
Efficient Indexing Structure for Scalable Processing
of Spatial Alarms

Myungcheol Doo♦ Ling Liu♦ Nitya Narasimhan♠ Venu Vasudevan♠

♦ School of Computer Science, Georgia Institute of Technology, Atlanta, GA
♠ Applied Research Center, Motorola, Schaumburg, IL

{mcdoo, lingliu}@cc.gatech.edu, {nitya, venu.vasudevan}motorola.com

ABSTRACT
We present the design and implementation of a new index-
ing technique, Mondrian tree. The Mondrian tree indexing
method partitions the entire universe of discourse into spa-
tial alarm monitoring regions and alarm-free regions. This
enables us to reduce the number of on-demand alarm-free
region computations, significant savings of both server load
and client-to-server communication cost. We evaluate the
efficiency of the Mondrian tree indexing approach and show
that the Mondrian tree offers significant performance en-
hancements on spatial alarm processing at both the server
side and the client side.

Categories and Subject Descriptors
H.2 [Database Management]: Database ApplicationSpa-
tial Databases and GIS; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing—Indexing Meth-

ods

General Terms
Algorithm

Keywords
Indexing, Spatial Alarms, Mobile Applications, Location-
based Services

1. INTRODUCTION
Spatial alarms extend the idea of time-based alarms to

the spatial dimension. They serve as personal reminders to
the mobile users upon their arrival of a specified location of
interest. An example of a spatial alarm is Locale [1] which
enables one of the pre-defined cellphone ring settings upon
arrival of future reference location of interest. For example,
Alice sets a spatial alarm on her office in Georgia Tech cam-
pus. When she arrives on campus or within two miles of her
office, Locale changes the ringer setting to the pre-defined
setting such as silence.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS’10 November 2-5, 2010. San Jose, CA, USA
Copyright 2010 ACM 9781-4503-0428-3/10/11 ...$10.00.

2. SPATIAL ALARM PROCESSING
The näıve strategy for spatial alarm processing is periodic

evaluation. High frequency is essential to ensure that few or
none of the alarms are missed. Periodic evaluation, though
simple, can be extremely inefficient due to frequent and often
high rate of irrelevant alarm evaluations [4].

2.1 Grace Period
The grace perioid is to incorporate the spatial locality of

the alarms and the motion behavior of mobile objects. Given
a mobile object and an alarm, the grace period can be com-
puted based on the distance between the current position of
the user and the alarm monitoring region.

The concept of grace period has two performance implica-
tions. At the server side, we can skip the check of any spatial
alarms owned or subscribed by p during the grace period re-
gardless whether or not the location update events for p may
occur during this period. At the mobile client side, mobile
client can enter sleep mode for the spatial alarm evaluation
application during the grace period.

2.2 Alarm-Free Region
Regardless of the total number spatial alarms subscribed

or owned by a user, only those alarms that are in her close
vicinity have non-zero probability of being fired. The idea
of alarm free region (AFR) utilizes this spatial locality of
alarms and the motion behavior of mobile clients. An AFR
is defined as a rectangular region that does not contain any
spatial alarms. As long as the mobile client moves within
an AFR, the client is free from the need for alarm check,
which significantly reduces the amount of unnecessary eval-
uations of spatial alarms at the alarm evaluation server.
However, computing a rectangular AFR takes from O(n) to
O(n log3 n), where n is the number of spatial alarms used in
the AFR computation [7]. The worst case is that the client
periodically update its location and the server computes the
AFR on each location update.

3. MONDRIAN TREE INDEXING

3.1 Basic Ideas and Properties
The Mondrian indexing is a rectangular region partition-

ing method. It takes as an input the spatial alarms in the
given universe of discourse and generates a region parti-
tion tree with two types of spatial regions as the output.
A unique feature of the Mondrian tree is that it indexes not
only spatial alarm monitoring regions but also the remaining
regions, called alarm-free regions (AFR), which do not

have any spatial alarms. Thus, each leaf node of Mondrian
tree is either an alarm monitoring region or an AFR. The
goal of such a design is to allow the spatial alarm evalua-
tion engine to easily locate the current region of a mobile
client, and more importantly, to evaluate a spatial alarm
only when the mobile subscriber of the alarm is inside of the
alarm monitoring region.

