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Abstract. Data perturbation is a popular technique in privacy-pngagrdata mining. A major
challenge in data perturbation is to balance privacy ptate@nd data utility, which are normally
considered as a pair of conflicting factors. We argue thatsigkly preserving the task/model spe-
cific information in perturbation will help achieve betteiyacy guarantee and better data utility.
One type of such information is the multidimensional geainénformation, which is implicitly
utilized by many data mining models. To preserve this infation in data perturbation, we pro-
pose the Geometric Data Perturbation (GDP) method. In &peip we describe several aspects of
the GDP method. First, we show that several types of wellskndata mining models will deliver

a comparable level of model quality over the geometricadlstyrbed dataset as over the original
dataset. Second, we discuss the intuition behind the GDRaadetnd compare it with other mul-
tidimensional perturbation methods such as random piojegerturbation. Third, we propose
a multi-column privacy evaluation framework for evalugtithe effectiveness of geometric data
perturbation with respect to different level of attacksdfiy, we use this evaluation framework to
study a few attacks to geometrically perturbed datasetsegperimental study also shows that
geometric data perturbation can not only provide satisfgqbrivacy guarantee but also preserve
modeling accuracy well.

Keywords: Privacy-preserving Data Mining, Data Perturbation, Getiméata Perturbation,
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1. Introduction

With the rise of cloud computing, service-based computsdpecoming the major
paradigm (Amazon, n.d.; Google, n.d.). Either to use thedfdatform services (Armbrust,
Fox, Griffith, Joseph, Katz, Konwinski, Lee, Patterson, lRabStoica and Zaharia,
2009), or to use existing services hosted on clouds, uséifsave to export their private
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data to the service provider. Since these service provatensot within the trust bound-
ary, the privacy of the outsourced data has become one obphprtority problems
(Armbrust et al., 2009; Bruening and Treacy, 2009). As datang is one of the most
popular data intensive tasks, privacy preserving datarmgifor the outsourced data has
become an important enabling technology for utilizing thibliz computing resources.
Different from other settings of privacy preserving datanimg such as collaboratively
mining private datasets from multiple parties (Lindell aicikas, 2000; Vaidya and
Clifton, 2003; Luo, Fan, Lin, Zhou and Bertino, 2009; Tengl &u, 2009), this paper
will focus on the following setting: the data owner exportgalto and then receives
a model (with the quality description such as the accuracyafolassifier) from the
service provider. This setting also applies to the situatiat the data owner uses the
public cloud resources for large-scale scalable miningrethe service provider just
provides computing infrastructure.

We present a new data perturbation technique for privacgepving outsourced
data mining (Aggarwal and Yu, 2004; Chen and Liu, 2005) is fraper. A data per-
turbation procedure can be simply described as followsoigethe data owners pub-
lish their data, they change the data in certain way to désgtlie sensitive information
while preserving the particular data property that is caitfor building meaningful data
mining models. Perturbation techniques have to handlentimsic tradeoff between
preserving data privacy and preserving data utility, asupeing data usually reduces
data utility. Several perturbation techniques have beepgsed for mining purpose
recently, but these two factors are not satisfactorily heda. For example, random
noise addition approach (Agrawal and Srikant, 2000; Evfiske Srikant, Agrawal
and Gehrke, 2002) is weak to data reconstruction attack®alydgood for very few
specific data mining models. The condensation approachawg and Yu, 2004)
cannot effectively protect data privacy from naive estiorat The rotation perturba-
tion (Chen and Liu, 2005; Oliveira and Zaiane, 2010) and camgrojection pertur-
bation (Liu, Kargupta and Ryan, 2006) are all threatenedrinyrfxnowledge enabled
Independent Component Analysis (Hyvarinen, Karhunen gag2D01). Multidimen-
sional k-anonymization (LeFevre, DeWitt and Ramakrishi296) is only designed
for general-purpose utility preservation and may resuthwquality data mining mod-
els. In this paper, we propose a newltidimensionatlata perturbation technique: geo-
metric data perturbation that can be applied for severaboates of popular data mining
models with better utility preservation and privacy preason.

