
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 1

Load Shedding in Mobile Systems with MobiQual
Buğra Gedik,Member, IEEE,Kun-Lung Wu,Fellow, IEEE,

Ling Liu, Senior Member, IEEE,Philip S. Yu,Fellow, IEEE

Abstract— In location-based, mobile continual query (CQ)
systems, two key measures of quality of service (QoS) are:
freshnessand accuracy. To achieve freshness, the CQ server must
perform frequent query re-evaluations. To attain accuracy, the
CQ server must receive and process frequent position updates
from the mobile nodes. However, it is often difficult to obtain
fresh and accurate CQ results simultaneously, due to (a) limited
resources in computing and communication and (b) fast-changing
load conditions caused by continuous mobile node movement.
Hence, a key challenge for a mobile CQ system is: How do we
achieve the highest possible quality of the CQ results, in both
freshness and accuracy, with currently available resources? In
this paper, we formulate this problem as aload sheddingone, and
developMobiQual − a QoS-aware approach to performing both
update load shedding and query load shedding. The design of Mo-
biQual highlights three important features. (1) Differentiated load
shedding: We apply different amounts of query load shedding and
update load shedding to different groups of queries and mobile
nodes, respectively. (2)Per-query QoS specification: Individualized
QoS specifications are used to maximize the overall freshness
and accuracy of the query results. (3) Low-cost adaptation:
MobiQual dynamically adapts, with a minimal overhead, to
changing load conditions and available resources. We conduct a
set of comprehensive experiments to evaluate the effectiveness of
MobiQual. The results show that, through a careful combination
of update and query load shedding, the MobiQual approach leads
to much higher freshness and accuracy in the query results in
all cases, compared to existing approaches that lack the QoS-
awareness properties of MobiQual, as well as the solutions that
perform query-only or update-only load shedding.

Index Terms— Location-based systems, Query processing,
Load Shedding

I. I NTRODUCTION

Today, we are experiencing a world where we can stay con-
nected while on-the-go because there are (1) myriads of affordable
mobile devices and (2) ever increasing accessibility of wireless
communications for these devices. Combined with the availability
of low-cost positioning devices, like GPS, this has createda
new class of applications in the area of mobile location-based
services (LBSs). Examples include location-aware information
delivery and resource management, such as transportation services
(NextBus bus locator [1], Google ride finder [2]), fleet manage-
ment, mobile games, and battlefield coordination.

A key challenge for LBSs is: How to design a scalable location
monitoring system capable of handling a large number of mobile
nodes and processing complex queries over their positions?Al-
though several mobile continual query (CQ) systems have been
proposed to handle long-running location monitoring tasksin a

• B. Gedik and K-L. Wu are with the IBM T.J. Watson Research Center, 19
Skyline Dr., Hawthorne, NY 10532. E-mail:{bgedik,klwu,psyu}@us.ibm.com.

• L. Liu is with the College of Computing, Georgia Institute ofTechnology,
801 Atlantic Drive, Atlanta, GA 30332. E-mail: lingliu@cc.gatech.edu.

• P. S. Yu is with the Computer Science Department, Universityof Illinois,
851 S. Morgan Street, Chicago, IL 60607. E-mail: psyu@cs.uic.edu.

scalable manner [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], the focus of these works is primarily on efficient indexing
and query processing techniques, not on the accuracy or freshness
of the query results.

Accuracy (inaccuracy) is measured based on the amount of
mobile node position errors found in the query resultsat the time
of query re-evaluation. This accuracy measure is strongly tied
to the frequency of position updates received from the mobile
nodes. Although one can also use a higher level concept to
measure accuracy, such as the amount of containment errors found
in the query results1, including both false positives (inclusion
errors) and false negatives (exclusion errors), we argue that using
position update errors for accuracy measure will provide a higher
level of precision. This is primarily because by utilizing the
amount of node position errors as the accuracy measure, one
can easily bound the inaccuracy by a threshold-based position
reporting scheme [3], [14]. Note that certain applicationshave
higher tolerance to inaccuracy in position updates, such asregion-
based traffic density monitoring; whereas certain others require
higher accuracy, such as path-based location tracking.

Freshness (staleness), on the other hand, refers to the age of
the query resultssincethe last query re-evaluation. It is dependent
on the frequency of query re-evaluations performed at the server.
As mobile nodes continue to move, there are further deviations in
mobile node positions after the last query re-evaluation. However,
such post-query-re-evaluation deviations are not attributed to
inaccuracy. Hence, freshness can be seen as a metric capturing
these deviations. It is important to note that higher freshness
does not necessarily imply higher accuracy and vice versa. The
concepts of freshness and accuracy in mobile CQ systems are,
to some extent, similar to those of timeliness and completeness,
respectively, in the web information monitoring domain [15].
Note that certain applications have higher tolerance to staleness
in query results, such as monitoring slowly changing temporal
aggregates like traffic rates; whereas certain others require higher
freshness, such as location based alerts and triggers.

Accuracy and freshness are not completely independent of each
other in the sense that both reflect the uncertainty about theprecise
locations of the moving objects at a given time. However, we
use accuracy and freshness separately to capture the impactof
such uncertainty from two independent perspectives. Accuracy
is used to capture the effect of uncertainty due to location-
update frequency on the mobile devices, while freshness is used
to capture the effect of uncertainty due to query re-evaluation
frequency on the server.

To obtain fresher query results, the CQ server must re-evaluate
the continual queries more frequently, requiring more computing
resources. Similarly, to attain more accurate query results, the
CQ server must receive and process position updates from the

1A bound on the amount of containment errors can be approximated by a bound on
the position errors, if the distribution of the mobile nodes around the query boundaries
is at hand or can be approximated.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 2

mobile nodes at a higher rate, demanding communication as well
as computing resources. However, it is almost impossible for a
mobile CQ system to achieve100% fresh and accurate results
due to continuously changing positions of mobile nodes. A key
challenge therefore is: How do we achieve the highest possible
quality of the query results in both freshness and accuracy,in
the presence of changing availability of resources and changing
workloads of location updates and location queries?

In this paper, we present MobiQual− a resource-adaptive and
QoS-aware load shedding framework for mobile CQ systems.
MobiQual is capable of providing high-quality query results
by dynamically determining the appropriate amount of update
load shedding (discarding certain location update messages) and
query load shedding (skipping some query re-evaluations) to be
performed according to the application-level QoS specifications
of the queries. An obvious advantage of combining query load
shedding and update load shedding within the same framework
is to empower MobiQual withdifferentiated load sheddingcapa-
bility, that is configuringquery re-evaluation periodsandupdate
inaccuracy thresholdsfor achieving high overall QoS with respect
to both freshness and accuracy.

Another salient feature of MobiQual design is its ability to
perform dynamic update load shedding and query load shedding
according to changing workload characteristics and resource
constraints, and its ability to reduce or avoid severe performance
degradation in query result quality under such conditions.Mobi-
Qual employsquery groupingandspace partitioningtechniques
to reduce the adaptation time required for re-configuring the sys-
tem in response to high system dynamics, such as the number of
queries, the number of mobile nodes, and the evolving movement
patterns. To the best of our knowledge, none of the existing
work has exploited the potential of performing load shedding
to maximize the application-level freshness and accuracy of
mobile queries. In contrast to existing work on scalable query
processing and indexing techniques, MobiQual provides a QoS-
aware framework for performing both update load shedding and
query load shedding, in order to provide highly accurate andfresh
query results, even under limited resources or overload conditions.
Moreover, as a complementary solution, MobiQual can easilytake
advantage of existing query processing and indexing techniques.

We have conducted detailed experimental studies on the ef-
fectiveness of MobiQual. Our results show that (1) a careful
combination of location update load shedding and location query
load shedding can significantly outperform the approaches that
are based on query-only or update-only load shedding; and
(2) MobiQual provides higher quality guarantees compared to
the approaches that lack the supports of QoS awareness and
differentiated load shedding.

A preliminary version of the MobiQual framework was de-
scribed in [16]. In the current paper, we have substantially
expanded the MobiQual framework by providing (i) a complete
description of QoS-aware update load shedding in Section VI,
which includes the GRIDREDUCE algorithm for performing space
partitioning VI-B; (ii) several additional sets of experiments in
Section IX, evaluating a MobiQual-Light scheme that focuses on
update load shedding; and (iii) a revised performance comparison
of MobilQual with various schemes in Section X.

II. RELATED WORK

Previous work on mobile CQ systems have focused on roughly
five major categories with respect to scalability and performance.
These are: (a) indexing schemes to process position updatesmore
efficiently [4], [6], [8], [7], [12]; (b) query processing techniques
to evaluate continual queries more efficiently [9], [13], [5], [11],
[17]; (c) motion modeling techniques to reduce the number of
position updates received from the mobile nodes, while keeping
the position accuracy high [3], [14]; (d) load shedding approaches
that achieve scalability on the server side by only processing
specially defined significant updates [18], [19]; and (e) distributed
mobile CQ systems that achieve scalability by performing query-
aware update filtering on the mobile node side to receive updates
that only relate to the current set of queries installed in the
system [20], [10], [21].

The majority of these works, with the exception of the works
listed under category (e), are mostly orthogonal to our work.
Some of them can be incorporated into MobiQual relatively easily.
For instance, MobiQual can use a TPR-tree [4] as its underlying
index structure on the server side, can make use of advanced
motion modeling techniques [3] on the mobile node side, and can
employ incremental query processing techniques [13] for query
re-evaluation. Unlike the set of works listed under category (e),
MobiQual receives updates from all the nodes, so that ad-hoc
and historical queries can also be supported. However, MobiQual
prefers to shed position updates from regions that have minimal
impact on the currently installed queries, thus achieving best of
both worlds. Those in category (d) are, to some extent, similar
to MobiQual, in terms of shedding load in position updates.
However, they use different techniques for load shedding. More
importantly, they do not consider query load shedding.