3.2 Partitioning the Entire Region
Figure 1 shows the steps of partitioning an area with one

spatial alarm into 5 disjoint regions (one alarm monitoring
region and four AFRs). The corresponding Mondrian trees
for the four steps in Figure 1 are shown in Figure 2. At each
step we choose a split dimension which is a perpendicular
to one of the 2D coordinate axes. The split dimension may
be chosen by alternating between x-axis and y-axis. In step
1, x-axis is selected as a splitting dimension. Now the en-
tire region is divided into two smaller regions, R1 and R2.
The root of the Mondrian tree, which covers the entire re-
gion, has two children, each of which points to R1 and R2

respectively as shown in Figure 2(a). In step 2, R2 in Figure
1(a) is chosen to be further partitioned because it contains
T1. We alter the split dimension from x to y-axis and split
R2, which results in R3 and R4 as shown in Figure 1(b) and
2(b). We keep selecting a region and partitioning it until
the remaining rectangle has the same region as the spatial
alarm monitoring region as shown in Figure 1(d).

R
1

R
2

T
1

(a) Step 1

R
1

R
3

R
4

(b) Step 2

R
1

R
6

R
4

R
5

(c) Step 3

R
1

R
6

R
4

R
8

R
7

(d) Step 4

Figure 1: Step-by-step partitioning

!""#
$

%
&$

%
'$

!""#
$

%
&$

%
'$

%
($

%
)$

!""#
$

%
&$

%
'$

%
($

%
)$

%
*$

%
+$

!""#
$

%
&$

%
'$

%
($

%
)$

%
*$

%
+$

%
,$

%
-$

(d) Step 4 (c) Step 3 (b) Step 2 (a) Step 1

Figure 2: Step-by-step building a tree

3.3 Comparisons with R-tree and k-d tree.
Mondrian indexing partitions the entire universe of dis-

course while other multi-dimensional indexing algorithms
are interested in regions that have queries or objects of in-
terests. Figure 3 and 4 illustrates some basic differences
that distinguish Mondrian tree from R-tree and k-d tree in
the context of spatial alarm processing. The user’s current
location is labeled as a star.

Mondrian tree returns R9 as the AFR for this user as
shown in Figure 3(a). In contrast, R-tree or k-d tree do not

return anything. Therefore we need to locate the spatial
alarms nearby a mobile client and compute the AFR.

T
1

T
2

R
9

R
6

R
4

R
3

R
5

R
8

R
1

(a) Mondrian tree

T
1

T
2

R
3

R
2

R
1

(b) R-tree

T
1

T
2

R
1

R
2

(c) k − d tree

Figure 3: Comparison of partitioning scheme

!
"#

!
$#

!
$#

!
%#

(c) k-d Tree

(b) R-Tree

&''(
#

!
"#

!
$#

!
%#

!
)#

!
*#

!
+#

!
,#

!
-#

!
.#

!
"/#

!
""#

!
"$#

(a) Mondrian Tree

!
"#

Figure 4: Comparison of building trees

3.4 Search AFRs and Spatial Alarms
The search for mobile user’s current region in Mondrian

tree is similar to the search algorithm of binary tree. From
the root it compares the position of the mobile object with
the left and the right children’s’ region to determine if the
search should proceed in the left subtree or the right sub-
tree of the index. Figure 5 shows how to find the leaf node
according to the current location.

