirable query groups in teofriead
shedding effectiveness. We call this algorithm thaalty loss
basedclustering algorithm, QBc for short.
It is obvious that putting queries that have diverSéy, z)
values into the same group is very ineffective, becauseiegier
with largerG(q, z) values are not good candidates for query load

by 2 - yeq fo({a})/m In summary, the query load sheddingzhedding compared to others. Hence there will be less dveral

algorithm should respect as the query re-evaluation budget, enefit from increasing the common re-evaluation periods Th
while maximizing the freshness in the query results. This caQ"BC algorithm finds the similarity between two querigsand

be modeled by the following processing constraint: g2 in two steps. First, it models the quality loss per unit cost
of each query at different values using alpc vector where

®)

Assume that the throttle fractionis given, which defines the
fraction of query load to keep. (The details for computatan
z are described later in Section VII-C). Under this assunmptio
the one-time re-evaluation cost of queries witlin is given by
fe(C;) and since these queries are re-evaluated e#gseconds,
the overall cost is given by.(C;)/P;. As a result, the load under
a given set of re-evaluation period¥;} is Zle fe(Cy)/ Py,
which should be less than or equal to the throttle fractiomes
the load of the ideal case of,cq,7; = 7, which is given

k each element of the vector corresponds to thg,z) value
ch(cj)/Pj <z > fel{ah/n at a different load shedding level (« different levels equally
J=1 €@ spaced betweef and1). Second, the @c algorithm uses the

Viel.k) T < P S 7y Euclidean distance between thtpc vectors of queries to define

The second constraint defines the scope of the re-evaluatiBf Similarity of queries. This similarity, denoted B(q1, ¢2), is
period P; (j € [1..k]). The key problem here is to define the seflefined as:

of query groups ;,j € [1..k]), so as to maximizel,. This is D _ Glar.1) — Glao. )2 9
performed by the @BC algorithm described next. (0.2) Le([l_ﬂ]z_o_f))/n( (0.0 (i2:1) ©

) ] ) The Q.BC algorithm uses:-means clustering [23] to form the
B. Measuring Quality Loss Per Unit Cost final k set of query groups, based on Equation 9.
The first question for clustering queries is to find which rneetr
should be used as a distance measure to define similar queries VI. QOS-AWARE UPDATE LOAD SHEDDING
One intuitive observation is that two queries are similar tfee In this section we describe the QoS-aware update load singddi
purpose of query load shedding if the amount of reduction problem, by only considering the accuracy aspect of theityual
quality per unit decrease in cost is similar for the two ge®ri and the cost of position update processing.
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A. Formalization of the Problem 3) Stage I: Building the Region Hierarchyn the first stage,

The goal of the update load shedding problem is to maximi¥¢® build & complete quad-tree over the grid. Each tree node
the second component of the overall quality from Equation §0résponds to a different region in the space, where region
denoted byw.,. Given i regions of the geographical space opet larger as we move closer to the root nodq whlch_ represents
interest, recalling that/;(A;) denote the aggregation functionthe whole space. Each level of the quad-tree is a uniform; non

for region A;, andA; denote the inaccuracy threshold associate®Y€r1apping partitioning of the entire space. Through a-peger
with 4;, we definew,, as follows: traversal of the tree, we aggregate the accuracy QoS funsctio

associated with the grid cells for each node of the tree. Trié fi
stage of the algorithm take®(c?) time and consume®(a?)
space.

4) Stage lI: Drilling Down in the Hierarchy:In the second

Assume that the throttle fractionis given, which defines the Stage' we start with the root node of the tree’ i_e_, theeﬂﬁace_
fraction of Update load to keep. The number of Updates ansl tw each Step, we p|ck a visited tree node (|n|t|a"y On|y tmu)
the relative cost of update processing for a given reglgrare  and replace it with ite child nodes in the quad-tree. This process
proportional ton; - fr(A;). As a result, the load under a givencontinues until we reach visited tree nodes (correspondingito
set of inaccuracy thresholds\, } can be computed by™,_, ;- shedding regions), assumiiignod 3 — 1. The crux of this stage
fr(A;). This load should be less than or equal to the throttigss in how we choose a region to further partition duringheac
fraction times the load of the ideal case Wf.; ;,A; = e, step. For this purpose we maintain a max-heap of all visiteel t
which is given byz - n - fr(er). Thus, the following processing nodes based on their accuracy gains, a metric we introduoebe
constraints must hold for the update load shedding problem: and at each step we pick the node with the highest accurany gai

Given a tree node, the accuracy gain is a measure of the

l
Uy =Y U (D) (10)
i=1

l
Z"i fr(A) < zon- frler) expected reduction in the query-result inaccuracy, ae€lievy
i=1 partitioning the node’s region intd sub-regions corresponding
Vien.qr & < Aq < ey to its child nodes. For a tree nodethe accuracy gait/[t] is

calculated as follows. LeE|[t] be the average result inaccuracy

The second constraint defines the domain of the inaccur . . )
threshold A; (i € [1..1]). The key question here is how toqviﬁvﬁa(\)g){ had one shedding region thatiis region. Formally,

partition the space of interest into a number of regions ghah
the overall quality¥, is maximized. To perform this we use E[t] « mina, Uf (A), st fr(A) <z fr(Ap)

the GRIDREDUCE algorithm. . . )
Let E,[t] be the average result inaccuracy if we hiadhedding

regions that correspond to the regionstsf child nodest;,: €

B. Partitioning the Space witBRIDREDUCE [1..4]. Using n[t] to denote the number of mobile nodes in the
The goal of the @IDREDUCE space partitioning algorithm region of tree node, we have:

is to partition the geographical space of interest ihghedding 4

regions, such that this partitioning produces query resoft Eplt] min{Ati}ZUZ(Ati)