To the best of our knowledge, none of the previous works in
the field of mobile CQ systems has addressed the problem of
QoS-aware query management. MobiQual addresses this issueby
introducing a novel load shedding framework. Note that mobile
node movement is not discrete, but continuous. As a result, zero
staleness and inaccuracy in the query results is impossibleto
achieve with finite resources. Thus, a solution is required to
adjust the balance between the update processing and query re-
evaluation components in mobile CQ systems. Moreover, this
balance is dependent on the tolerance of the individual queries
to staleness and inaccuracy in the query results. Prior works on
mobile CQ systems not only have overlooked the QoS aspect of
the problem, but also either have not address how frequent the
position updates should be received from the mobile nodes or
have not specified how frequent query results should be updated
by re-evaluating the queries. However, as we show in this paper,
an integrated, QoS-aware approach is essential for achieving high
quality query results.2

III. D ESIGN OVERVIEW

A. Load Shedding in Mobile CQ Systems

In a mobile CQ system, the CQ server receives position updates
from the mobile nodes through a set of base stations (see Figure 1)
and periodically evaluates the installed continual queries (such as

2A preliminary version of this paper appeared inIEEE ICDE 2008 [16].
We greatly extended and revised the earlier version by, amongothers, adding
Sections VI-B and IX. Moreover, almost all the experiments in Section X
were redone to compare MobiQual with MobiQual-Light.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 3

base station CQ servermobile nodes

position updatesupdate reporting &

update load shedding

update processing

index

CQs

query processing &

query load shedding

Fig. 1. Mobile CQ system and load shedding

continual range or nearest neighbor queries) over the last known
positions of the mobile nodes.3 Since the mobile node positions
change continuously, motion modeling [3], [14] is often used to
reduce the number of updates sent by the mobile nodes. The
server can predict the locations of the mobile nodes throughthe
use of motion models, albeit with increasing errors. Mobilenodes
generally use a threshold to reduce the amount of updates to
be sent to the server and to limit the inaccuracy of the query
results at the server side below the threshold. Smaller thresholds
result in smaller errors and higher accuracy, at the expenseof a
higher load on the CQ server. This is because a larger number
of position updates must be processed by the server, for instance,
to maintain an index [4], [8]. When the position update rates
are high, the amount of position updates is huge and the server
may randomly drop some of the updates if resources are limited.
This can cause unbounded inaccuracy in the query results. In
MobiQual, we use accuracy-conscious update load shedding to
regulate the load incurred on the CQ server due to position update
processing by dynamically configuring the inaccuracy thresholds
at the mobile nodes.

Another major load for the CQ server is to keep the query
results up to date by periodically executing the CQs over themo-
bile node positions. More frequent query re-evaluations translate
into increased freshness in the query results, also at the expense
of a higher server load. Given limited server resources, when the
rate of query re-evaluations is high, the amount of queries to be
re-evaluated is vast and the server may randomly drop some of
the re-evaluations, causing stale query results (low freshness). In
MobiQual, we utilize freshness-conscious query load shedding
to control the load incurred on the CQ server due to query re-
evaluations by configuring the query re-evaluation periods.

In general, the total load due to evaluating queries and process-
ing position updates dominates the performance and scalability of
the CQ server and thus should be bounded by the capacity of the
CQ server. Furthermore, the time-varying processing demands of
a mobile CQ system entails that update and query load shedding
should be dynamically balanced and adaptively performed in
order to match the current workload with the server’s capacity,
while meeting the accuracy and freshness requirements of queries.

B. The MobiQual Approach

The MobiQual system aims at performing dynamic load shed-
ding to maximize the overall quality of the query results, based on

3In certain CQ systems, a position update can be used to determine which
user queries are affected, by running it against an index on queries – hence
query re-evaluation is not required. However, suchquery-indexingapproaches
(like [5]) can easily take advantage of MobiQual. The query partitioning
scheme applied in MobiQual can be used on the query index, suchthat not
all location updates are taken through all the queries all the time.

per-query QoS specifications and subject to processing capacity
constraints. The QoS specifications are defined based on two fac-
tors: accuracy and freshness. In MobiQual, the QoS specifications
are used to decide on not only how to spread out the impact of
load shedding among different queries, but also how to find a
balance between query load shedding and update load shedding.
The main idea is to apply differentiated load shedding to adjust
the accuracy and freshness of queries. Namely, load shedding
on position updates and query re-evaluations is done in sucha
way that the freshness and accuracy of queries are non-uniformly
impacted.

From the perspective of update load shedding, we make two
observations to show that non-uniform result accuracy can in-
crease the overall QoS. First, different geographical regions have
different numbers of mobile nodes and queries. Second, different
queries have different tolerance to position errors in the query
results. This means that shedding more updates from a region
with a higher density of mobile nodes and a lower density of
queries can bring a higher reduction on the update load and yet
have a smaller impact on the overall query result accuracy. This is
especially true if the queries within the region have less stringent
QoS specifications in terms of accuracy. Thus, in MobiQual we
employ QoS-aware update load shedding: We use inaccuracy
thresholds from motion modeling as control knobs to adjust the
amount of update load shedding to be performed, where the
same amount of increase in inaccuracy thresholds for different
geographical regions brings differing amounts of load reduction
and QoS degradation with respect to accuracy. We refer to the
load shedding that adjusts the inaccuracy thresholds basedon the
densities of mobile nodes and queries to maximize the average
accuracy of the query results under the QoS specifications as
QoS-aware update load shedding.

Similar to update load shedding, we make two observations
regarding query load shedding to show that non-uniform freshness
in the query results can increase the overall QoS of the mobile
CQ system: (1) Different queries have different costs in terms of
the amount of load they incur. (2) Different queries have different
tolerance to staleness in the query results. Thus it is more effective
to shed load (by sacrificing certain amount of freshness) on a
costly query than an inexpensive one. This is especially beneficial
if the costly query happens to be less stringent on freshness, based
on its QoS specification. Bearing these observations in mind, in
MobiQual we employQoS-aware query load shedding: We use
query re-evaluation periods as control knobs to perform query
load shedding, where the same amount of increase in query re-
evaluation periods for different queries brings differingamounts
of load reduction and QoS degradation with respect to freshness.

st
al

en
es

s

inaccuracy

ideal

update-only

load shedding

query-only

load shedding

update & query

load shedding

Q
oS-a

ware
nes

s

no update load shedding: lower inaccuracy owing to frequent position updates
heavy query load shedding: higher staleness due to less frequent query evaluation

zero query load shedding: lower staleness owing to frequent query evaluation
heavy update load shedding: higher inaccuracy due to less frequent position updates

best of both worlds

freshness and accuracy

are query specific metrics

Fig. 2. QoS-aware update load shedding and QoS-aware query load shedding

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 4

Ai, i ∈ [1..l] set of shedding regions,l of them
Cj , j ∈ [1..k] set of query groups,k of them

∆i inaccuracy threshold for nodes inAi

Pj re-evaluation period for queries inCj

fc query evaluation cost function
fr position update cost function
z throttle fraction

q ∈ Q, m set of queries,m of them
Sq quality of service function forq
τq staleness in query result ofq

τ⊢, τ⊣ lower and upper staleness bounds
ǫq inaccuracy in query resultq

ǫ⊢, ǫ⊣ lower and upper inaccuracy bounds
Ψ, Ψu, Ψv overall QoS, freshness QoS, accuracy QoS
Vq freshness component ofSq

Uq accuracy component ofSq

V∗
j aggregated freshness QoS forCj

U∗
i aggregated accuracy QoS forAi

TABLE I

MAJOR NOTATION USED IN THE PAPER

We refer to the load shedding that uses query re-evaluation periods
to maximize the average freshness of the query results underthe
QoS specifications asQoS-aware query load shedding.

MobiQual dynamically maintains athrottle fraction, which
defines the amount of load that should be retained. It performs
both update load shedding and query load shedding to controlthe
load of the system according to this throttle fraction, while max-
imizing the overall quality of the query results. As illustrated in
Figure 2, MobiQual not only strikes a balance between freshness
and accuracy by employing both query and update load-shedding,
but also improves the overall quality of the results by utilizing
per-query QoS specifications to capture each query’s different
tolerance to staleness and inaccuracy.

C. Notation and Fundamentals

The set of continual queries installed in the system is denoted
by Q. For each queryq ∈ Q, there is an associated QoS
specificationSq. The QoS functionSq(τq, ǫq) takes a value in
[0, 1], where1 represents perfect quality in terms of freshness and
position error, and0 represents the worst.τq and ǫq are used to
denote the degree of staleness and inaccuracy in the query results,
respectively.τq corresponds to the query re-evaluation period
for q, whereasǫq corresponds to the average of the inaccuracy
thresholds used in motion modeling for the mobile nodes within
the query result ofq. At any given time, the result of queryq can
be at mostτq seconds old and at the time of query evaluation
the position of a mobile node in the query result can deviate
from its actual position byǫq meters on average. The mobile CQ
system supports a minimum staleness value ofτ⊢ and a minimum
position error ofǫ⊢. For any queryq, we haveSq(τ⊢, ǫ⊢) = 1.
Similarly, we introduce a maximum staleness value, denotedby
τ⊣, and a maximum position error, denoted byǫ⊣. The staleness
in the query results cannot exceed the maximum threshold value
of τ⊣, at which point the results are assumed to be useless.
Also the position error is bounded byǫ⊣. In summary, we have
τq ∈ [τ⊢, τ⊣] and ǫq ∈ [ǫ⊢, ǫ⊣]. The minimum and maximum
staleness and position error thresholds are system parameters.

Since a scalable mobile CQ system should be able to handle
tens of thousands of queries and hundreds of thousands of mobile

nodes, it is inefficient, even if it is possible, to adjust anddynami-
cally maintain the re-evaluation periods for queries and inaccuracy
thresholds for mobile nodes individually. In MobiQual, given a
total number ofn mobile nodes, we partition the geographical
area of interest intol regions, denoted byAi, i ∈ [1..l], where the
number of mobile nodes inAi is denoted byni and

Pl
i=1 ni = n.

The mobile nodes within the same regionAi use the same
inaccuracy threshold∆i. A queryqu whose result lies completely
within region Ai will have ǫu = ∆i. For queries whose results
contain mobile nodes from different regions,ǫu is given by a
weighted average of∆i values of the involved regions.

We denote the fraction of updates received from a region
Ai, when using an inaccuracy threshold∆i, as fr(∆i). fr is
relative to the ideal case where all∆i’s are equal to the minimum
position error ǫ⊢. Thus we havefr(ǫ⊢) = 1 > fr(ǫ⊣). fr

is a non-increasing continuous function with a positive second
derivative. More detailed characterization of such functions exist
for specific motion modeling and prediction schemes [3], [22].
A key challenge for update load shedding is how to partition the
geographical area of interest intol regions and how to compute
the inaccuracy threshold∆i for each regionAi (i ∈ [1..l]).

Similarly, we divide the set ofm queries intok groups, denoted
by Cj , j ∈ [1..k], where the number of queries inCj is denoted
by mj and

Pk
j=1 mj = m. The queries within the same group

Cj share the same re-evaluation periodPj , i.e. we have∀qu ∈

Cj , τu = Pj . We denote the one-time cost of processing the set
of queries inCj as fc(Cj), which is simply the sum of one-
time processing costs of individual queries. The usage of the cost
model in MobiQual does not require absolute values of query
costs and can work with relative values for cost-based analysis. A
key question for query load shedding is how to divide the queries
into k query groups and how to compute the re-evaluation period
Pj for each query groupCj (j ∈ [1..k]).