1.1. Data Privacy vs. Data Utility

Perturbation techniques are often evaluated with two bastrics: the level of pre-
served privacy guarantee and the level of preserved ddity.ufiata utility is often
task/model-specific and measured by the quality of learnedefs. An ultimate goal
for all data perturbation algorithms is to maximize bothadptivacy and data utility,
although these two are typically representing conflictinglg in most existing pertur-
bation techniques.

Level of Privacy Guarantee:Data privacy is commonly measured by the difficulty
level in estimating the original data from the perturbedad&iven a data perturba-
tion technique, the more difficult the original values candséimated from the per-
turbed data, the higher level of data privacy this techniorowides. In (Agrawal and
Srikant, 2000), the variance of the added random noise i as¢he level of difficulty
for estimating the original values. However, recent regedEvfimievski, Gehrke and
Srikant, 2003; Agrawal and Aggarwal, 2002) reveals thatwee of added noise only is
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not an effective indicator of privacy guarantee. More redeédKargupta, Datta, Wang
and Sivakumar, 2003; Huang, Du and Chen, 2005) has showmptivaty guarantee
is subject to the attacks that can reconstruct the origiatd or some records) from
the perturbed data. Thus, attack analysis has to be ingebiatio privacy evaluation.
Furthermore, since the amount of attacker’s prior knowdealg the original data deter-
mines the type of attacks and its effectiveness, we shostdsilidy privacy guarantee
according to the level of prior knowledge the attacker mayeh&Vvith this study, the
data owner can decide whether the perturbed data can beedlaader the assumption
of certain level of prior knowledge. In this paper, we willidy the proposed geomet-
ric data perturbation under a new privacy evaluation frapr&uhat incorporates attack
analysis and calculates multi-level privacy guaranteesraling to the level of attacker’s
prior knowledge.

Level of Data Utility: The level of data utility typically refers to the amount oiter
ical information preserved after perturbation. More sfieally, the critical information
should be task or model oriented. For example, decisionanelek-Nearest-Neighbor
(KNN) classifier for classification modeling typically utié different sets of informa-
tion about the datasets: decision tree construction pifyn@oncerns the related col-
umn distributions; the kNN model relies on the distanceti@tship which involves
all columns. Most of existing perturbation techniques doexplicitly address that the
critical information is actually task/model-specific. Wigae that by narrowing down to
preserve only the task/model-specific information, we &te t provide better quality
guarantee on both privacy and model accuracy. The propasshefric data pertur-
bation aims to approximately preserve the geometric ptagsathat many data mining
models are based on.

It is interesting to note that privacy guarantee and datayutiave exhibited con-
tradictive relationship in most data perturbation techieig) Typically, data perturbation
algorithms that aim at maximizing the level of privacy gusee often have to bear with
reduced data utility. The intrinsic correlation betweeaftivo factors makes it challeng-
ing to find a right balance for them in developing a data pésdtion technique.

1.2. Contributions and Scope

Bearing the above issues in mind, we have developed the ddomata perturbation
approach to privacy preserving data mining. In contrasthiergerturbation approaches
(Aggarwal and Yu, 2004; Agrawal and Srikant, 2000; Chen ang 2005; Liu, Kar-
gupta and Ryan, 2006), our method exploits the task and nemaelific multidimen-
sional information about the datasets and produces a rolatstperturbation method
that not only preserves such critical information well bigbgprovides a better balance
between the level of privacy guarantee and the level of détgyuThe contributions of
this paper can be summarized into three aspects.