higher accuracy. i=1
1) Algorithm Overview:The GRIDREDUCE algorithm works 4

in two stages and usess#atistics gridas the base data structure st Y nfti]- fr(Ay) < z-nft] - fr(Ar)

to guide its decisions. The statistics grid serves as a mmijfo i=1

maximum fine-grained partitioning of the space of interksthe Then the differencé[t] — E}[t] gives us the accuracy gali[t].
first stage of the algorithm, which follows a bottom-up prs&e  The computation of2[t] and £, [¢], and thus the accuracy gain
we create a region hierarchy over the statistics grid andeggde U|[¢], requires solving the problem of inaccuracy thresholdregtt
the QoS functions for the higher-level regions in this hielg. for a fixed! of shedding regions. Concretely, computationf]
This region hierarchy serves as a template from which a namequires to solve for nodewith I = 1 and computation ofz,[¢]
uniform partitioning of the space can be constructed. Tlersg requires to solve for the child nodes of with I = 4. As a result,
stage follows a top-down process and creates the final sét dhe accuracy gain is computed in constant time for a tree node
shedding regions, starting from the highest region in tleegnchy ¢. The second stage of theR®REDUCE algorithm takesO(l -
(the whole space). The main idea is to selectively pick ariltl drlog ) time and consume®(l) space, bringing the combined time
down on a region using the hierarchy constructed in the fiagtes complexity toO(l - log I + %) and space compexity 10(a? +1).
The region to drill down is determined based on the expeché g

in the query-result accuracy, called thecuracy gainwhich is V||, PUTTING IT ALL TOGETHER: MOBIQUAL SOLUTION
computed using the aggregated region statistics.

2) The Statistics Grid:The statistics grid is am x « evenly
spaced grid over the geographical space, wheige the number
of grid cells on each side of the space. For each gridegglithe
statistics grid stores the accuracy QoS function for thit gell.
The only data structure maintained over time by the MobiQu
space partitioner is this grid. The partitioning generabgdthe

GR'P_RE_DUCE algorithm using anv x a grid is called an(a, 1)- 5We are abusing the notation here to represent the aggremtacacy QoS
partitioning. function for the region of tree nodeby U/ (A)

In this section we first formalize the problem of combining
QoS-aware update load shedding and QoS-aware query load
shedding. Then we present a fast greedy algorithm called the
Minimum quality loss per coststep (MQLS) to configure the
r?-evaluation periods?;,j € [1..k] and the result inaccuracy
ﬁlresholdsAi,i € [1..]] within the same framework, aiming at
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L . e Algorithm 1: The MqLs Algorithm
achieving high overall QoS and better satisfying the fresisn Input: z: throttle fraction;c,: period incr.;c,: threshold incr.

and accuracy requirements of mobile location queries.llyjvae ; X e '
Output: P; 1..k]: periods;A;, 1..1]: thresholds
describe how to set the throttle fractierusing a feedback-basedMQES(z CZ}’JCUG)[ l-p e L]
adaptive algorithm called HROTLOOP. (1) H: empty; min heap of}’s and S}"’s
2 V> cofe({a})/m, V4« z-V {query expend., budggt
- (3) U<«—n-fr(er), U4 < z-U {update expend., budget
A. Problem Formalization (4) for j=1to k {init. SU's, add toH}
The objective of the combined load shedding problem is g, v Viete) Vi) ool
I : . . j query glp
maximize the overall qualityt = (¥, + ¥,) given in Equa- y fgfcﬂ'(nicl, -a) ¢ ¢
tion 5. We now restate the processing constraint by combinit®) JSDjv —5j /I‘fl {normaéllvze} i I
the load due to query re-evaluation and update processing. 8) for Z.J_i ?g’l {i'nssgfﬁs( %éioH?uery alpg
. . = C 05D
Let 2, denote the fraction of the query load retained fo%g) Gu U (erten) U (er) (initial update gaii
a given set of re-evaluation periodsP;}. We have:z, = (10) SL ni_‘gf'rg;;g)—{fﬁg;r%gnz g P d
Y F(CHIP i . i = 90 /U5 No
ijeéfc(i{qj})/;k' Similarly, let z, denote the fraction of the (11) A; «— ¢, H.INSERT(S}) {add update gain

update load retained for a given set of inaccuracy thresHalg}. (12) repeat {start increment loop

We have:z, = %(;(A) With these definitions, we can 82; g;iffgogl\r/l)g:i(éééne:xg? or A to incr}
state the processing constraint as follows: (15) Ve v_ % n %Cc]v) {query expend.
otz -y<z-(1+7) (11) (16) P — P+ cvj{incr_erhentPj}_
a7 if P; <7 {further incr. possiblg
The parametery in Equation 11 represents the cost ofyg) Sy — Viyre) Vi) fnew query qipé
performing update processing with the settingWfA; = e fAC_;-)-(;#CUPl].Eg
compared to the cost of performing query re-evaluation with (19) S} «— S5 /V4 {normaliz
setting of v;, P; = 7. In other words, for the ideal case the(20) H.INSERT(SY) {insert the query qlpk