Table I lists the major notation used throughout the paper, some
of which are introduced in later sections.

D. Trade-offs in Setting k and l

In general, the larger the number of query groups (k) we
have, the higher the quality of the query results is in terms of
freshness, as it enables performing differentiated load shedding
with finer granularity. The only restriction in setting the value
of k is the computational cost (which forms a major part of the
adaptation cost) of finding an effective setting for the re-evaluation
periods Pj , j ∈ [1..k]. Similar trade-off is observed in setting
the number of regions (l) and thus the number of inaccuracy
thresholds, with one exception. Since the changes in inaccuracy
thresholds have to be communicated back to the mobile nodes
through control messages (broadcasts from base stations),there
is a second dimension to this trade-off: The larger thel value
is, the higher the control cost of the adaptation step will be. In
Section X, we experimentally evaluate the benefit/cost trade-off
in settingk (see Figs. 15-16) andl (see Figs. 8-10) to show that
with lightweight adaptation we can achieve high quality query
results.

E. Solution Outline

There are three functional components in the MobiQual system:
reduction, aggregation, andadaptation.

− Reduction includes the algorithm for grouping the queries

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 5

into k clusters and the algorithm for partitioning the geographical
space of interest intol regions. The query groups are incremen-
tally updated when queries are installed or removed from the
system. The space partitioning is re-computed prior to the periodic
adaptation.

− Aggregation involves computing aggregate-QoS functions for
each query group and region. The aggregated QoS functions for
each query group represent the freshness aspect of the quality. The
aggregated QoS functions for each region represent the accuracy
aspect of the quality. We argue that the separation of these
two aspects is essential to the development of a fast algorithm
for configuring the re-evaluation periods and the inaccuracy
thresholds to perform adaptation. QoS-aggregation is repeated
only when there is a change in the query grouping or the space
partitioning.

− Adaptation is performed periodically to determine: (i) the
throttle fractionz ∈ [0, 1], which defines the amount of load that
can be retained relative to the load of providing perfect quality
(i.e., ∀j∈[1..k]Pj = τ⊢ and ∀i∈[1..l]∆i = ǫ⊢); (ii) the setting
of re-evaluation periodsPj , j ∈ [1..k]; and (iii) the setting of
inaccuracy thresholds∆i, i ∈ [1..l]. The latter two are performed
with the aim of maximizing the overall QoS. The computation of
the throttle fraction is performed by monitoring the performance
of the system and adjustingz in a feedback loop.

In the remaining sections, we first present the aggregation
of QoS functions, assuming that the query grouping and space
partitioning are performed (Section IV). We then present the
formulation of the QoS-aware query load shedding problem and
present thequality loss based clustering(QLBC) algorithm for
clustering the queries intok groups (Section V). Then we for-
malize the QoS-aware update load shedding problem and provide
a brief description of the QoS-aware space partitioning algorithm
for dividing the geographical space of interest intol regions
(Section VI). Finally, we present the formulation of the problem
of combining query load shedding with update load shedding,and
present theminimum quality loss per cost step(MQLS) algorithm
for performing the adaptation step (Section VII).

IV. A GGREGATING THEQOS FUNCTIONS

The aim of QoS aggregation is to associate an aggregate
function V∗j (Pj) for each query groupCj , and an aggregate
functionU∗i (∆i) for each regionAi, such that the overall QoS of
the system, denoted byΨ, is maximized. We define:

Ψ =
1

m

X

q∈Q

Sq(τq, ǫq), (1)

wherem is the total number of queries andSq(τq, ǫq) denotes
the QoS specification for queryq and can be defined as follows:

Sq(τq, ǫq) = αq · Vq(τq) + (1− αq) · Uq(ǫq) (2)

In other words,Sq(τq, ǫq) is a linear combination of the
freshness QoS functionVq(τq) and the accuracy oneUq(ǫq). The
parameterαq ∈ [0, 1], called freshness weight, is used to adjust
the relative importance of the two components, freshness and
accuracy.Vq(τq) andUq(ǫq) are non-increasing positive functions,
whereVq(τ⊢) = 1 andUq(ǫ⊢) = 1.

Since the query groups are non-overlapping, we have:

V∗j (Pj) =
X

q∈Cj

αq · Vq(Pj) (3)

We approximate theVq functions using piece-wise linear func-
tions of κ equal-sized segments along the input domain[τ⊢, τ⊣].
This enables us to represent the aggregate QoS functions (V∗j ’s)
as piece-wise linear functions ofκ segments as well. Figure 3
gives an example of aggregating two piece-wise linear functions
of 4 segments each.

0 0.25 0.5 0.75 1

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

+ =

Fig. 3. Example of QoS function aggregation

Recall that the set of queries that intersect a regionAi can
overlap with the set of queries that intersect a different region,
since a queryq can intersect more than one region. Letmq(i)

denote the fraction ofq’s query region that lies withinAi andQ

denotes the set of queries in the system. Then, we have:

U∗i (∆i) =
X

q∈Q, s.t.mq(i)>0

(1− αq) ·mq(i) · Uq(∆i) (4)

The equality in Equation 4 holds when (a)Uq ’s are linear
functions,4 or (b) Uq ’s are piece-wise linear functions and there
are no queries crossing the region borders. However, it is still
a good approximation for the general case of piece-wise linear
functions if the crossings are not frequent. Because the size of a
region is significantly larger than that of a query, query crossings
are indeed infrequent. LikeV∗j ’s, we also representU∗i ’s as piece-
wise linear functions withκ segments. Based on this analysis, the
Equation 1 can be written in the following form:

Ψ =
1

m

0

@

k
X

j=1

V∗j (Pj) +

l
X

i=1

U∗i (∆i)

1

A (5)

Note that, for a givenj ∈ [1..k], V∗j is independent of∆i’s
(i ∈ [1..l]). Similarly, for a giveni ∈ [1..l], U∗i is independent
of Pj ’s (j ∈ [1..k]). This separation allows us to operate at the
granularity of query groups for configuring query load shedding
and at the granularity of regions for configuring the update load
shedding.

It is critical to note that the queries withinCj may intersect
a number of different regions, and similarly queries withinAi

may be contained in a number of different query groups. As
a result, if U∗i ’s were not independent ofPj ’s, altering the re-
evaluation periodPj for queries withinCj may have altered
more thanmj different aggregate QoS functions belonging to
different regions. A similar argument is valid for alteringthe
inaccuracy threshold∆i for Ai when V∗j ’s are not independent
of ∆i’s. Thus, without a clear separation of re-evaluation periods
and inaccuracy thresholds in aggregated QoS functions, we end
up creating a significant overhead for system optimization.This
will defy reduction by makingV∗j ’s and U∗i ’s dependent on a
large number of parameters, making their computation costly.

One downside of representing a query’s QoS specification as
a linear combination of a freshness-related QoS function and

4For Equation 4 to hold, we should be able to writeUq(ǫq) =
Uq(

P

i,mq(i)>0 mq(i) · ∆i) =
P

i,mq(i)>0 mq(i) · Uq(∆i). This can be done
if and only if Uq is a linear function.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 6

an accuracy-related QoS function is the loss of certain amount
of expressiveness, compared to the case of an unrestricted QoS
function of two parameters. Yet, the presented model still manages
to capture a wide spectrum of QoS specifications, ranging from
staleness insensitive (αq = 0) to inaccuracy insensitive (αq = 1)
scenarios. As we will present in the rest of the paper, this way
of modeling the QoS specifications lends itself to an efficient im-
plementation of the adaptive load shedding optimization, making
it possible to adapt more frequently, with minor overhead.

To better understand the problem of how to combine query
load shedding and update load shedding, We first discuss query
load shedding and update load shedding separately in the next
two sections, and then present our final solution for combining
them.

V. QOS-AWARE QUERY LOAD SHEDDING

We now focus on the QoS-aware query load shedding problem,
by only considering the freshness aspect of the quality and the
cost of query re-evaluation.

A. Formalization of the Problem

The aim of the query load shedding problem is to maximize the
first component of the overall quality from Equation 5, denoted
by Ψv. Given k query groups, recalling thatV∗j (Pj) denotes
the aggregation function for the query groupCj , andPj denote
the setting of the re-evaluation period forCj , we defineΨv as
follows:

Ψv =
k

X

j=1

V∗j (Pj) (6)

Assume that the throttle fractionz is given, which defines the
fraction of query load to keep. (The details for computationof
z are described later in Section VII-C). Under this assumption,
the one-time re-evaluation cost of queries withinCj is given by
fc(Cj) and since these queries are re-evaluated everyPj seconds,
the overall cost is given byfc(Cj)/Pj . As a result, the load under
a given set of re-evaluation periods{Pj} is

Pk
j=1 fc(Cj)/Pj ,

which should be less than or equal to the throttle fraction times
the load of the ideal case of∀q∈Q, τq = τ⊢, which is given
by z ·

P

q∈Q fc({q})/τ⊢. In summary, the query load shedding
algorithm should respectz as the query re-evaluation budget,
while maximizing the freshness in the query results. This can
be modeled by the following processing constraint:

k
X

j=1

fc(Cj)/Pj ≤ z ·
X

q∈Q

fc({q})/τ⊢

∀j∈[1..k], τ⊢ ≤ Pi ≤ τ⊣

The second constraint defines the scope of the re-evaluation
periodPj (j ∈ [1..k]). The key problem here is to define the set
of query groups (Cj , j ∈ [1..k]), so as to maximizeΨv. This is
performed by the QLBC algorithm described next.

B. Measuring Quality Loss Per Unit Cost

The first question for clustering queries is to find which metric
should be used as a distance measure to define similar queries.
One intuitive observation is that two queries are similar for the
purpose of query load shedding if the amount of reduction in
quality per unit decrease in cost is similar for the two queries.