First, we articulate that the multidimensional geometriogerties of datasets are
the critical information for many data mining models. We defa data mining model
to be “perturbation invariant”, if the model built on the geetrically perturbed dataset
presents a quality to that over the original dataset. Withngetric data perturbation,
the perturbed data can be exported to the public platforngravkhese perturbation-
invariant data mining models are applied to obtain equinadeodels. We have proved
that a batch of data mining models, including kernel meth&&M classifiers with
the three popular kernels, linear classifiers, linear 1siom, regression trees, and all
Euclidean-distance based clustering algorithms, aregiamvieto geometric data pertur-
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bation with the rotation and translation components oy, @we have also studied the
effect of the distance perturbation component to the madelriance property.

Second, we also study whether random projection pertunbétiiu, Kargupta and
Ryan, 2006) can be an alternative component in geometricpiaturbation, based on
the formal analysis of the effect of multiplicative pertation to model quality. We use
the Gaussian mixture model (McLachlan and Peel, 2000) tar shavhich situations
the multiplicative component can affect the model qualithelps us understand why
the rotation component is a better choice than other midéple components in terms
of preserving model accuracy.

Third, since arandom geometric-transformation basedig@ation is a multidimen-
sional perturbation, the privacy guarantee of the muliijdeensions (attributes) should
be evaluated collectively, not separately. We use a unifizdqy evaluation metric for
all dimensions and a generic framework to incorporate ktaalysis in privacy eval-
uation. We also analyze a set of attacks according to diffdexels of knowledge an
attacker may have. A randomized perturbation optimizagilgorithm is presented to
incorporate the evaluation of attack resilience into theywbation algorithm design.

The rest of paper is organized as follows. Section 2 briefheres the related work
in data perturbation. Section 3 defines some notations aeg tfie background knowl-
edge about geometric data perturbation. Then, in Sectiamd4bawe define the geo-
metric data perturbation and prove that many major modettassification, regression
and clustering modeling are invariant to rotation and tiatitn perturbation. In Section
5, we also extend the discussion to the effect of noise coemtcand other choices of
multiplicative components such as random projection to@hqdality. In Section 6, we
first introduce a generic privacy evaluation model and dedinmified privacy metric
for multidimensional data perturbation. Then, a few infex@ attacks are analyzed un-
der the proposed privacy evaluation model, which resultsriandomized perturbation
optimization algorithm. Finally, we present experimeméalults in Section 7.

2. Related Work

A considerable amount of work on privacy preserving datamgimethods have been
reported in recent years (Aggarwal and Yu, 2004; Agrawal @rikiant, 2000; Clifton,
2003; Agrawal and Aggarwal, 2002; Evfimievski et al., 200&idya and Clifton, 2003).
The most relevant work about perturbation techniques fta déning includes the ran-
dom noise addition methods (Agrawal and Srikant, 2000; Befiski et al., 2002),
the condensation-based perturbation (Aggarwal and Yu4RQ0tation perturbation
(Oliveira and Zaiane, 2010; Chen and Liu, 2005) and prajeqteerturbation (Liu, Kar-
gupta and Ryan, 2006). In addition, k-anonymization (SvegeR002) can also be re-
garded as a perturbation technique, and there are a largedbditeratures focusing
on the k-anonymity model (Fung, Wang, Chen and Yu, 2010)xeour work is less
relevant to the k-anonymity model, we will focus on othertpdyation techniques.

Noise Additive Perturbation The typical additive perturbation technique (Agrawal
and Srikant, 2000) is column-based additive randomizafldnis type of techniques
relies on the facts that 1) Data owners may not want to eqpaditect all values in a
record, thus a column-based value distortion can be apmig@arturb some sensitive
columns. 2) Data classification models to be used do not sarBsrequire the individ-
ual records, but only the column value distributions (Agahand Srikant, 2000) with
the assumption of independent columns. The basic methaddsguise the original
values by injecting certain amount of additive random noiggile the specific infor-
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mation, such as the column distribution, can still be effety reconstructed from the