!""#
$

%
&$

%
'$

%
($

%
)$

%
*$

%
+$

%
,$

%
-$

%
.$

%
&/$

%
&&$

%
&'$

R
2

R
3

R
7

R
8

R
9

R
12 R

11

1 2 3 4 5 6

1

2

3

4

5

6

7

Figure 5: A search path to the current node

4. EXPERIMENTAL EVALUATION

4.1 Experiment Setup
All the experiments presented in this paper are conducted

by extending the GTMobiSim mobility simulator [6]. The

simulator generates a set of traces of moving vehicles on
a real world road network. Maps are obtained from the
National Mapping Division of the U.S. Geological Survey[3]
in the form of Spatial Data Transfer Format[2]. We use
the map of Metro Atlanta, which covers an area larger than
1,000 km2. We initially place vehicles randomly on the road
segments according to traffic densities determined from the
traffic volume data [5]. The generated traces are simulating
vehicles moving on the roads of metro Atlanta for a period
of ten minutes. At each intersection, a vehicle will choose a
direction and a road segment to travel randomly from the
set of available choices. The number of vehicles generated
varies from 2,000 to 10,000. The default number of vehicles
is 2,000. Also the number of spatial alarms varies from 2,000
to 10,000. The default number of alarms is 10,000.

We evaluate the performance of the Mondrian tree index
under the server-centric architecture with periodic evalua-
tion approach (MPRD) and grace period approach (MGP),
the distributed architecture with periodic evaluation (M+PRD)
and grace period approach (M+GP). In the distributed ar-
chitecture, there are n Mondrian trees that indexe only spa-
tial alarms that each user owns. Therefore, the search time
for AFR or an alarm is reduced compared to server-centric
architecture. We compare Mondrian tree algorithms with
Grid index (GPRD) and R-tree index (RPRD) using peri-
odic evaluation and dynamic AFR computation at the server.

The main factor affecting the processing of spatial alarms
using Grid indexing is the size of grid cell. The smaller cells
the Grid has, the more cells each alarm will intersect with.
The larger cells the Grid has, the more alarms will be within
a single cell, which increases the server-side evaluation cost.
To provide a fair comparison with Grid index against R-tree
and Mondrian tree, we choose the size of the cell as 2,730m
× 2,730m in the experiments reported in this section.

4.2 Client-side Performance Evaluation
Figure 6(a) shows the average number of wake-up for each

mobile client. In all approaches except MGP and M+GP,
clients have the same number of wake-up because clients pe-
riodically wake up wait for server to inform them if they are
in an AFR or an alarm monitoring region. These results
show that periodic evaluation has two orders of magnitude
larger number of wakeups compared to Mondrian grace pe-
riod approach (M+GP) because clients in M+GP wake up
only when their grace period expires. The average size of
AFR decreases as the number of alarms increases. Clients
staying in the smaller AFR has shorter grace periods. There-
fore, the clients in MGP wake up more frequently as the
number of alarms increases.

Similar results happen to the number of crossing AFRs
shown in Figure 6(b). In M+PRD and M+GP, each client
only creates and maintains its own Mondrian tree, which
has only the number of alarms that the client subscribes to,
and thus very small compared to the centralized server-side
Mondrian tree (MPRD). Therefore the average AFR size is
much bigger for distributed Mondrian tree approach and has
the lower number of crossing AFRs.

In summary, when using periodic evaluation approaches,
clients wake up periodically and wait for the server to inform
them if they enter an alarm monitoring region or send them
the new AFR if they cross the existing AFR. In contrast,
with grace period approach the spatial alarm application on
the client side enters the sleep-mode longer than periodic

approaches.
Next set of experiments on the client side aims at measur-

ing energy efficiency. We compute the power consumption of
client device for CPU usage and network usage. According
to [8] even in idle mode in which there is no data transfer
via a wireless network device, the network device consumes
power, and the activity for data transfer via network devices
consumes more power than the computing activity. Due to
the server processing time as shown in Figure 6(e), clients
in GPRD and RPRD wait longer and more frequently for
AFR information from the server and thus consume more
battery power. This is evident from Figure 6(d). Clients
in M+GP consumes the least power and wakeups the least.
M+PRD approach, relatively speaking, consumes less power
than Grid, R-tree, and server-side (centralized) Mondrian
tree approaches. However, the M+PRD approach consumes
more power than M+GP because M+GP requires clients to
wake up only when their grace period is expired instead of
periodically as in M+PRD. RPRD and MPRD approaches
consume most power. In MPRD, clients cross their AFR
frequently due to the small size of AFRs. In RPRD, clients
have to wait longer due to the longer response time com-
pared to the GPRD approach.