We call this measurequality lossper unit cost (qlpc) metric. Let
G(q, z) denote the quality loss per unit cost for a given query
q and a given throttle fractionz. We defineG(q, z) using the
following formula:

G(q, z) =
αq ·

d(Vq(τ))
dτ

˛

˛

τ=τ⊢/z

fc({q}) ·
d(1/τ)

dτ

˛

˛

τ=τ⊢/z

(7)

Note thatVq(τ) is the freshness-related QoS function associ-
ated withq, whereasfc({q})/τ is the cost function ofq. Setting
the re-evaluation period toτ = τ⊢/z reduces the overall cost of re-
evaluatingq to z times the cost for the ideal case ofτ = τ⊢. Since
queries within the same group will share the same re-evaluation
period, Equation 7 captures the quality loss per unit cost for a dτ

increase in the re-evaluation period.
Clearly, a queryq with a smallG(q, z) value is a good choice

for shedding the query load, as it brings a small loss in QoS
for a large amount of decrease in load. Therefore, if two queries
have similarVq functions, then the one with the larger evaluation
cost fc({q}) will be preferred for load shedding. However, if
two queries have similarfc({q}) values, then the query with the
smaller (absolute) derivative of itsVq function will be preferred
for load shedding. Note that the derivative of the QoS function
Vq is constant over each linear segment and thus Equation 7 can
be simplified as follows, whereVa

q (i) denotes the slope of theith
(i ∈ [1..κ]) linear segment ofVq:

G(q, z) =
αq · V

a
q

“

⌈κ ·
τ⊢/z−τ⊢
τ⊣−τ⊢

⌉
”

−fc({q}) · (z/τ⊢)2
(8)

C. Grouping Queries withQLBC

MobiQual uses the quality loss per unit cost (qlpc) metric
to define the similarity of queries, and the Euclidean distance
function defined between twoqlpc vectors (see Equation 9 below)
for clustering queries into desirable query groups in termsof load
shedding effectiveness. We call this algorithm the Quality loss
basedclusteringalgorithm, QLBC for short.

It is obvious that putting queries that have diverseG(q, z)

values into the same group is very ineffective, because queries
with largerG(q, z) values are not good candidates for query load
shedding compared to others. Hence there will be less overall
benefit from increasing the common re-evaluation period. The
QLBC algorithm finds the similarity between two queriesq1 and
q2 in two steps. First, it models the quality loss per unit cost
of each query at differentz values using aqlpc vector, where
each element of the vector corresponds to theG(q, z) value
at a different load shedding levelz (κ different levels equally
spaced between0 and 1). Second, the QLBC algorithm uses the
Euclidean distance between theqlpc vectors of queries to define
the similarity of queries. This similarity, denoted byD(q1, q2), is
defined as:

D(q1, q2) =
X

ι∈([1..κ]−0.5)/κ

(G(q1, ι)−G(q2, ι))2 (9)

The QLBC algorithm usesk-means clustering [23] to form the
final k set of query groups, based on Equation 9.

VI. QOS-AWARE UPDATE LOAD SHEDDING

In this section we describe the QoS-aware update load shedding
problem, by only considering the accuracy aspect of the quality
and the cost of position update processing.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 7

A. Formalization of the Problem

The goal of the update load shedding problem is to maximize
the second component of the overall quality from Equation 5,
denoted byΨu. Given l regions of the geographical space of
interest, recalling thatU∗i (∆i) denote the aggregation function
for regionAi, and∆i denote the inaccuracy threshold associated
with Ai, we defineΨu as follows:

Ψu =
l

X

i=1

U∗i (∆i) (10)

Assume that the throttle fractionz is given, which defines the
fraction of update load to keep. The number of updates and thus
the relative cost of update processing for a given regionAi are
proportional toni · fr(∆i). As a result, the load under a given
set of inaccuracy thresholds{∆i} can be computed by

Pl
i=1 ni ·

fr(∆i). This load should be less than or equal to the throttle
fraction times the load of the ideal case of∀i∈[1..l], ∆i = ǫ⊢,
which is given byz · n · fr(ǫ⊢). Thus, the following processing
constraints must hold for the update load shedding problem:

l
X

i=1

ni · fr(∆i) ≤ z · n · fr(ǫ⊢)

∀i∈[1..l], ǫ⊢ ≤ ∆i ≤ ǫ⊣

The second constraint defines the domain of the inaccuracy
threshold ∆i (i ∈ [1..l]). The key question here is how to
partition the space of interest into a number of regions suchthat
the overall qualityΨu is maximized. To perform this we use
the GRIDREDUCE algorithm.

B. Partitioning the Space withGRIDREDUCE

The goal of the GRIDREDUCE space partitioning algorithm
is to partition the geographical space of interest intol shedding
regions, such that this partitioning produces query results of
higher accuracy.

1) Algorithm Overview:The GRIDREDUCE algorithm works
in two stages and uses astatistics gridas the base data structure
to guide its decisions. The statistics grid serves as a uniform,
maximum fine-grained partitioning of the space of interest.In the
first stage of the algorithm, which follows a bottom-up process,
we create a region hierarchy over the statistics grid and aggregate
the QoS functions for the higher-level regions in this hierarchy.
This region hierarchy serves as a template from which a non-
uniform partitioning of the space can be constructed. The second
stage follows a top-down process and creates the final set ofl

shedding regions, starting from the highest region in the hierarchy
(the whole space). The main idea is to selectively pick and drill
down on a region using the hierarchy constructed in the first stage.
The region to drill down is determined based on the expected gain
in the query-result accuracy, called theaccuracy gain, which is
computed using the aggregated region statistics.

2) The Statistics Grid:The statistics grid is anα × α evenly
spaced grid over the geographical space, whereα is the number
of grid cells on each side of the space. For each grid cellci,j the
statistics grid stores the accuracy QoS function for that grid cell.
The only data structure maintained over time by the MobiQual
space partitioner is this grid. The partitioning generatedby the
GRIDREDUCE algorithm using anα× α grid is called an(α, l)-
partitioning.

3) Stage I: Building the Region Hierarchy:In the first stage,
we build a complete quad-tree over the grid. Each tree node
corresponds to a different region in the space, where regions
get larger as we move closer to the root node which represents
the whole space. Each level of the quad-tree is a uniform, non-
overlapping partitioning of the entire space. Through a post-order
traversal of the tree, we aggregate the accuracy QoS functions
associated with the grid cells for each node of the tree. The first
stage of the algorithm takesO(α2) time and consumesO(α2)

space.
4) Stage II: Drilling Down in the Hierarchy:In the second

stage, we start with the root node of the tree, i.e., the entire space.
At each step, we pick a visited tree node (initially only the root)
and replace it with its4 child nodes in the quad-tree. This process
continues until we reachl visited tree nodes (corresponding tol

shedding regions), assumingl mod 3 = 1. The crux of this stage
lies in how we choose a region to further partition during each
step. For this purpose we maintain a max-heap of all visited tree
nodes based on their accuracy gains, a metric we introduce below,
and at each step we pick the node with the highest accuracy gain.

Given a tree node, the accuracy gain is a measure of the
expected reduction in the query-result inaccuracy, achieved by
partitioning the node’s region into4 sub-regions corresponding
to its child nodes. For a tree nodet, the accuracy gainU [t] is
calculated as follows. LetE[t] be the average result inaccuracy
if we only had one shedding region that ist’s region. Formally,
we have5 :

E[t]← min∆t
U∗t (∆), s.t. fr(∆) ≤ z · fr(∆⊢)

Let Ep[t] be the average result inaccuracy if we had4 shedding
regions that correspond to the regions oft’s child nodesti, i ∈
[1..4]. Using n[t] to denote the number of mobile nodes in the
region of tree nodet, we have:

Ep[t] ← min{∆ti
}

4
X

i=1

U∗ti
(∆ti)

s.t.
4

X

i=1

n[ti] · fr(∆ti) ≤ z · n[t] · fr(∆⊢)

Then the differenceE[t]−Ep[t] gives us the accuracy gainU [t].
The computation ofE[t] andEp[t], and thus the accuracy gain

U [t], requires solving the problem of inaccuracy threshold setting
for a fixedl of shedding regions. Concretely, computation ofE[t]

requires to solve for nodet with l = 1 and computation ofEp[t]

requires to solve for the4 child nodes oft with l = 4. As a result,
the accuracy gain is computed in constant time for a tree node
t. The second stage of the GRIDREDUCE algorithm takesO(l ·

log l) time and consumesO(l) space, bringing the combined time
complexity toO(l · log l+α2) and space compexity toO(α2 + l).

VII. PUTTING IT ALL TOGETHER: MOBIQUAL SOLUTION

In this section we first formalize the problem of combining
QoS-aware update load shedding and QoS-aware query load
shedding. Then we present a fast greedy algorithm called the
M inimum quality loss per coststep (MQLS) to configure the
re-evaluation periodsPj , j ∈ [1..k] and the result inaccuracy
thresholds∆i, i ∈ [1..l] within the same framework, aiming at

5We are abusing the notation here to represent the aggregatedaccuracy QoS
function for the region of tree nodet by U∗

t (∆)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 8

achieving high overall QoS and better satisfying the freshness
and accuracy requirements of mobile location queries. Finally, we
describe how to set the throttle fractionz using a feedback-based
adaptive algorithm called THROTLOOP.

A. Problem Formalization

The objective of the combined load shedding problem is to
maximize the overall qualityΨ = 1

m (Ψv + Ψu) given in Equa-
tion 5. We now restate the processing constraint by combining
the load due to query re-evaluation and update processing.

Let zv denote the fraction of the query load retained for
a given set of re-evaluation periods{Pj}. We have: zv =
Pk

j=1 fc(Cj)/Pj
P

q∈Q fc({q})/τ⊢
. Similarly, let zu denote the fraction of the

update load retained for a given set of inaccuracy thresholds{∆i}.

We have:zu =
Pl

i=1 ni·fr(∆i)
n·fr(ǫ⊢)

. With these definitions, we can
state the processing constraint as follows:

zv + zu · γ ≤ z · (1 + γ) (11)

The parameterγ in Equation 11 represents the cost of
performing update processing with the setting of∀i, ∆i = ǫ⊢
compared to the cost of performing query re-evaluation withthe
setting of ∀j , Pj = τ⊢. In other words, for the ideal case the
query re-evaluations costs1 unit, whereas the update processing
costsγ ∈ (0,∞] units. Note thatγ is not a system specified
parameter and is learned adaptively as follows. LetU be the
observed cost of update processing andV be the observed cost
of query re-evaluation during the last adaptation period. Then
we haveγ =

U/zu

V/zv
. This assumes that the workload does not

significantly change within the time frame of the adaptation
period. Recall that the load shedding parameters are configured
after each adaptation period, thus yielding new values forzu and
zv (by way of changingPj ’s and∆i’s). Thus the combined load
shedding problem is formalized as follows:

maximizeΨ = 1
m

“

Pk
j=1 V

∗
j (Pj) +

Pl
i=1 U

∗
i (∆i)

”

subject to
Pk

j=1 fc(Cj)/Pj
Pk

j=1 fc(Cj)/τ⊢
+ γ ·

Pl
i=1 ni · fr(∆i)

n · fr(ǫ⊢)
≤ z · (1 + γ)

∀j∈[1..k], τ⊢ ≤ Pi ≤ τ⊣
∀i∈[1..l], ǫ⊢ ≤ ∆i ≤ ǫ⊣

Note that this is a non-linear program, since the constraints have
1/Pj terms and are not linear. We now describe MQLS − a
fast, greedy algorithm for setting the re-evaluation periods and
inaccuracy thresholds to solve the above stated QoS-aware load
shedding problem.