perturbed data.
Atypical random noise addition model (Agrawal and Srik&000) can be precisely
described as follows. We treat the original valges, z-, . . ., z,,) from a column to be

randomly drawn from a random variali¥, which has some kind of distribution. The
randomization process changes the original data by addindom noise®R to the
original data values, and generates a perturbed data coXimvi = X + R. The
resulting recordzy + 71, 22+ 12, .. ., 2, +7,,) @and the distribution oR are published.
The key of random noise addition is the distribution recangion algorithm (Agrawal
and Srikant, 2000; Agrawal and Aggarwal, 2002) that recetlee column distribution
of X based on the perturbed data and the distributioR.of

While the randomization approach is simple, several rebeas have recently iden-
tified that reconstruction-based attacks are the major messskof the randomization ap-
proach (Kargupta et al., 2003; Huang et al., 2005). In palaicthe spectral properties
of the randomized data can be utilized to separate noisettierprivate data. Further-
more, only the mining algorithms that meet the assumptiomdépendent columns
and work on column distributions only, such as decisioe-tigorithms (Agrawal and
Srikant, 2000), and association-rule mining algorithmefiggievski et al., 2002), can
be revised to utilize the reconstructed column distritugirom perturbed datasets. As
a result, it is inconvenient to apply this method for dataingrin practice.

Condensation-based PerturbationThe condensation approach (Aggarwal and Yu,
2004) is a typical multi-dimensional perturbation techuggwhich aims at preserv-
ing the covariance matrix for multiple columns. Thus, soraergetric properties such
as the shape of decision boundary are well preserved. Biffdrom the randomiza-
tion approach, it perturbs multiple columns as a whole tegate the entire “perturbed
dataset”. As the perturbed dataset preserves the covamatix, many existing data
mining algorithms can be applied directly to the perturbathdet without requiring any
change or new development of algorithms.

The condensation approach can be briefly described as ®llidwstarts by parti-
tioning the original data int&-record groups. Each group is formed by two steps —
randomly selecting a record from the existing records asémer of group, and then
finding the(k — 1) nearest neighbors of the center to be the ofker 1) members.
The selected: records are removed from the original dataset before fagrttie next
group. Since each group has small locality, it is possiblegenerate a set éfrecords
to approximately preserve the distribution and covariaiibe record regeneration al-
gorithm tries to preserve the eigenvectors and eigenvalieach group, as shown in
Figure[1. The authors demonstrated that the condensatfmoagh can well preserve
the accuracy of classification models if the models are éimith the perturbed data.

However, we have observed that the condensation approaeeail in protecting
data privacy. As stated by the authors, the smaller the dizbeolocality is in each
group, the better the quality of preserving the covarianitie the regeneratekl records
is. However, the regeneratédecords are confined in the small spatial locality as shown
in Figure[d. Our result (sectidd 7) shows that the differsrmetween the regenerated
records and the nearest neighbor in original data are veajl &m average, and thus,
the original data records can be estimated from the periudbta with high confidence.

Rotation Perturbation Rotation perturbation was initially proposed for privaagp

serving data clustering (Oliveira and Zaiane, 2004). As afithe major components in
geometric perturbation, we first applied rotation perttidyeto privacy-preserving data
classification in our paper (Chen and Liu, 2005) and adddetssegeneral problem of
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Fig. 1. Condensation approach

privacy evaluation for multiplicative data perturbatioRotation perturbation is sim-
ply defined as7(X) = RX whereR,« is a randomly generated rotation matrix and
Xaxn is the original data. The unique benefit and also the majokness is distance
preservation, which ensures many modeling methods ararpation invariant while
bringing distance-inference attacks. Distance-infegattacks have been addressed by
recent study (Chen, Liu and Sun, 2007; Liu, Giannella andypta, 2006; Guo and
Wu, 2007). In (Chen et al., 2007), we discussed some possies to improve its
attack resilience, which results in our proposed geomd#ia perturbation. To be self-
contained, we will include some attack analysis in this papeler the privacy eval-
uation framework. In (Oliveira and Zaiane, 2010), the saplransformation, in addi-
tion to the rotation perturbation, is also used in privaogsgrving clustering. Scaling
changes the distances; however, the geometric decisiardboyis still preserved.