1) else if S is for a thresholdS = S}
U — U-—n;- fr(Ai)+n;- fr(Ai+cu) {update expendl.
A; — Aj + ¢y, {incrementA;}

query re-evaluations costsunit, whereas the update processin
costsy € (0,00] units. Note thaty is not a system specified

parameter and is learned adaptively as follows. Uetbe the (24) if A; < ey {further incr. possiblg
observed cost of update processing ande the .observc.ed cost (55 S nuf(rA(AJrliBi{f f(AAi);)) {new update qlpk
of query re-evaluation during the last adaptation periodenr 26 gu o .Sul/U {norrﬁalize}
= Uz Th hat the workload d F INSERTSE Tine
we havey = 7+ This assumes that the workload does nqp7) H.INSERT(S}") {insert the update glgc
significantly change within the time frame of the adaptatio®8) until V +~-U < V4 + v - U4 {budget reached
period. Recall that the load shedding parameters are coeatigu or H.Si1ze() = 0 {all period and thresholds maxgd

after each adaptation period, thus yielding new values foand
zy (by way of changingP;’s and A;’s). Thus the combined load

shedding problem is formalized as follows: such that we increase thg;'s and A;’s in increments of size

¢ = (14 —7)/B and ¢, = (e4 — ¢-)/B3, respectively. The
maximizew = L (Z§:1 Vi(P)) + s M;‘(Ai)) MQLs algorjthm maintains a min. heap that §toreqsl@c (quality
loss per unit co§) value for each re-evaluation period and each

subject to ! - )
inaccuracy threshold. Thelpc value of a re-evaluation period (or
Sy £e(C)/P; S fr(A) . an inaccuracy threshold) gives the quality loss per unit éms
Yhoy fe(Ch) /e T T L T ) = (L+7) incre;:;\sing it byc, units (orcy units). Theglpc value is denoted
:je[l..k]a TFSAP!S - EZ‘V%; for query groupC; and S} for shedding regiom4;. We
i€l 6 S A S €4 VE(P; + ) — VE(P)
v g\t v g\t
Sj - ZfC({q})fc(C])(p_li_ _PL) (12)
Note that this is a non-linear program, since the conssdiate 9cQ ; e
1/P; terms and are not linear. We now describeQid — a SY = yen- frle)- Ui (Ai + cu) — U (D) (13)
fast, greedy algorithm for setting the re-evaluation pasi@and i - (fr(Ai +cu) = fr(Ai))
inaccuracy thresholds to solve the above stated QoS-awactk IThe nominators of the second components in the above eqsatio
shedding problem. represent the changes in the quality due to the incremermt,ess
the denominators represent the changes in the cost. Ndtéhtha
B. TheMoLs Algorithm first components of the above equations are used to nornihéze

o ) , , costs in the denominators, so titgts andsS;*'s can be compared.

. The basic principle of the iLs algorithm is to_start with the \yhen the MpLs algorithm starts, the current load expenditure

ideal caie (I)fvj’Pj =T a:d vl’f’ Ahl - €F| and mcrement_gllyl of the system, which is the sum of the load due to update and

irr?druce i; etr?adr t? J'Testitnat Oritde '??ﬁ ciise b{ rep%tt':ge Yquery load shedding appropriately weighted 4yis above our
creasing the re-evalualion period or the inaccuracys load budget imposed by the throttle fractionThe algorithm iter-

that Q'Ves,the smallgst quality ,IOSS per unit cost .re.ducﬂfljm atively pops the topmost element of the min. heap and depgndi
algorithm is greedy in nature, since it takes the minimumligua

loss per cost step. Concretely, we partition the domain ef re syis is gipc for a query group or for a region, and not for a query as it
evaluation periods and inaccuracy thresholds iAt@egments, was first introduced in Section V-B. The core concept is thaesa
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on whether we have a re-evaluation period or inaccuracgitiotd
makes the increment using either or ¢,,. Theglpc value of the
popped element is updated based on Equation 12 (or Equ&jon 1-
and is put back into the heap unless no further increments ar
possible. The algorithm runs until the load expenditure h# t
system is within the budget or all the re-evaluation periadd
inaccuracy thresholds hit their maximum value. In the tatesse
the load cannot be shed to meet the processing constraint ai--
random dropping of incoming updates as well as delay in quer}::f, .
re-evaluations will unavoidably take place. The pseuddecof " Fa s E | S functi i
MQLs is given in Algorithm 1. _ _Fig. 4. The road map used in tf&f;fgf’.ere'nt é%%%ﬁ?gosﬂﬂggzg

The total number of greedy steps the algorithm can take igxperiments, Chamblee, GA, USA
given byj- (I+k), which happens when all re-evaluation periods
and inaccuracy thresholds have to be increased to theimmouaxi
values. Each greedy step takéXlog (I + k)) time, since the QO0S specificationd. The motivation behind this mode, named
min. heap ha$ + k elements and the heap operations used takéobiQual-Light is the fact that update load shedding aspect
logarithmic time on the heap size. The final time complexity ®f MobiQual is completely transparent to the inner workings
the MQLs algorithm directly follows as?(5- (I +k)-log (I + k)) of the query engine. It can integrate cleanly and efforljess

0.2 0.4 0.6 0.8 1
normalized re-evaluation delay (or position error)

and the space complexity &I + k). with any mobile CQ engine that accepts position updates from
mobile nodes to evaluate spatial CQs. The intelligent ugpb=td
C. Setting the Throttle Fraction witiiHROTLOOP shedding capability by itself provides substantial imgment

We set the throttle fraction adaptively based on feedbatk wi" ovgrall query result accuracy ahd is a significant countidn
regard to how well the system is performing in terms of shegldi ©f this work, and has wide applicability. Second, we evauat
the correct amount of load, using thedAoTLooP algorithm. MobiQual in its entirety, with update and query load sheddin
When the throttle fractior is larger than what it should be, thec@pPabilities as well as accuracy and freshness-based QpSrsu
system will not be able to re-evaluate all queries at all @firth 1he latter study illustrates the drastic improvements ¢oald be
re-evaluation points and/or will not be able to admit allijos  achieved by minimally modifying the query engine to integra
updates into the system. Let, represent the fraction of querydUery load shedding and QoS support.
load imposed by the set of re-evaluation periods that wasagt
handled with respect to query processing. This can be eatmlil A, Experimental Setup
by observing the number of query re-evaluations perfornredi a
skipped during the last adaptation period, appropriatedigited
by query costs. Similarly, let,, represent the fraction of update
load imposed by the set of inaccuracy thresholds that wasihet
handled with respect to update processing. This can belatddu

by observing the number of updates admitted and droppee si . .
the last adaptation period. Oneg ando,, are computed, we can as expressway, arterial, collector), t.a ken from [24].’ toudate
cars going on roads. The trace contains aroLiiimobile nodes.