B. TheMQLS Algorithm

The basic principle of the MQLS algorithm is to start with the
ideal case of∀j , Pj = τ⊢ and ∀i, ∆i = ǫ⊢ and incrementally
reduce the load toz times that of the ideal case by repetitively
increasing the re-evaluation period or the inaccuracy threshold
that gives the smallest quality loss per unit cost reduction. The
algorithm is greedy in nature, since it takes the minimum quality
loss per cost step. Concretely, we partition the domain of re-
evaluation periods and inaccuracy thresholds intoβ segments,

Algorithm 1: The MQLS Algorithm
Input: z: throttle fraction;cv: period incr.;cu: threshold incr.
Output: Pj , j ∈ [1..k]: periods;∆i, i ∈ [1..l]: thresholds
MQLS(z, cv, cu)
(1) H: empty, min heap ofSv

j ’s andSu
i ’s

(2) V ←
P

q∈Q
fc({q})/τ⊢, V⊣ ← z ·V {query expend., budget}

(3) U ← n · fr(ǫ⊢), U⊣ ← z · U {update expend., budget}
(4) for j = 1 to k {init. Sv

j ’s, add toH}

(5) Sv
j ←

V
∗
j (τ⊢+cv)−V

∗
j (τ⊢)

fc(Cj)·
“

1
τ⊢+cv

−
1

τ⊢

” {initial query qlpc}

(6) Sv
j ← Sv

j /V⊣ {normalize}
(7) Pj ← τ⊢, H.INSERT(Sv

j) {add query qlpc}
(8) for i = 1 to l {init. Su

j ’s, add toH}

(9) Su
i ←

U
∗
i (ǫ⊢+cu)−U

∗
i (ǫ⊢)

ni·(fr(ǫ⊢+cu)−fr(ǫ⊢))
{initial update gain}

(10) Su
i ← γ−1 · Su

i /U⊣ {normalize}
(11) ∆i ← ǫ⊢, H.INSERT(Su

i) {add update gain}
(12) repeat {start increment loop}
(13) S ← H.POPMAX () {next Pj or ∆i to incr.}
(14) if S is for a period,S = Sv

j

(15) V ← V −
fc(Cj)

Pj
+

fc(Cj)

Pj+cv
{query expend.}

(16) Pj ← Pj + cv {incrementPj}
(17) if Pj ≤ τ⊣ {further incr. possible}

(18) Sv
j ←

V
∗
j (Pj+cv)−V

∗
j (Pj)

fc(Cj)·

„

1
Pj+cv

−
1

Pj

« {new query qlpc}

(19) Sv
j ← Sv

j /V⊣ {normalize}
(20) H.INSERT(Sv

j) {insert the query qlpc}
(21) else if S is for a threshold,S = Su

i

(22) U ← U−ni ·fr(∆i)+ni ·fr(∆i+cu) {update expend.}
(23) ∆i ← ∆i + cu {increment∆i}
(24) if ∆i ≤ ǫ⊣ {further incr. possible}
(25) Su

i ←
U

∗
i (∆i+cu)−U

∗
i (∆i)

ni·(fr(∆i+cu)−fr(∆i))
{new update qlpc}

(26) Su
i ← γ−1 · Su

i /U⊣ {normalize}
(27) H.INSERT(Su

i) {insert the update qlpc}
(28) until V + γ · U ≤ V⊣ + γ · U⊣ {budget reached}

or H.SIZE() = 0 {all period and thresholds maxed}

such that we increase thePj ’s and ∆i’s in increments of size
cv = (τ⊣ − τ⊢)/β and cu = (ǫ⊣ − ǫ⊢)/β, respectively. The
MQLS algorithm maintains a min. heap that stores aqlpc (quality
loss per unit cost6) value for each re-evaluation period and each
inaccuracy threshold. Theqlpc value of a re-evaluation period (or
an inaccuracy threshold) gives the quality loss per unit cost for
increasing it bycv units (orcu units). Theqlpc value is denoted
by Sv

j for query groupCj and Su
i for shedding regionAi. We

have:

Sv
j =

X

q∈Q

fc({q}) ·
V∗j (Pj + cv)− V∗j (Pj)

fc(Cj) · (
1

Pj+cv
− 1

Pj
)

(12)

Su
i = γ · n · fr(ǫ⊢) ·

U∗i (∆i + cu)− U∗i (∆i)

ni · (fr(∆i + cu)− fr(∆i))
(13)

The nominators of the second components in the above equations
represent the changes in the quality due to the increment, whereas
the denominators represent the changes in the cost. Note that the
first components of the above equations are used to normalizethe
costs in the denominators, so thatSv

j ’s andSu
i ’s can be compared.

When the MQLS algorithm starts, the current load expenditure
of the system, which is the sum of the load due to update and
query load shedding appropriately weighted byγ, is above our
load budget imposed by the throttle fractionz. The algorithm iter-
atively pops the topmost element of the min. heap and depending

6This is qlpc for a query group or for a region, and not for a query as it
was first introduced in Section V-B. The core concept is the same.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 9

on whether we have a re-evaluation period or inaccuracy threshold
makes the increment using eithercv or cu. Theqlpc value of the
popped element is updated based on Equation 12 (or Equation 13)
and is put back into the heap unless no further increments are
possible. The algorithm runs until the load expenditure of the
system is within the budget or all the re-evaluation periodsand
inaccuracy thresholds hit their maximum value. In the latter case
the load cannot be shed to meet the processing constraint and
random dropping of incoming updates as well as delay in query
re-evaluations will unavoidably take place. The pseudo-code of
MQLS is given in Algorithm 1.

The total number of greedy steps the algorithm can take is
given byβ · (l+k), which happens when all re-evaluation periods
and inaccuracy thresholds have to be increased to their maximum
values. Each greedy step takesO(log (l + k)) time, since the
min. heap hasl + k elements and the heap operations used take
logarithmic time on the heap size. The final time complexity of
the MQLS algorithm directly follows asO(β · (l+k) · log (l + k))

and the space complexity asO(l + k).

C. Setting the Throttle Fraction withTHROTLOOP

We set the throttle fraction adaptively based on feedback with
regard to how well the system is performing in terms of shedding
the correct amount of load, using the THROTLOOP algorithm.
When the throttle fractionz is larger than what it should be, the
system will not be able to re-evaluate all queries at all of their
re-evaluation points and/or will not be able to admit all position
updates into the system. Letσv represent the fraction of query
load imposed by the set of re-evaluation periods that was actually
handled with respect to query processing. This can be calculated
by observing the number of query re-evaluations performed and
skipped during the last adaptation period, appropriately weighted
by query costs. Similarly, letσu represent the fraction of update
load imposed by the set of inaccuracy thresholds that was actually
handled with respect to update processing. This can be calculated
by observing the number of updates admitted and dropped since
the last adaptation period. Onceσv andσu are computed, we can
capture the performance of the system in handling the amountof
load imposed by the current throttle fractionz as follows:

φ =
zv · σv + γ · zu · σu

z · (1 + γ)
(14)

The denominator of Equation 14 is the amount of load the
system was supposed to handle (recall right-hand side of Equa-
tion 11) and the nominator is the actual amount of load that was
handled (left-hand side of Equation 11, adjusted byσv andσu).
In order to take into account the cases wherez is lower than what
it should ideally be, we also consider the utilization of thesystem,
µ. When we have an overshotz the utilization of the system will
be1, whereas it would be less that1 when we have an undershot
z since the system would be idle at times not processing any
queries or updates. As a result we adjustz as follows for the two
cases:

z ←

(

z · φ µ = 1

min(1, z/µ) µ < 1
(15)

This concludes our description of the MobiQual system.

VIII. E XPERIMENTAL EVALUATION

We evaluate MobiQual in two parts. First, we evaluate Mo-
biQual without query load shedding and with no user defined

Fig. 4. The road map used in the
experiments, Chamblee, GA, USA

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u
a
lit

y
 o

f
s
e
rv

ic
e

normalized re−evaluation delay (or position error)

y
0.5

 = 0.1

y
0.5

 = 0.25

y
0.5

 = 0.5

y
0.5

 = 0.75

y
0.5

 = 0.9
f(x) = ed*x

a

 = y

d = log(10
−5

), f(1) = 10
−5

a = log
0.5

(log(y
0.5

)/d)

Fig. 5. Example QoS functions, with
different mid-point QoS values (y0.5)

QoS specifications7. The motivation behind this mode, named
MobiQual-Light, is the fact that update load shedding aspect
of MobiQual is completely transparent to the inner workings
of the query engine. It can integrate cleanly and effortlessly
with any mobile CQ engine that accepts position updates from
mobile nodes to evaluate spatial CQs. The intelligent update load
shedding capability by itself provides substantial improvement
in overall query result accuracy and is a significant contribution
of this work, and has wide applicability. Second, we evaluate
MobiQual in its entirety, with update and query load shedding
capabilities as well as accuracy and freshness-based QoS support.
The latter study illustrates the drastic improvements thatcould be
achieved by minimally modifying the query engine to integrate
query load shedding and QoS support.

A. Experimental Setup

To create the mobile node movement trace used in the experi-
ments, we used a real-world road map from the Chamblee region
of the state of Georgia, USA. The trace covers a region of around
200km2 and part of it is shown in Figure 4. We used real-world
traffic volume data at the granularity of specific road types (such
as expressway, arterial, collector), taken from [24], to simulate
cars going on roads. The trace contains around15K mobile nodes.
The default re-evaluation period range used for the experiments
is [τ⊢, τ⊣] = [1, 10] seconds, whereas the inaccuracy threshold
range used is[∆⊢, ∆⊣] = [5, 100] meters. The increments used
by the MQLS algorithm are determined usingβ = 100, i.e.,
the maximum number of increments possible is100 for each
re-evaluation period and inaccuracy threshold. The queries used
in the experiments are range queries. The query distribution
is proportional to the object distribution. Inverse and random
distributions were also used, with similar results. The query side
lengths were randomly chosen from the range[0, 1000] meters.