Random Projection Perturbation Random projection perturbation (Liu, Kargupta and
Ryan, 2006) refers to the technique of projecting a set cd gatnts from the original
multidimensional space to another randomly chosen spat&2l. ; be a random pro-

jection matrix, whereP’s rows are orthonormal (Vempala, 200%j(X) = \/%PX

is applied to perturb the dataskt The rationale of projection perturbation is based on
its approximate distance preservation, which is suppdayatie Johnson-Lindenstrauss
Lemma (Johnson and Lindenstrauss, 1984). This lemma slhat/any dataset in Eu-
clidean space could be embedded into another space, sudhehaair-wise distance
of any two points are maintained with small error. As a resulbdel quality can be
approximately preserved. We will compare random projectierturbation to the pro-
posed geometric data perturbation.

3. Preliminaries
In this section, we first give the notations and then definetmponents in geometric

perturbations. Since geometric perturbation works onlynfiamericaldata classifica-
tion, by default, the datasets discussed in this paper bneraerical data.

3.1. Training Dataset

Training dataset is the part of data that has to be expoubétfhed in privacy-preserving
data classification or clustering. A classifier learns ttessification model from the
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Fig. 2. Applying geometric data perturbation to out-
sourced data

training data and then is applied to classify the unclaskii#ta. Suppose th& is a
training dataset consisting @f data rows (records) and columns (attributes, or di-
mensions). For the convenience of mathematical manijpmatie useX ;. v to denote
the dataset, i.eX = [x; ...xy], Wherex; is a data tuple, representing a vector in the
real spac&?. Each data tuple; belongs to a predefined class if the data is for classi-
fication modeling, which is indicated by the class labeliladtie ;. The data for clus-
tering do not have labels. The class label can be nominabfuirwous for regression),
which is public, i.e., privacy-insensitive. All other alttintes containing private informa-
tion needs to be protected. Unclassified dataset could alsxjorted/published with
privacy-protection if necessary.

If we considerX is a sample dataset from tdedimension random vect¢KX, Xo,
..., X4]", we use bol&; to represent the random variable for the coluirin general,
we will use bold lower case to represent vectors, bold uppse ¢o represent random
variables, and regular upper case to represent matrices.

3.2. Framework and Threat Model for Applying Geometric Data
Perturbation

We study geometric data perturbation under the followirsgrfiework (Figur€12). The
data owner wants to use the data mining service provideh@public cloud service
provider). The outsourced data needs to be perturbed fidgstreem sent to the service
provider. Then, the service provider develops a model bardtie perturbed data and
returns it to the data owner, who can use the model eitherdmgtorming it back to the
original space or perturb new data to use the model. In thelmiaf developing models
at the service provider, there is no additional interactiappening between the two
parties. Therefore, the major costs for the data owner iimcaptimizing perturbation
parameters that can use a sample set of the data and pegttiveientire dataset.

We take the popular and reasonable honest-but-curiougkegmovider approach
for our threat model. That is, we assume the service prowidémhonestly provide
the data mining services. However, we also assume that twider might look at the
data stored and processed on their platforms. Therefolewati-protected data can be
processed and stored on such an untrusted environment.
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4. Definition of Geometric Data Perturbation

Geometric data perturbation consists of a sequence of nmgmmetric transforma-
tions, including multiplicative transformatio] , translation transformationf), and
distance perturbatioA.

G(X)=RX+T+A 1)
We briefly define these transformations and describe thepepties.