4.3 Performance Evaluation in Server-side
Mondrian tree approach indexes both spatial alarms and

AFRs at the same time. Therefore, it does not require on-
demand AFR computation as Grid index (GPRD) and R-
tree index (RPRD) approaches. Instead the server needs to
pay only AFR search time over the Mondrian tree. When
the Mondrian tree is hosted at the server as a big tree, the
search time is relatively high compared to the search time for
distributed Mondrian index (M+GP). However, the search
cost of MGP is closer to M+GP when comparing with Grid
index and R-tree. GPRD and RPRD takes not only search
time but also AFR computing time. RPRD and GPRD take
much longer time in computing AFR compared to Mondrian
algorithms (MPRD, M+PRD, M+GP) because Mondrian
algorithms only pay the AFR search cost over the respective
Mondrian tree (centralized or distributed Mondrian tree).
Figure 6(c) shows server AFR computation time. RPRD
takes more time than GPRD due to the higher search cost
for finding the nearby alarms. Interesting to note is that
distributed Mondrian tree outperforms the centralized Mon-
drian tree regardless whether we use grace period or periodic
evaluation. This further demonstrates the efficiency of dis-
tributed Mondrian algorithms.

Figure 6(e) shows the total server time, which consists
of computing AFRs (in R-tree and Grid index) or search-
ing AFRs (in Mondrian tree) and processing spatial alarms.
The more AFR crossings a client experiences, the more time
the server spends in computing or searching AFR in addi-
tion to processes alarms. Given that distributed Mondrian
tree approach (M+GP) has the largest AFR size on average,
there is fewer AFR crossings experienced at the client side.
Therefore, M+GP has the least server time for spatial alarm
processing, while RPRD consumes the largest server time.

4.4 Performance Comparison of MGP and M+GP
In this section, we compare the performance of central-

ized Mondrian tree (MPRD) and distributed Mondrian trees
(M+PRD) under different combination of private and pub-
lic alarms. To test the extreme performance of distributed

2K 4K 6K 8K 10K

10
1

10
2

10
3

Number of Alarms

A
vg

. #
 o

f W
ak

eu
p

GPRD
RPRD
MPRD
MGP
M+PRD
M+GP

(a) Wakeup

2K 4K 6K 8K 10K
10

−1

10
0

10
1

10
2

Number of Alarms

A
vg

. #
 o

f C
ro

ss
in

g
A

F
R

GPRD
RPRD
MPRD
M+PRD
M+GP

(b) Crossing AFRs

2K 4K 6K 8K 10K
10

−2

10
0

10
2

10
4

10
6

10
8

Number of Alarms

A
F

R
 C

om
p.

 T
im

e
(m

s)

(c) Server AFR comp.

2K 4K 6K 8K 10K
10

1

10
2

10
3

Number of Alarms

C
lie

nt
 P

ow
er

(m
W

)

(d) Client power

2K 4K 6K 8K 10K
10

−4

10
−2

10
0

10
2

10
4

10
6

Number of Alarms

S
er

ve
r

T
ot

al
 T

im
e

(s
ec

)

(e) Server time

100/0 95/5 90/10 85/15 80/20
0

2

4

6

8

10
x 10

4

Public/Private Ratio

T
ot

al
 #

 o
f C

ro
ss

in
g

A
F

R

MPRD
M+PRD

(f) Crossing AFRs

100/0 95/5 90/10 85/15 80/20
10

−2

10
−1

10
0

10
1

Public/Private Ratio

S
er

ve
r

T
im

e
(s

ec
)