A number of system and workload parameters were varied in
the course of the experiments to understand their impact on the
query result quality and running-time performance of the Mobi-
Qual system. These include the number of query groups used, i.e.,
the k parameter used by the QLBC algorithm (default value:16),
number of regionsl used by theGridReduce algorithm (default
value: 250), the number of queries to number of objects ratio
(default value:0.01), the emulated capacity of the system (default:
z = 0.5), and the QoS functions specified by the queries. Figure 5
gives the general template of the QoS functions that were used for

7By settingU∗
i (∆i) = 1 + (∆⊢ −

P

q∈Q mq(i) · ∆i)/(∆⊣ − ∆⊢) and
V∗

j (Pj) = 1

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 10

bothVq (freshness) andUq (accuracy) components of a queryq’s
QoS specification functionSq, whereas theα value that adjusts
the relative importance of the freshness and accuracy components
of quality were chosen at random from the range[0, 1]. The
QoS functions were approximated by10 linear segments and a
parameter calledmid-point QoS thresholdwas used to pick a
randomVq or Uq component from the set of available functions,
a subset of which is shown in Figure 5. Any givenVq or Uq is
chosen by randomly picking a number, sayy0.5, between0 and
the mid-point quality threshold, and determining the QoS function
whose value for the mid-point of its domain is equal toy0.5 (and
matching the template given in Figure 5).

IX. M OBIQUAL -L IGHT: EXPERIMENTAL EVALUATION

In this section we present experimental results on the effective-
ness of the MobiQual-Light load shedder in cutting the cost of
receiving and processing position updates in mobile CQ systems,
while minimally affecting the accuracy of the query results. We
compare our MobiQual-Light load shedder with the following
alternatives:

− Random Drop: The excessive position updates are not
admitted to the input FIFO queue and are dropped.

− Uniform ∆: A uniform inaccuracy threshold∆ is used to
retain only throttle fraction times the original number of lo-
cation updates. The THROTLOOP algorithm is still used, but
the approach is not region-aware and thus space partitioning
and inaccuracy threshold settings are not performed.

− Grid-Light : A downgraded version of the MobiQual-Light
load shedder, lacking the GRIDREDUCE algorithm which
determines the shedding regions based on(l, α)-partitioning.
Instead, it uses equally-sized shedding regions based on an
l-partitioning.

A. Evaluation Metrics

We define two sets of evaluation metrics. The first set of
evaluation metrics is used to measure the accuracy of the query
results under load shedding and the second set of metrics deals
with the cost of performing load shedding.

1) Query-result Accuracy: Mean Containment Error, denoted
by EC

rr, defines the average containment error in query results.
Containment error for a query result is defined as the ratio ofthe
number of missing and extra items in the result to the correct
result set size. LetQ denote the set of queries,R(q) denote the
result set for a queryq ∈ Q under load shedding, andR∗(q)
denote the correct result set under∀i∈[1..l] ∆i = ∆⊢. Then:

EC
rr =

X

q∈Q

|R∗(q) \R(q)|+ |R(q) \R∗(q)|
|Q| · |R∗(q)|

Mean Position Error, denoted byEP
rr, defines the average position

error in query results. Position error for a query result is defined
as the average error in the positions of mobile nodes in the
query result compared to the correct positions. Letp(o) denote
the position of a mobile nodeo in a query resultq under
load shedding andp∗(o) denote the correct position ofo under
∀i∈[1..l] ∆i = ∆⊢. We have:

EP
rr =

X

q∈Q

X

o∈q

|p(o)− p∗(o)|
|Q| · |R(q)|

Fig. 6. Position Error vs. throttle
fraction

Fig. 7. Containment Error vs. throttle
fraction

Standard Deviation of Containment Error, DC
ev, and Coefficient

of Variance of Containment Error, CC
ov, are fairness metrics

that measure the variation among the query results in terms of
containment error. We haveCC

ov = DC
ev/EC

rr. These two metrics
can also be extended to the position error.

2) Cost of Load Shedding:To evaluate the cost incurred by
load shedding, we measurei) the time it takes to execute the adap-
tation step that involves running the THROTLOOP, GRIDREDUCE,
and MQLS algorithms andii) the number of shedding regions that
should be known by a mobile node on average. The former metric
measures the cost of load shedding from the perspective of the
server, whereas the latter measures it from the perspectiveof the
mobile node as well as the wireless network.

B. Experimental Results

We present the set of experimental results in two groups. The
first group of results are on the query-result accuracy and high-
light the superiority of MobiQual-Light compared to competing
approaches for shedding position update load. The second group
of results are on the additional cost brought by the MobiQual-
Light load shedder, and show that the overhead is minimal.

1) Query-result Accuracy:We study the impact of several
system and workload parameters on the query-result accuracy
and the relative advantage of MobiQual-Light over competing
approaches.

a) Impact of the Throttle Fraction:The graphs in Fig-
ures 6 and 7 plot the mean position errorEP

rr and mean con-
tainment errorEC

rr as a function of the throttle fractionz, for the
Proportional query distribution. The lefty-axis is used to show the
relative values (solid lines) with respect to the error of MobiQual-
Light and the righty-axis is used to show the absolute errors
(dashed lines). Bothy-axes are in logarithmic scale. We make
three observations from the figure.

First, the MobiQual-Light outperforms all other approaches
throughout the entire throttle fraction range. Random Dropper-
forms the worst, followed by Uniform∆ and Grid-Light. At
z = 0.75, Random Drop has300 times the mean position error
of MobiQual-Light, Uniform∆ has40 times that of MobiQual-
Light, and Grid-Light has2 times that of MobiQual-Light. At
z = 0.5, Random Drop, Uniform∆, and Grid-Light has10, 2,
and 1.08 times theEP

rr of MobiQual-Light. The results for the
mean containment errorEC

rr are similar. Second, we observe that
as the throttle fractionz gets smaller, the relative errors approach
to 1, while at the same time the absolute errors increase and finally
merge. The increasing errors are the result of decreasing position
update budget, whereas the relative errors decrease to1 due to
the maximum inaccuracy bound∆⊣. When the update budget

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 11

gets smaller than the minimum update expenditure of the system
achieved at∀i∈[1..l] ∆i = ∆⊣, all of the three approaches that
use inaccuracy thresholds converge at this same solution. For this
experimental setting, this convergence occurs aroundz = 0.25.
Last, we observe very high (in the order of103’s) relative errors
for Random Drop and Uniform∆ as z gets closer to1. This
seems surprising at first, as for the case ofz = 1 (not shown
in the figures) all approaches have zero error. However, a slight
decrease in the throttle fraction, that is when we havez = 1− ǫ,
introduces some error in the query results for the case of Random
Drop and Uniform∆, whereas it introduces almost no error in
the case of MobiQual-Light. This is because MobiQual-Lightcuts
the required fraction of position updates from the regions that do
not contain any queries. Close to none error of MobiQual-Light
nearz = 1 boosts the relative error results for Random Drop and
Uniform ∆.

b) Impact of the Number of Shedding Regions:The graphs
in Figure 8 plot the relative mean containment errorEC

rr of
Grid-Light with respect to MobiQual-Light as a function of the
number of shedding regionsl, for different query distributions.
The throttle fraction is set asz = 0.5. We observe that Grid-Light
has up to35% higher containment error in query results compared
to MobiQual-Light. The improvement provided by MobiQual is
more pronounced when Inverse query distribution is used and
is smallest for the case of Proportional query distribution. As
l increases, the flexibility provided by having a larger number
of shedding regions improves the error incurred by MobiQual-
Light at a better rate than Grid-Light, since MobiQual utilizes
an intelligent space partitioning algorithm. However, when l gets
too large the grid partitioning of Grid-Light achieves enough
granularity to catch MobiQual-Light in terms of the query-
result inaccuracy, as observed form the figure. This is because
after a certain level of granularity is reached, more fine-grained
partitioning is of no use, since the accuracy gain is close to
zero for all of the shedding regions. The graphs in Figure 9
attest to this latter intuition. They plot the mean containment
error EC

rr of MobiQual-Light as a function of the number of
shedding regions, for different throttle fractions. We seethat the
error reduction rate decreases with increasingl and the errors
stabilize. The reduction in error is more pronounced for larger z

values. Note that the default setting ofl = 250 for the number of
shedding regions is rather conservative based on Figure 9, yet it
still performs significantly better than the competing approaches
as illustrated by Figure 7. This conservative setting ofl also results
in a lightweight load shedding solution, as we illustrate later in
this section.

2) Cost of Load Shedding:The cost of load shedding consists
of i) configuring the parameters of MobiQual-Light on the server
side, which includes setting the throttle fraction, shedding regions,
and update throttlers,ii) broadcasting the subset of shedding
regions and update throttlers that correspond to the coverage area
of each base station, andiii) installing the new set of shedding
regions and update throttlers on the mobile node side.

a) Server Side Cost:The graphs in Figure 10 plot the
time it takes to execute the THROTLOOP, GRIDREDUCE, and
MQLS algorithms as a function of the number of shedding
regions l, for different numbers of cells (α2) for the statistics
grid. For the default parameters ofl = 250 and α = 128, the
configuration of MobiQual-Light takes around40 msecs. This
will enable frequent adaptation, even though for most applications

0 200 400 600 800 1000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

number of shedding regions, l

E
rrC

 o
f

L
ir

a
-G

ri
d

 r
e
la

ti
v
e
 t

o
 L

ir
a

Proportional

Random

Inverse−prop.

Query Dist.