4.1. Multiplicative Transformation

The componenR2 can be rotation matrix (Chen and Liu, 2005) or random praect
matrix (Liu, Kargupta and Ryan, 2006). Rotation matrix ekapreserves distances
while random projection matrix only approximately presedistances. We will com-
pare the advantages and disadvantages of the two choices.

It is intuitive to understand a rotation transformationwotdimensional or three-
dimensional (2D or 3D, for short) space. We extend it to repnéall kind of orthonor-
mal transformation in multi-dimensional space. A rotatparturbation is defined as
follows: G(X) = RX. The matrixR,x4 is an orthonormal matrix (Sadun, 2001),
which has some important properties. Lt represent the transpose Bf r;; repre-
sent the(s, j) element ofR, andI be the identity matrix. Both rows and columns®f

are orthonormal: for any column Zle rfj = 1, and for any two columng andk,
Jj#k, Zle rijrie. = 0; a similar property is held for rows. This definition infefsat
RTR = RR” = I. It also implies that by changing the order of the rows or nuis
of an orthogonal matrix, the resulting matrix is still orttewmal. A random orthonor-
mal matrix can be efficiently generated following the Haatritbution (Stewart, 1980),
which preserves some important statistical properti@n]i2005).

A key feature of rotation transformation is preserving thelielean distance. Let
xT' represent the transpose of vectorand||x|| = x” x represent the length of a vector
x. By the definition of rotation matrix, we havig?x|| = ||x||. Similarly, inner product
is also invariant to rotation. Lefx,y) = x’'y represent the inner product &f and
y. We have(Rx, Ry) = x' R Ry = (x,y). In general, rotation transformation also
completely preserves the geometric shapes such as hypesid manifold in the mul-
tidimensional space. Thus, many modeling methods aretfooténvariant” as we will
see. Rotation perturbation is a key component of geomegnitubation, which pro-
vides the primary protection to the perturbed data fromaastimation attacks. Other
components of geometric perturbation are used to protéatioa perturbation from
more complicated attacks.

A random projection matrix (Vempala, 200R), .4 is defined aR = \/%RO. Ry

is randomly generated and its row vectors are orthonornwé(there is no such re-
guirement on column vectors). The Johnson-Lindenstraessha (Johnson and Lin-
denstrauss, 1984) proves that random projection can ajppatedy preserve Euclidean
distances if certain conditions are satisfied. Concretetyx andy be any original
data vectors. Givefl < € < 1 andk = O(In(N)/€?), there is a random projection
fiRT—= R¥, sothat(l—e)||x—yl|| < [|f(x)— f(¥)|| < (1+¢€)||x—y]. e defines the
accuracy of distance preservation. Therefore, in orderé¢gipely preserve distances,
k has to be large. For large datasat {s large), it would be difficult to well preserve
distances with computationally acceptabléNe will discuss the effect of random pro-
jection and rotation transformation to the result of pdyation.
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4.2. Translation Transformation

It is easy to understand a translation in low-dimensioralt(D) space. We extend the
definition to anyd-dimensional spaces as followd. is a translation matrix ift =
[t,t, ..., tlaxn, -6, axn = tax11%,, ,, wherel is a vector of one in all elements. A
translation transformation is simplg(X) = X + . For any two points andy in the
original space, with translation, we have the distdfice— t) — (y — t)|| = [|x — x]|.
Therefore, translation always preserves distances. Henvig\does not preserve inner
product according to the definition of inner product.

Translation perturbation only does not provide protectmthe data. Th& com-
ponent can be simply canceled if the attacker knows onlystadion perturbation is
applied. However, when combined with rotation perturbativanslation perturbation
can increase the overall resilience to attacks.

4.3. Distance Perturbation

The above two components preserve the distance relatiprighipreserving distances,
a bunch of important classification models will be “pertuitya-invariant”, which is the
core of geometric perturbation. However, distance presgperturbation may be under
distance-inference attacks in some situations (Sect@n Bhe goal of distance pertur-
bation is to preserve distances approximately, while &ffely increasing the resilience
to distance-inference attacks. We define the third compasea random matrid ;x,,
where each entry is an independent sample drawn from the distribution with zero
mean and small variance. By adding this component, thentistaetween a pair of
points is disturbed slightly.