l(:aptL!re the performance of the system n handling the. armn‘unLI_he default re-evaluation period range used for the exparim
oad imposed by the current throttle fractieras follows: . .
is [1-,74] = [1,10] seconds, whereas the inaccuracy threshold
6= Zy Oy + Y 2w Oy (14) range used iSA, A4] = [5,100] meters. The increments used
z-(14+7) by the MqLs algorithm are determined using = 100, i.e.,
The denominator of Equation 14 is the amount of load tH8€ maximum number of increments possibleli®) for each
system was supposed to handle (recall right-hand side of-Eqie-€valuation period and inaccuracy threshold. The gsersed
tion 11) and the nominator is the actual amount of load that wi the experiments are range queries. The query distributio
handled (left-hand side of Equation 11, adjustedshyand o). is proportional to the object distribution. Inverse and dam
In order to take into account the cases wherg lower than what distributions were also Used, with similar results. Therﬂlme
it should ideally be, we also consider the utilization of #ystem, lengths were randomly chosen from the ran@e 000] meters.
1. When we have an overshetthe utilization of the system will A number of system and workload parameters were varied in
be 1, whereas it would be less thatwhen we have an undershotthe course of the experiments to understand their impachen t
z since the system would be idle at times not processing afiyery result quality and running-time performance of thebMo
queries or updates. As a result we adjusts follows for the two Qual system. These include the number of query groups used, i

To create the mobile node movement trace used in the experi-
ments, we used a real-world road map from the Chamblee region
of the state of Georgia, USA. The trace covers a region ofratou
200km? and part of it is shown in Figure 4. We used real-world
r1ircaffic volume data at the granularity of specific road typasch

cases: the k parameter used by theL®@c algorithm (default value16),
z-¢ pw=1 number of regiong used by theGrid Reduce algorithm (default
(15) : . . .
min(1,z/p) p<1 value: 250), the number of queries to number of objects ratio

(default valuen.01), the emulated capacity of the system (default:
z = 0.5), and the QoS functions specified by the queries. Figure 5
gives the general template of the QoS functions that were fose

This concludes our description of the MobiQual system.

VIIl. EXPERIMENTAL EVALUATION

We evaluate MobiQual in two parts. First, we evaluate Mo- 7gy settingld; (A;) = 14 (Ar — 3 comq(i) - Ay) /(A4 — Ar) and
biQual without query load shedding and with no user defined (P;) =1
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both V; (freshness) andl, (accuracy) components of a querg
QoS specification functioi$y, whereas thev value that adjusts ¢ w} . 1
the relative importance of the freshness and accuracy coemni® . R -
of quality were chosen at random from the rangel]. The § " |==cmema ™| ™
QoS functions were approximated by linear segments and a
parameter callednid-point QoS thresholdvas used to pick a

—+— Uniform & *
Random Drop

E? relative to MobiQual-Light

as
mean position error, E;,
mean containment error, E

. . ’ o 2 obiQual-Li RCRE LY
randomV/, or U, component from the set of available functions, " o = gnalian " =
a subset of which is shown in Figure 5. Any givép or Uy is Ty A L e
1 1 rottle fraction, z throttle fraction, z
chosen by randomly picking a number, says, between0 and {hrotte fraction hrotetrect
the mid-point quality threshold, and determining the Qo&fion Fig. 6.  Position Error vs. throtti&ig. 7. Containment Error vs. throttle
whose value for the mid-point of its domain is equaltos (and fraction fraction

matching the template given in Figure 5).

Standard Deviation of Containment ErobS,, and Coefficient

of Variance of Containment Errorcg), are fairness metrics
In this section we present experimental results on the@fiec that measure the variation among the query results in tefms o

ness of the MobiQual-Light load shedder in cutting the cdst @ontainment error. We hawe$, = Dg,/Eﬂ. These two metrics

receiving and processing position updates in mobile CQesyst can also be extended to the position error.

while minimally affecting the accuracy of the query resultée 2) Cost of Load SheddingTo evaluate the cost incurred by

compare our MobiQual-Light load shedder with the followindoad shedding, we measuiethe time it takes to execute the adap-

IX. MOBIQUAL-LIGHT: EXPERIMENTAL EVALUATION

alternatives: tation step that involves running thediRoTLOOP, GRIDREDUCE,
— Random Drop: The excessive position updates are ndthd MaLs algorithms ands) the number of shedding regions that
admitted to the input FIFO queue and are dropped. should be known by a mobile node on aVerage. The former metric

— Uniform A: A uniform inaccuracy thresholeh is used to Mmeasures the cost of load shedding from the perspectiveeof th
retain only throttle fraction times the original number of | Server, whereas the latter measures it from the perspeaftitree
cation updates. TheHROTLooP algorithm is still used, but Mobile node as well as the wireless network.
the approach is not region-aware and thus space partigionin
and inaccuracy threshold settings are not performed. B. Experimental Results

— Grid-Light : A downgraded version of the MobiQual-Light
load shedder, lacking the KEBDREDUCE algorithm which
determines the shedding regions basedipn)-partitioning.
Instead, it uses equally-sized shedding regions based on
[-partitioning.