Fig. 8. EC
rr of Grid-Light w.r.t.

to MobiQual-Light vs. # of shedding
regions

0 100 300 500 700 900
10

−4

10
−3

10
−2

10
−1

10
0

number of shedding regions, l

m
e

a
n

 c
o

n
ta

in
m

e
n

t
e

rr
o

r,
 E

rrC

z = 0.3

z = 0.5

z = 0.7

z = 0.9

Fig. 9. Containment Error of
MobiQual-Light vs. # of shedding re-
gions

128 256 512 1024 2048 4096 8192
0

500

1000

1500

number of shedding regions, l

a
d

a
p

ta
ti

o
n

 t
im

e
 (

m
s

e
c

s
)

α = 128

α = 256

α = 512

α = 1024

Fig. 10. Server side cost of configuring MobiQual-Light

that involve monitoring cars or pedestrians it is unlikely that the
update load will fluctuate with a period less than tens of minutes.
Even for an adaptation period of10 minutes, the configuration of
MobiQual-Light will take only6.6·10−5 fraction of the adaptation
period. Note that these values are for a region of size200km2. If
we have a16 times larger region of size3200km2 (≈ 10 times the
size of Atlanta, the capital city of the state of Georgia, USA), then
we should havel = 16 · 250 = 4000, and fromα = 2⌊log2(10·

√
l)⌉

we should haveα = 512. For this setting the configuration of
MobiQual-Light takes500 msecs. This corresponds to8 · 10−4

fraction of a10 minute adaptation period. These numbers show
that MobiQual-Light is lightweight and introduces little overhead
on the server side.

b) Messaging Cost:Table II shows the average number
of shedding regions that should be known to a base station as
a function of the base station coverage area radius. However,
in reality base stations have smaller coverage regions at places
where the number of users is large (urban areas) and larger
coverage regions at places where the number of users is small
(suburban areas) [25]. This nature of base stations match perfectly
with MobiQual’s space partitioning scheme, since the number of
partitions are usually larger for dense areas and the small base
station coverage areas help decreasing the average number of
shedding regions known to a mobile node. Following this logic,
we have used a node density dependent base station placement
scheme and found that on the average each node and thus each
base station should know around41 shedding regions. Assuming
a shedding region (which is square in shape) is represented by
3 floats and an update throttler is represented by a single4 byte
float, the size of the broadcast data sent by a base station to all
nodes in its coverage area to install the shedding regions and
update throttlers is around41 · (3 + 1) · 4 bytes =656 bytes on
average. To asses the messaging cost of MobiQual, compare this

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 12

base station radius (km) 1.0 2.0 3.0 4.0 5.0

of ∆i’s per node 3.1 12.5 28.2 50.2 78.5
41 ∆i’s on average, takes41 · (3 + 1) · 4 bytes =656 bytes.

TABLE II

NUMBER OF SHEDDING REGIONS PER BASE STATION

number to1472 bytes, which is the maximum payload available to
an UDP packet over Ethernet with a typical MTU of1500 bytes.
When MobiQual reconfigures the load shedding parameters, the
new information is installed on all mobile nodes by using an
average of one wireless broadcast packet per base station.

c) Mobile Node Side Cost:Since the total number of
shedding regions known to a mobile node at any time is only
around 41, MobiQual-Light does not put a major burden on
mobile nodes in terms of memory consumption or processing
load. By employing a tiny5 × 5 grid index on the mobile node
side, the shedding region that contains the current position of
the mobile node can be found quickly. Since MobiQual does
not incur additional mobile node side cost over MobiQual-Light,
we conclude that MobiQual will work on computationally weak
mobile nodes without any problem.

X. M OBIQUAL : EXPERIMENTAL EVALUATION

In this section we compare the performance of the MobiQual
system in its entirety, with both update and query load shedding
as well as per-query QoS specification support, to a number of
other alternatives. These are:

− Query-only load shedding: QoS-aware differentiated load
shedding with respect to re-evaluation periods only (see
Section V) and uses a fixed inaccuracy threshold ofǫ⊢.

− Update-only load shedding: QoS-aware differentiated load
shedding with respect to inaccuracy thresholds only (see
Section VI) and can be seen as the QoS-aware extension
of MobiQual-Light. Thus we name it as MobiQual-Light+.

− Single ∆-P: Combined QoS-aware query and update
load shedding, but without query grouping (QLBC algo-
rithm from Section V-C) and space partitioning (extended
GRIDREDUCE algorithm from Section VI-B). It represents
a special case of the MobiQual system withk = l = 1.

A. Evaluation Metrics

We evaluate the MobiQual system using four main evaluation
metrics. These include:

i) The overall quality metricΨ, as defined by Equation 5.
ii) The mean period delayD, which is defined as the average

difference between the ideal case periodτ⊢ and the assigned
period of queries,τq = Pj for q ∈ Cj . The mean period
delay is formulated as:
D = 1

m

P

q∈Q(τq − τ⊢)

iii) The mean position errorR, which is defined as the average
error in the positions of the mobile nodes within query
results, relative to the error for the ideal case of∀i∈[1..l] ∆i =

ǫ⊢. It is formulated as:
R = 1

m

P

q∈Q(ǫq − ǫ⊢)

iv) The running time of the adaptation step, which includes con-
figuring a new set of re-evaluation periods and in-accuracy
thresholds using the MQLS algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

throttle fraction, z

Ψ
,

a
v

e
ra

g
e

 Q
o

S

 Single ∆-P
MobiQual-Light+

Query only
MobiQual

Fig. 11. Overall result quality as a
function of the throttle fraction

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

throttle fraction, z

D
,
m

e
a
n

 p
e
ri

o
d

 d
e
la

y
 (

s
e
c
)

Single ∆-P
MobiQual-Light+

Query only
MobiQual

Fig. 12. Mean period delay as a
function of the throttle fraction

B. Experimental Results

We divide the experimental results into three parts. The first
part deals with the impact of the amount of load to be shed on the
query result quality. The second part deals with the performance
of MobiQual under different query loads and the impact of the
number of query groups on the query result quality as well as
on the time it takes to perform the adaptation step. The third
part deals with the impact of the QoS specifications on the
performance of MobiQual.

1) Impact of the Throttle Fraction:The graphs in Figure 11
plot the overall quality of the query results as a function of
the throttle fraction (i.e., at different load shedding levels) for
the competing approaches. At a given load shedding level, if
1 − z fraction of the load cannot be shed by a load shedding
algorithm, then the QoS value is not plotted for thatz value,
and for smallerz values thereof. For instance, we observe from
Figure 11 that, for the default settings, the query-only approach
can only support load shedding forz ≥ 0.7 and MobiQual-Light+

for z ≥ 0.5, whereas MobiQual and Single∆-P can support
z ≥ 0.2. MobiQual significantly outperforms update-only and
query-only load shedding schemes, as it is observed from the
rapidly declining QoS values of the latter two approaches with
decreasingz. Furthermore, MobiQual outperforms Single∆-P, for
a wide range ofz values. While shedding60% (z = 0.4) of the
load, MobiQual is able to keep the QoS aroundΨ = 0.9, whereas
this value is only around0.75 for the Single∆-P approach.
Similarly, MobiQual manages to sustain a QoS value ofΨ = 0.7

for 70% load shedding, compared to a mere0.4 for Single ∆-
P. The two approaches both hit theΨ = 0 boundary when
MobiQual is forced to set all query re-evaluation periods and
inaccuracy thresholds to their maximum value, at which point
there is no difference between the two. The superior performance
of MobiQual compared to Single∆-P illustrates the strength
of the differentiated load shedding concept, whereas the poor
performances of update-only and query-only load shedding attest
to the importance of performing combined query and update load
shedding.

The graphs in Figures 12 and 13 plot the mean period
delay and mean position error as a function of the throttle
fraction for competing approaches, respectively. Note that the
query-only approach has zero mean position error (as observed
from Figure 13), whereas the update-only approach has zero
mean period delay (as observed from Figure 12). However,
since a good overall quality requires balancing freshness and
accuracy, these two approaches do not provide good overall QoS
as observed from Figure 11. The mean period delay of Single
∆-P stays slightly above that of MobiQual forz > 0.3. After

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 13

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

throttle fraction, z

R
,
m

e
a
n

 p
o

s
it

io
n

 e
rr

o
r

(m
)

 Single ∆-P
MobiQual-Light+

Query only
MobiQual

Fig. 13. Mean position error as a
function of the throttle fraction

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of queries to objects ratio, |Q|:|O|

Ψ
,
a
v
e
ra

g
e
 Q

o
S

MobiQual-Light+

Query only
MobiQual

Fig. 14. Overall result quality with
changing query workload

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

throttle fraction, z

Ψ
,

a
v

e
ra

g
e

 Q
o

S

MobiQual,k=1
MobiQual,k=2
MobiQual,k=4
MobiQual,k=8
MobiQual,k=16

Fig. 15. The impact of number of
query groups on result quality

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

110

120

130

throttle fraction, z

ru
n

n
in

g
 t

im
e
 (

m
il
li
s
e
c
s
)

MobiQual,k=1
MobiQual,k=2
MobiQual,k=4
MobiQual,k=8
MobiQual,k=16

Fig. 16. Adaptation time with dif-
ferent number of query groups

this point Single∆-P registers lower mean period delays. This
is because further increasing the single re-evaluation period has
diminishing benefit in terms of the qlpc metric, since Single
∆-P cannot provide differentiated load shedding. In contrast,
the MobiQual approach can locate queries that can tolerate
further staleness with less impact on the QoS value, due to
the QLBC algorithm, and thus can increase the re-evaluation
periods further for such queries. Even though this results in
higher mean period delay compared to Single∆-P, it translates
into a higher overall QoS due to a better balance between query
and update load shedding. It is observed from Figure 13 that
MobiQual consistently outperforms Single∆-P in terms of the
mean position error. This is not because MobiQual sheds less
update load, but it is because MobiQual sheds the update load
from regions that has lesser impact on the query results, dueto
the QoS-aware partitioning algorithm it employs.

2) Impact of the # of Queries and Query Groups:The graphs
in Figure 14 plot the overall QoS of the query results as a function
the number of queries to number of mobile nodes ratio, for Mo-
biQual vs. query-only and update-only (MobiQual-Light+) load
shedding. The throttle fraction is set to0.75 for this experiment.
It is interesting to observe that as the number of queries increase,
the update-only load shedding loses its advantage over query-only
load shedding. This is because with increasing number of queries,
the dominant cost becomes the query re-evaluation, since the full
update load does not depend on the number of queries. This shows
the importance of performing combined query and update load
shedding, which is effective independent of the number of queries
or the number of mobile nodes, as evidenced by the superior
performance of MobiQual compared to query-only and update-
only approaches with changing number of queries to number of
mobile nodes ratio (see Figure 14).

An important parameter that impacts the performance of the
MobiQual system is the number of query groups,k. As discussed
in Section III-D, in general the higher the number of query groups

0 0.2 0.4 0.6 0.8 1
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

mid-point freshness QoS threshold

Ψ
,
a

v
e

ra
g

e
 Q

o
S

MobiQual-Light+

Query only
Single ∆-P
MobiQual

Fig. 17. Query result quality for
varying freshness QoS specs.