MPRD
M+PRD

(g) Server time

100/0 95/5 90/10 85/15 80/20
10

1

10
2

10
3

10
4

Public/Private Ratio

C
lie

nt
 P

ow
er

(m
W

)

MPRD
M+PRD

(h) Client power

Figure 6: Comparison of Mondrian tree algorithm with R-tree and Grid index (a ∼ e) and Comparison of
Mondrian Trees (f ∼ h)

Mondrian tree approach, we vary the percentage ratio of
private and public alarms at 100:0, 95:5, 90:10, 85:15, 80:20,
and measure the total server processing time, the client en-
ergy consumption, and the total AFR crossings. The num-
ber of users is 6,000 in this set of experiments. As the per-
centage of public alarms increases, we observe an increase
in the total number of AFR crossings, the total server pro-
cessing time (sec), and the client energy consumption (mW)
in M+PRD compared to MPRD. This is because the dis-
tributed Mondrian indexing is more sensitive to the increase
of public alarms. The more alarms a client has, the more
frequently the client may cross the AFRs (Figure 6(f)), the
higher load the server will have (Figure 6(g)), and more
energy will be consumed at each mobile subscriber (Fig-
ure 6(h)). In comparison, for MPRD there is only one Mon-
drian tree in the server-side and the addition of k public
alarms does not add more than k alarms to the total number
of alarms in the system. Thus, the number of AFR cross-
ing does not change significantly in comparison to M+PRD.
This set of experiments shows that centralized Mondrian
tree approach is more effective when there are a larger num-
ber of public alarms in the system, whereas the distributed
Mondrian tree approach prevails over centralized Mondrian
approach when the number of public alarms is relatively
smaller.

5. CONCLUSIONS
We have described the design and development of the

Mondrian tree index for efficient processing of spatial alarms.
The main distinguishing feature of Mondrian tree compared
with conventional spatial indexes such as R-tree family and
Grid is that Mondrian tree approach indexes not only spa-
tial alarms but also AFRs, enabling fast lookup of AFRs in-
stead of on-demand computation of AFRs. Another novelty
of the Mondrian indexing framework is its ability to utilize

the characteristics of spatial alarms to create and maintain
one Mondrian tree for each mobile subscriber, which is par-
ticularly effective when there is relatively small number of
public alarms compared to the private and shared alarms
in the system. Our experiments show that the distributed
Mondrian tree (M+GP, M+PRD) can dramatically mini-
mize the amount of unnecessary spatial alarm processing
compared to centralized Mondrian tree (MPRD and MGP),
R-tree, and Grid indexing structures with periodic evalua-
tion and on-demand AFR computation.

Acknowledgement
This work is partially sponsored by grants from NSF NetSE
and NSF CyberTrust, an IBM SUR grant, and a grant from
Intel Research Council.

6. REFERENCES
[1] Locale. http://www.twofortyfouram.com/.

[2] Spatial data transfer format.
http://www.mcmcweb.er.usgs.gov/sdts/.

[3] Us geological survey. http://www.usgs.gov/.

[4] B. Bamba, L. Liu, , A. Iyengar, and P. S. Yu. Distributed
processing of spatial alarms: A safe region-based approach.
ICDCS, 2009.

[5] B. Gedik and L. Liu. Location privacy in mobile systems: A
personalized anonymization model. In Proc. IEEE ICDCS, 2005.

[6] P. Pesti, B. Bamba, M. Doo, L. Liu, B. Palanisamy, and
M. Weber. Gtmobisim: A mobile trace generator for road
networks. Technical report, 2009.

[7] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E.
Hambrusch. Query indexing and velocity constrained indexing:
Scalable techniques for continuous queries on moving objects. In
IEEE Transactions on Computers, 2002.

[8] V. Raghunathan, T. Pering, R. Want, A. Nguyen, and P. Jensen.
Experience with a low power wireless mobile computing
platform. In Proc. of International Symposium on Low power

Electronics and Design, 2004.