We present the set of experimental results in two groups. The
first group of results are on the query-result accuracy agt-hi
light the superiority of MobiQual-Light compared to comipet
a%ﬂlroaches for shedding position update load. The secangpgr
of results are on the additional cost brought by the MobiQual
Light load shedder, and show that the overhead is minimal.

A. Evaluation Metrics 1) Query-result Accuracy:We study the impact of several

We define two sets of evaluation metrics. The first set g¥Stem and workload parameters on the query-result agcurac
evaluation metrics is used to measure the accuracy of they qu@nd the relative advantage of MobiQual-Light over compgtin
results under load shedding and the second set of metrids dg&)proaches. ) . .
with the cost of performing load shedding. a) Impact of the Throttle Fr_a_lct|on:The graphs in Fig-

1) Query-result Accuracy: Mean Containment Errolenoted ures 6 and 7 plot the mean position erdf, and mean con-

by ES., defines the average containment error in query resul@!nmer.'t erroiy, asa fungtion of the thrgtt!e fraction, for the
Containment error for a query result is defined as the ratihef Proportional query distribution. The leftaxis is used to show the

number of missing and extra items in the result to the correr&lz"‘ﬁve values (solid lines) with respect to the error oftiual-

result set size. Lef) denote the set of querie®(q) denote the LcijghL agdl_ the rigBhty-axis Is use_d Ito Shor\]N f[he a?SOI\%e errcl)(rs
result set for a query; € @ under load shedding, ang&*(q) (dashed lines). Bothy-axes are in logarithmic scale. We make

. three observations from the figure.
denote the correct result set un A; = Ar. Then: : . :
Ay - First, the MobiQual-Light outperforms all other approashe

5C _ Z |R*(q) \ R(q)| + |R(q) \ R*(q)| throughout the entire throttle fraction range. Random Dpep-

" Q| - |R*(q)| forms the worst, followed by UniformA and Grid-Light. At

z = 0.75, Random Drop has00 times the mean position error

Mean Position Error denoted by}, defines the average positionof MobiQual-Light, Uniform A has40 times that of MobiQual-
error in query results. Position error for a query resultefimed Light, and Grid-Light has2 times that of MobiQual-Light. At
as the average error in the positions of mobile nodes in the= 0.5, Random Drop, UniformA, and Grid-Light haslo, 2,
query result compared to the correct positions. het) denote and1.08 times theEL. of MobiQual-Light. The results for the
the position of a mobile node in a query resulty under mean containment errdtS,. are similar. Second, we observe that
load shedding ang* (o) denote the correct position of under as the throttle fraction gets smaller, the relative errors approach

q€Q

Viep.q) Ai = Ap. We have: to 1, while at the same time the absolute errors increase ant/final
. merge. The increasing errors are the result of decreasisigjqro
EP = Z Z lp(o) —p*(0)] update budget, whereas the relative errors decreasedie to
QI - |R(q)]

q€Q 0€q the maximum inaccuracy bound . When the update budget
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©

mean containment error, E°
5
L 3

gets smaller than the minimum update expenditure of theesyst 13 -
achieved atv,c(; ; A; = A, all of the three approaches that , - S zo0 ‘
use inaccuracy thresholds converge at this same solutarthis
experimental setting, this convergence occurs around 0.25.
Last, we observe very high (in the order 1f’'s) relative errors
for Random Drop and Uniform\ as z gets closer tol. This
seems surprising at first, as for the casezof 1 (not shown
in the figures) all approaches have zero error. However,gatsli 1.0
decrease in the throttle fraction, that is when we havel — e, P e
introduces some error in the query results for the case ofl&an number of shedding regions, number of shedding regions, |

1.25

o

o

Query Dist.

"

EC of Lira-Grid relative to Lira

—— | Proportional
—E— | Random
—— | Inverse-prop.

Drop and UmformA’ W.hereas.lt.mtmduces aImQSt no ?”O'r IrlFig. 8. EC. of Grid-Light w.r.t. Fig. 9. Containment Error of
the case of MOb'Qual'nght-_ '_I'hIS is because Mob|Qua_I-L|glhﬂIs to MobiQual-Light vs. # of shedding/lobiQual-Light vs. # of shedding re-
the required fraction of position updates from the regidra o regions gions

not contain any queries. Close to none error of MobiQuaht.ig

nearz = 1 boosts the relative error results for Random Drop and 1500
Uniform A.

b) Impact of the Number of Shedding Regioii$ie graphs % 000 i
in Figure 8 plot the relative mean containment erif, of f e
Grid-Light with respect to MobiQual-Light as a function dfet F
number of shedding regions for different query distributions. - ’—_‘——H—P’/
The throttle fraction is set as= 0.5. We observe that Grid-Light b
has up t835% higher containment error in query results compared W
to MobiQual-Light. The improvement provided by MobiQual is 728 286 512 024 ooas 4ose 6192

number of shedding regions, |

more pronounced when Inverse query distribution is used and

is smallest for the case of Proportional query distributid's Fig. 10. Server side cost of configuring MobiQual-Light