0 0.2 0.4 0.6 0.8 1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

mid-point accuracy QoS threshold

Ψ
,
a

v
e

ra
g

e
 Q

o
S

MobiQual-Light+

Query only
Single ∆-P
MobiQual

Fig. 18. Query result quality for
varying accuracy QoS specs.

the more fine grained is the differentiated load shedding. The only
limiting factor in increasing the value ofk is the time it takes to
execute the adaptation step, as the computational complexity of
the MQLS algorithm is dependent onk. However, increasing the
number ofk has diminishing return in terms of the overall QoS,
as shown by Figure 15, since the query groups become more and
more homogeneous in terms of the QoS functions of the queries
contained within. The graphs in Figure 15 plot the overall QoS as
a function of the throttle fraction (x-axis is in logarithmic scale)
for different k values. This experiment is run for1000 continual
queries. We clearly see from the figure that the gain in QoS when
going fromk = 8 to k = 16 is significantly lower than the gain
in QoS when going fromk = 1 to k = 2. This shows that having
query groups smaller than50-60 queries does not bring much gain
in overall query result quality. Even though small query groups
are unnecessary, the MQLS algorithm can support largek values
with low overhead. Figure 16 shows that fork = 16 andz = 0.5

the adaptation step takes around110 milliseconds. In a mobile
CQ system, the change in the workload in terms of the number of
CQs and mobile nodes is not spontaneous, and significant shifts in
the workload is likely to happen within minutes. Thus the time it
takes to run the adaptation step in order to configure the new set of
re-evaluation periods and inaccuracy thresholds is relatively small
compared to the adaptation period, resulting in a very lightweight
load shedding scheme.

3) Impact of the QoS Specifications:The graphs in Fig-
ures 17 and 18 plot the overall query result quality as a function
of the mid-point QoS threshold used for the freshness component
of the QoS specifications and the accuracy component of it,
respectively. Decreasing values along thex-axis represent QoS
specifications with increasingly stringent freshness components
for Figure 17 and increasingly stringent accuracy components for
Figure 18. A high throttle fraction value of0.75 was used to make
sure that all competing approaches can shed the required fraction
of the load. Note that update-only load shedding (MobiQual-
Light+) is indifferent to the freshness components of the QoS
specifications, whereas query-only load shedding is indifferent
to the accuracy components. As a result, the lines for update-
only and query-only load shedding are flat in Figures 17 and 18,
respectively. We observe from Figure 17 that MobiQual is very
robust to changes in the freshness components of the QoS
specifications and shows a smaller decrease in overall QoS with
increasing intolerance to staleness in QoS specifications,com-
pared to alternative approaches. It provides up to12% better QoS
compared to query-only load shedding and5% better compared
to Single∆-P. These values are valid for shedding 25% percent
of the load. The improvement provided by MobiQual over the
closest competitor reaches 80% when shedding70% of the load,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 14

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

mid-point freshness QoS threshold

Ψ
,
a

v
e

ra
g

e
 Q

o
S

z=0.3
z=0.5
z=0.7
z=0.9

0.6

Fig. 19. Result quality under chang-
ing z & freshness QoS specs.

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

mid-point accuracy QoS threshold

Ψ
,

a
v

e
ra

g
e

 Q
o

S

z=0.3
z=0.5
z=0.7
z=0.9

Fig. 20. Result quality under chang-
ing z and accuracy QoS specs.

and for a mid-point freshness QoS threshold of 0.75 (see previous
Figure 11). The results presented in Figure 18 for the mid-point
accuracy QoS threshold are very similar in nature.

In Figures 19 and 20 we further study the sensitivities of the
MobiQual system to changes in the QoS specifications of the
queries. We do this by looking at the change in the overall QoS
of the query results at different levels of load shedding, under
changing values of the mid-point QoS thresholds. We observe
from Figures 19 that even for a mid-point freshness QoS threshold
of 0.1, which implies thatVq(

τ⊢+τ⊣
2) is always less than0.1 for

a query q, MobiQual is able sustain an overall QoS value of
> 0.78 for z ≥ 0.5 (shedding at most half of the load). Similarly,
for a mid-point accuracy QoS threshold of0.1, which implies that
Uq(

ǫ⊢+ǫ⊣
2) is always less than0.1 for a queryq, MobiQual is able

sustain an overall QoS value of> 0.85 for z ≥ 0.5. The overall
QoS sharply drops when shedding more than half of the load,
and MobiQual becomes more sensitive to increasing intolerance
to staleness and inaccuracy in QoS specifications of queries. This
is clearly observed from the increasing gap between the QoS lines
in Figures 19 and 20, and their increasing slope with decreasing
values of the throttle fraction. Yet, even for shedding70% of
the load at the most stringent configurations of the freshness and
accuracy components of the QoS specifications, MobiQual is able
to provide an impressive QoS value of> 0.6.

XI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented MobiQual, a load shedding
system aimed at providing high quality query results in mobile
continual query systems. MobiQual has three unique properties.
First, it uses per-query QoS specifications that characterize the
tolerance of queries to staleness and inaccuracy in the query
results, in order to maximize the overall QoS of the system.
Second, it effectively combines query load shedding and update
load shedding within the same framework, through the use of
differentiated load shedding concept. Finally, the load shedding
mechanisms used by MobiQual are lightweight, enabling quick
adaption to changes in the workload, in terms of the number of
queries, number of mobile nodes or their changing movement
patterns. Through a detailed experimental study, we have shown
that the MobiQual system significantly outperforms approaches
that are based on query-only or update-only load shedding, as
well as approaches that do combined query and update load
shedding but lack the differentiated load shedding elements of
the MobiQual solution, in particular the query grouping andspace
partitioning mechanisms.

There are several interesting issues for future work. (1) Inthis
paper, we only considered range queries. However, MobiQual
can be applied to kNN queries as well. There are various query

processing approaches where kNN queries are first approximated
by circular regions based on upper bounds on thekth dis-
tances [13]. Using such approximations, kNN queries can also
take advantage of MobiQual. Supporting kNN queries may also
require taking into consideration topology of the road network, as
it is often more meaningful to define nearnest neighbors in terms
of the network distance rather than the euclidean distance.(2)
MobiQual should be able to dynamically adjust the values of the
l (number of shedding regions) andk (number of query groups)
parameters as the workload changes. An overestimated valuefor
these paramters means lost opportunity in terms of minimizing
the cost of adaptation, whereas an underestimated value means
lost opportunity in terms of maximizing the overall QoS. In this
paper we have shown that the time it takes to run the adaptation
step is relatively small compared to the adaptation period in most
practical scenarios. This means relatively aggressive values forl
andk could be used to optimize for QoS without worrying about
the cost of adaptation. We leave it as a future work to adapt these
parameters dynamically.

REFERENCES

[1] “NextBus,” http://www.nextbus.com/, January 2004.
[2] “Google RideFinder home page,” http://labs.google.com/ridefinder,

Febuary 2006.
[3] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha, “Updating and

querying databases that track mobile units,”Springer Distributed and
Parallel Databases, vol. 7, no. 3, pp. 257–387, 1999.

[4] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing
the positions of continuously moving objects,” inACM International
Conference on Management of Data, 2000.

[5] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S.E. Hambr-
usch, “Query indexing and velocity constrained indexing: Scalable tech-
niques for continuous queries on moving objects,”IEEE Transactions
on Computers, vol. 51, no. 10, pp. 1124–1140, 2002.

[6] Y. Tao, D. Papadias, and J. Sun, “The TPR∗-Tree: An optimized
spatio-temporal access method for predictive queries,” inInternational
Conference on Very Large Data Bases, 2003.

[7] M.-L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo, “Supporting
frequent updates in r-trees: A bottom-up approach.” inInternational
Conference on Very Large Data Bases, 2003.

[8] C. S. Jensen, D. Lin, and B. C. Ooi, “Query and update efficient B+-tree
based indexing of moving objects,” inInternational Conference on Very
Large Data Bases, 2004.

[9] M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: Scalable incremental
processing of continuous queries in spatio-temporal databases,” inACM
International Conference on Management of Data, 2004.

[10] H. Hu, J. Xu, and D. Lee, “A generic framework for monitoring
continuous spatial queries over moving objects,” inACM International
Conference on Management of Data, 2005.

[11] K.-L. Wu, S.-K. Chen, and P. S. Yu, “Incremental processing of continual
range queries over moving objects,”IEEE Transactions on Knowledge
and Data Engineering, vol. 18, no. 11, pp. 1560–1575, 2006.

[12] X. Xiong and W. G. Aref, “R-trees with update memos,” inIEEE
International Conference on Data Engineering, 2006.

[13] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, “Processing moving queries
over moving objects using motion adaptive indexes,”IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 5, pp. 651–668, 2006.

[14] A. Civilis, C. S. Jensen, and S. Pakalnis, “Techniques for efficient
road-network-based tracking of moving objects,”IEEE Transactions on
Knowledge and Data Engineering, vol. 17, no. 5, pp. 698–712, 2005.

[15] S. Pandey, K. Dhamdhere, and C. Olston, “WIC: A general-purpose
algorithm for monitoring web information sources,” inInternational
Conference on Very Large Data Bases, 2004.

[16] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, “Mobiqual: QoS-aware load
shedding in mobile CQ systems,” inIEEE International Conference on
Data Engineering, 2008.

[17] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, “Continuous
nearest neighbor monitoring in road networks,” inInternational Confer-
ence on Very Large Data Bases, 2006.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, XXX 2009 15

[18] M. F. Mokbel and W. G. Aref, “SOLE: Scalable on-line execution
of continuous queries on spatio-temporal data streams,”International
Journal on Very Large Data Bases, vol. 17, no. 5, pp. 971–995, 2008.

[19] R. V. Nehme and E. A. Rundensteiner, “ClusterSheddy: Load shedding
using moving clusters over spatio-temporal data streams,” inDatabase
Systems for Advanced Applications, 2007.

[20] Y. Cai and K. A. Hua, “Real-time processing of range-monitoring queries
in heterogeneous mobile databases,”IEEE Transactions on Mobile
Computing, vol. 5, no. 7, pp. 931–942, 2006.

[21] B. Gedik and L. Liu, “Distributed processing of continuously moving
queries on moving objects in a mobile system,” inInternational Con-
ference on Extending Database Technology, 2004.

[22] B. Gedik, L. Liu, K.-L. Wu, and P. S. Yu, “Lira: Lightweight, region-
aware load shedding in mobile CQ systems,” inIEEE International
Conference on Data Engineering, 2007.

[23] J. Han and M. Kamber,Data Mining: Concepts and Techniques. Mor-
gan Kaufmann, August 2000.

[24] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” inACM International
Conference on Mobile Systems, Applications, and Services, 2003.

[25] QualComm, “Wireless access solutions using 1xEV-
DO,” http://www.qualcomm.com/technology/1xev-
do/webpapers/wpwirelessaccess.pdf, 2005.