[ increases, the flexibility provided by having a larger numbe

of shedding regions improves the error incurred by MobiQual

Light at a better rate than Grid-Light, since MobiQual @& that involve monitoring cars or pedestrians it is unlikehatt the

an intelligent space partitioning algorithm. However, whiegets update load will fluctuate with a period less than tens of r@su

too large the grid partitioning of Grid-Light achieves egbu Even for an adaptation period ®® minutes, the configuration of

granularity to catch MobiQual-Light in terms of the queryMobiQual-Light will take only6.6-10~° fraction of the adaptation

result inaccuracy, as observed form the figure. This is Imaperiod. Note that these values are for a region of gixkm?. If

after a certain level of granularity is reached, more fingirggd we have al6 times larger region of siz&200km? (= 10 times the

partitioning is of no use, since the accuracy gain is close #ize of Atlanta, the capital city of the state of Georgia, YSAen

zero for all of the shedding regions. The graphs in Figure \Qe should havé = 16-250 = 4000, and froma = ollog, (10-v1)]

attest to this latter intuition. They plot the mean contaémin e should haver = 512. For this setting the configuration of

error Ef, of MobiQual-Light as a function of the number ofMobiQual-Light takes500 msecs. This corresponds £ 10~

shedding regions, for different throttle fractions. We #et the fraction of a10 minute adaptation period. These numbers show

error reduction rate decreases with increasingnd the errors that MobiQual-Light is lightweight and introduces litti#erhead

stabilize. The reduction in error is more pronounced fogéat on the server side.

values. Note that the default settingiof 250 for the number of b) Messaging Cost:Table Il shows the average number

shedding regions is rather conservative based on Figuretdt y of shedding regions that should be known to a base station as

still performs significantly better than the competing agmhes 5 function of the base station coverage area radius. However

as illustrated by Figure 7. This conservative settingaiso results reality base stations have smaller coverage regionsaaepl

in_a Iigh'Fweight load shedding solution, as we illustrateedan \yhere the number of users is large (urban areas) and larger

this section. coverage regions at places where the number of users is small
2) Cost of Load SheddingThe cost of load shedding consistgsuburban areas) [25]. This nature of base stations matéiotlg

of i) configuring the parameters of MobiQual-Light on the servetith MobiQual’'s space partitioning scheme, since the nunafe

side, which includes setting the throttle fraction, sheddigions, partitions are usually larger for dense areas and the sraak b

and update throttlersii) broadcasting the subset of sheddingtation coverage areas help decreasing the average nurhber o

regions and update throttlers that correspond to the cgeeaeea shedding regions known to a mobile node. Following this dogi

of each base station, and) installing the new set of sheddingwe have used a node density dependent base station placement

regions and update throttlers on the mobile node side. scheme and found that on the average each node and thus each

a) Server Side Cost:The graphs in Figure 10 plot thebase station should know arountl shedding regions. Assuming

time it takes to execute theHROTLOOP, GRIDREDUCE, and a shedding region (which is square in shape) is represented b

MqLs algorithms as a function of the number of shedding floats and an update throttler is represented by a sihdigte

regions, for different numbers of cellsof) for the statistics float, the size of the broadcast data sent by a base statioh to a

grid. For the default parameters bf= 250 and o« = 128, the nodes in its coverage area to install the shedding regiods an

configuration of MobiQual-Light takes arounth msecs. This update throttlers is arountll - (3 + 1) - 4 bytes =656 bytes on

will enable frequent adaptation, even though for most apfibns average. To asses the messaging cost of MobiQual, compare th
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[ base station radius (km)] 1.0 [ 20 [ 30 [ 40 [ 5.0 | 1 ®

[ #ofA;spernode || 3.1 12.5] 282 50.2 | 785 | o e - omiauarLight*
41 A;'s on average, takesl - (3 + 1) - 4 bytes =656 bytes. 2., 87 . Query only

° > 6

TABLE Il S o 8s

NUMBER OF SHEDDING REGIONS PER BASE STATION 504 5!

0.3 < 3

02 :ﬂggilgﬁétugm* s— 2

0.1 I Query only 1

o —+— MobiQual 0

0.8 1 0.2 0.8 1

. . . . 0 0.2 0.4 0.6 0.4 0.6
number tol472 bytes, which is the maximum payload available to throttle fraction, z throttle fraction, 2
an UDP pa.Cket over Etr_]emet with a typical M_TU of00 bytes. Fig. 11. Overall result quality as Rig. 12. Mean period delay as a
When MobiQual reconfigures the load shedding parametegs, inction of the throttle fraction  function of the throttle fraction
new information is installed on all mobile nodes by using an
average of one wireless broadcast packet per base station.
c) Mobile Node Side CostSince the total number of B, Experimental Results

shedding regions known to a mobile node at any time is onlyW divide th . | Its | h The fi
around 41, MobiQual-Light does not put a major burden on ‘'€ @V e the experimental results into three parts. The firs

mobile nodes in terms of memory consumption or processiﬁ’@rt deals with thfe impact of the amount of qud to be shed en th
load. By employing a tiny x 5 grid index on the mobile node 94€"Y rfesult quality. The second part deals with thfe perimme
side, the shedding region that contains the current pasitib of MobiQual under different query loads and the impact of the

the mobile node can be found quickly. Since MobiQual dod&!MPer of query groups on the query result quality as well as
not incur additional mobile node side cost over MobiQuajHti on the time '_t takes _to perform the adaptatlor_l_step. The third
we conclude that MobiQual will work on computationally weaiPa't deals with the impact of the QoS specifications on the

mobile nodes without any problem. performance of MobiQual. ) N
1) Impact of the Throttle FractionThe graphs in Figure 11

plot the overall quality of the query results as a function of
the throttle fraction (i.e., at different load sheddingdksy for
In this section we compare the performance of the MobiQuge competing approaches. At a given load shedding level, if
system in its entirety, with both update and query load stmedd | — . fraction of the load cannot be shed by a load shedding
as well as per-query QoS specification support, to a number Qforithm, then the QoS value is not plotted for thawvalue,
other alternatives. These are: and for smallerz values thereof. For instance, we observe from
— Query-only load shedding QoS-aware differentiated load Figure 11 that, for the default settings, the query-onlyrapph
shedding with respect to re-evaluation periods only (s@an only support load shedding fer> 0.7 and MobiQual-Light
Section V) and uses a fixed inaccuracy threshold_of for = > 0.5, whereas MobiQual and Singla-P can support
— Update-only load shedding QoS-aware differentiated load 2 > 0.2. MobiQual significantly outperforms update-only and
shedding with respect to inaccuracy thresholds only (segeery-only load shedding schemes, as it is observed from the
Section VI) and can be seen as the QoS-aware extensiapidly declining QoS values of the latter two approacheth wi
of MobiQual-Light. Thus we name it as MobiQual-Light decreasing. Furthermore, MobiQual outperforms SingleP, for
— Single A-P: Combined QoS-aware query and updata wide range of: values. While shedding0% (= = 0.4) of the
load shedding, but without query grouping (&L algo- load, MobiQual is able to keep the QoS arouhd- 0.9, whereas
rithm from Section V-C) and space partitioning (extendethis value is only around).75 for the Single A-P approach.
GRIDREDUCE algorithm from Section VI-B). It represents Similarly, MobiQual manages to sustain a QoS valuevof 0.7

X. MOBIQUAL: EXPERIMENTAL EVALUATION

a special case of the MobiQual system with= 1 = 1. for 70% load shedding, compared to a merea for Single A-
P. The two approaches both hit the = 0 boundary when
A. Evaluation Metrics MobiQual is forced to set all query re-evaluation periods an

] . . _inaccuracy thresholds to their maximum value, at which poin
We evaluate the MobiQual system using four main evaluatiqfere s no difference between the two. The superior pedana
metrics. These include: of MobiQual compared to Single\-P illustrates the strength
i) The overall quality metricl, as defined by Equation 5.  of the differentiated load shedding concept, whereas ther po
i) The mean period delap, which is defined as the averageperformances of update-only and query-only load shedditegta
difference between the ideal case peripdand the assigned to the importance of performing combined query and updad lo
period of queriesyy = P; for ¢ € C;. The mean period shedding.
delay is formulated as: The graphs in Figures 12 and 13 plot the mean period
D= %quQ(Tq—Tk) delay and mean position error as a function of the throttle
iii) The mean position erraR, which is defined as the averagefraction for competing approaches, respectively. Note tha
error in the positions of the mobile nodes within queryyery-only approach has zero mean position error (as obderv

results, relative to the error for the ideal cas&/fj; ., Ai =  from Figure 13), whereas the update-only approach has zero
€. |t1IS formulated as: mean period delay (as observed from Figure 12). However,
R=52eqlea — &) since a good overall quality requires balancing freshness a

iv) The running time of the adaptation step, which includes coccuracy, these two approaches do not provide good oveodl Q
figuring a new set of re-evaluation periods and in-accuragy observed from Figure 11. The mean period delay of Single
thresholds using the BLs algorithm. A-P stays slightly above that of MobiQual far > 0.3. After
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Fig. 14. Overall result quality with  Fig. 17.  Query result quality foFig. 18.  Query result quality for

Fig. 13. Mean position error as &anging query workload varying freshness QoS specs. varying accuracy QoS specs.

function of the throttle fraction
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Hobiaualkes the more fine grained is the differentiated load shedding. arily
s—teltu=ie|imiting factor in increasing the value df is the time it takes to
: execute the adaptation step, as the computational corypleki
the MQLs algorithm is dependent oh. However, increasing the
number ofk has diminishing return in terms of the overall QoS,
as shown by Figure 15, since the query groups become more and
e more homogeneous in terms of the QoS functions of the queries
throttle fraction, 2 contained within. The graphs in Figure 15 plot the overalBQs
Fig. 15. The impact of number dfig. 16. Adaptation time with dif- a fun_ction of the throttle_fractionc_c(axis _is in logarithmic gcale)
query groups on result quality ~ ferent number of query groups for different k values. This experiment is run fanoo continual
gueries. We clearly see from the figure that the gain in QoSwhe
going fromk = 8 to k = 16 is significantly lower than the gain
this point SingleA-P registers lower mean period delays. Thigh QoS when going front = 1 to £ = 2. This shows that having
is because further increasing the single re-evaluatioioghdras query groups smaller thai®-60 queries does not bring much gain
diminishing benefit in terms of the glpc metric, since Singlé overall query result quality. Even though small queryup®
A-P cannot provide differentiated load shedding. In comtrasire unnecessary, thedds algorithm can support large values
the MobiQual approach can locate queries that can toleratéh low overhead. Figure 16 shows that for= 16 andz = 0.5
further staleness with less impact on the QoS value, due tte adaptation step takes arounth milliseconds. In a mobile
the Q.BC algorithm, and thus can increase the re-evaluatiddQ system, the change in the workload in terms of the number of
periods further for such queries. Even though this resuits €Qs and mobile nodes is not spontaneous, and significatg ghif
higher mean period delay compared to SingleP, it translates the workload is likely to happen within minutes. Thus thediih
into a higher overall QoS due to a better balance betweeryquéakes to run the adaptation step in order to configure the peafs
and update load shedding. It is observed from Figure 13 thr@tevaluation periods and inaccuracy thresholds is velgtsmall
MobiQual consistently outperforms Single-P in terms of the compared to the adaptation period, resulting in a very \igihght
mean position error. This is not because MobiQual sheds ldsad shedding scheme.
update load, but it is because MobiQual sheds the update loa®) Impact of the QoS Specificationsthe graphs in Fig-
from regions that has lesser impact on the query resultstalueures 17 and 18 plot the overall query result quality as a fanct
the QoS-aware partitioning algorithm it employs. of the mid-point QoS threshold used for the freshness coemion
of the QoS specifications and the accuracy component of it,
2) Impact of the # of Queries and Query Groupkhe graphs respectively. Decreasing values along thexis represent QoS
in Figure 14 plot the overall QoS of the query results as atfanc specifications with increasingly stringent freshness camepts
the number of queries to number of mobile nodes ratio, for Mder Figure 17 and increasingly stringent accuracy comptfan
biQual vs. query-only and update-only (MobiQual-Lithtoad Figure 18. A high throttle fraction value 675 was used to make
shedding. The throttle fraction is set @dr5 for this experiment. sure that all competing approaches can shed the requiretibfra
It is interesting to observe that as the number of queriegase, of the load. Note that update-only load shedding (MobiQual-
the update-only load shedding loses its advantage ovey-quy Light*) is indifferent to the freshness components of the QoS
load shedding. This is because with increasing number aiegje specifications, whereas query-only load shedding is iecfft
the dominant cost becomes the query re-evaluation, sirctuth to the accuracy components. As a result, the lines for update
update load does not depend on the number of queries. Thissshonly and query-only load shedding are flat in Figures 17 and 18
the importance of performing combined query and update loagspectively. We observe from Figure 17 that MobiQual isyver
shedding, which is effective independent of the number efigg robust to changes in the freshness components of the QoS
or the number of mobile nodes, as evidenced by the supergpecifications and shows a smaller decrease in overall Q45 wi
performance of MobiQual compared to query-only and updaticreasing intolerance to staleness in QoS specifications)-
only approaches with changing number of queries to number dred to alternative approaches. It provides up28b better QoS
mobile nodes ratio (see Figure 14). compared to query-only load shedding as% better compared
An important parameter that impacts the performance of the Single A-P. These values are valid for shedding 25% percent
MobiQual system is the number of query groupsAs discussed of the load. The improvement provided by MobiQual over the
in Section IlI-D, in general the higher the number of queryugrs closest competitor reaches 80% when shedditg of the load,
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processing approaches where kNN queries are first apprtedgima
by circular regions based on upper bounds on thle dis-
tances [13]. Using such approximations, kNN queries cao als
take advantage of MobiQual. Supporting KNN queries may also
require taking into consideration topology of the road reekyas

it is often more meaningful to define nearnest neighborsrimse

of the network distance rather than the euclidean dista(®e.

' MobiQual should be able to dynamically adjust the valueshef t

I (number of shedding regions) akd(number of query groups)
parameters as the workload changes. An overestimated f@lue
these paramters means lost opportunity in terms of minigizi
the cost of adaptation, whereas an underestimated valuasmea

and for a mid-point freshness QoS threshold afqsee previous |0St opportunity in terms of maximizing the overall QoS. hist
Figure 11). The results presented in Figure 18 for the midipo Paper we have shown that the time it takes to run the adaptatio

0.95 -

v, average QoS

02 . . 0.8 0.2 0.4 0.6 0.8
mid-point freshness QoS threshold mid-point accuracy QoS threshold

Fig. 19. Result quality under changrig. 20. Result quality under chang-
ing z & freshness QoS specs. ing z and accuracy QoS specs.

accuracy QoS threshold are very similar in nature.

step is relatively small compared to the adaptation pemothdst

In Figures 19 and 20 we further study the sensitivities of tH¢ractical scenarios. This means relatively aggressiveegafor!
MobiQual system to changes in the QoS specifications of tR8dk could be used to optimize for QoS without worrying about
queries. We do this by looking at the change in the overall Qdie cost of adaptation. We leave it as a future work to adagsteth
of the query results at different levels of load sheddingjern Parameters dynamically.

changing values of the mid-point QoS thresholds. We observe
from Figures 19 that even for a mid-point freshness QoS tinlds

of 0.1, which implies thatV, (Z=4"=) is always less than.1 for

a queryq, MobiQual is able sustain an overall QoS value of[1]
> 0.78 for z > 0.5 (shedding at most half of the load). Similarly, [2]
for a mid-point accuracy QoS threshold®f, which implies that 3]
Uq(%) is always less thaf.1 for a queryg, MobiQual is able
sustain an overall QoS value of 0.85 for z > 0.5. The overall
QoS sharply drops when shedding more than half of the load?]
and MobiQual becomes more sensitive to increasing intotera
to staleness and inaccuracy in QoS specifications of qudries
is clearly observed from the increasing gap between the @eS |
in Figures 19 and 20, and their increasing slope with degrgas
values of the throttle fraction. Yet, even for shedding of
the load at the most stringent configurations of the freshaes
accuracy components of the QoS specifications, MobiQudllés a
to provide an impressive QoS value 1f0.6.

(5]

(6]

Xl. CONCLUSIONS ANDFUTURE WORK [8]

In this paper we have presented MobiQual, a load shedding
system aimed at providing high quality query results in rtebi g
continual query systems. MobiQual has three unique prigsert
First, it uses per-query QoS specifications that charaetetie
tolerance of queries to staleness and inaccuracy in theyqug‘ro]
results, in order to maximize the overall QoS of the system.
Second, it effectively combines query load shedding anchtgd [11]
load shedding within the same framework, through the use of
differentiated load shedding concept. Finally, the loaddsting 12]
mechanisms used by MobiQual are lightweight, enabling lquic
adaption to changes in the workload, in terms of the number [@8]
queries, number of mobile nodes or their changing movement
patterns. Through a detailed experimental study, we hage/rsh [14]
that the MobiQual system significantly outperforms apphesc
that are based on query-only or update-only load sheddisg, a
well as approaches that do combined query and update |d&e]
shedding but lack the differentiated load shedding elemeifit
the MobiQual solution, in particular the query grouping apace [16]
partitioning mechanisms.

There are several interesting issues for future work. (Zhis 17]
paper, we only considered range queries. However, MobiQLEaT
can be applied to kNN queries as well. There are various query
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