Again, solely applying distance perturbation without thiees two components will
not preserve privacy since the noise intensity is low. Haves low-intensity noise
component will provide sufficient resilience to attacks dtation and translation per-
turbation. The major issue brought by distance perturbasicthe tradeoff between the
reduction of model accuracy and the increase of privacyajuae. In most cases, if we
can assume the original data items are secure and the attask®s no information
about the original data, the distance-inference attackaatzhappen and thus the dis-
tance perturbation component can be removed. The data @an&ecide to remove or
keep this component according to their security assessment

4.4. Cost Analysis

The major cost of perturbation is determined by theEEq. 1 amddomized perturbation
optimization process that applies to a sample set of datéket perturbation can be
applied to data records in a streaming manner. Based on tHE, Eqwill cost O(d?)
to perturb eacki-dimensional data record. Note that this is an one-time cmsturther
cost incurring when the service provider developing madels

5. Perturbation-Invariant Data Mining Models
In this section, first, we give the definition of perturbatiomariant data mining models

that would be appropriate for our setting of mining on outsed data. Then, we prove
that several categories of data mining models are invat@andtation and translation
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perturbation. We also formally analyze the effect of these@omponents and arbitrary
multiplicative perturbations (including random project) to the quality of data mining
models, using the Gaussian mixture model.

5.1. A General Definition of Perturbation Invariance

We say a data mining model is invariant to a transformatibtihé model mined with
the transformed data hassamilar model quality as that mined with the original data.
We formally define this concept as follows.

Let M represent a type of data mining model (or modeling method)/dr be a
specific model mined from the datasét andQMx,Y’) be the model quality evalu-
ated on a dataséf, e.g., the accuracy of classification model. L&) be any perturba-
tion function, which transforms the datas€étto another datasdt(X). Given a small
real numbee, 0 < ¢ < 1,

Definition 5.1. The modelM x is invariant to the perturbatidh() if and only if |Q (M x,Y)—
Q(Mrp(xy,T(Y))| < e for any training dataseX and testing dataseéf.

If Q(Mx,Y) = Q(Mrx), T(Y)), we call the model istrictly invariantto the pertur-
bationT'(). In the following subsections, we will prove some of the dataing models
are strictly invariant to the rotation and translation caments of geometric data pertur-
bation and discuss how the invariance property is affecyetthd distance perturbation
component.

5.2. Perturbation-Invariant Classification Models

In this section, we show some of the classification modelsatainvariant to geomet-
ric data perturbation (with only rotation and translatiemgponents). The model quality
Q(Mx,Y) is the classification accuracy of the trained model testetthetest dataset.

kNN Classifiers and Kernel Methods: A k-Nearest-Neighbor (kNN) classifier deter-
mines the class label of a point by looking at the labels of itearest neighbors in the
training dataset and classifies the point to the class that afdts neighbors belong to.
Since the distance between any pair of points is not changhdrotation and trans-
lation, thek nearest neighbors are not changed and thus the classificasalt is not
changed either.

Theorem 1. kNN classifiers are strictly invariant to rotation and tdatisn perturba-
tions.

kNN classifier is a special case of kernel methods. We assdraty kernel methods
will be invariant to rotation, too. Same as the kNN classitetypical kernel methdd
is a local classification method, which classifies the newa datord only based on the
information of its neighbors in the training data.

Theorem 2. Kernel methods are strictly invariant to rotation and tfatisn.

1 SVM is also a kind of kernel method, but its training processlifferent from the kernel methods we
discuss here.
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Proof. Let us define kernel methods first. Like KNN classifiers, a &emethod also
estimates the class label of a paintvith the class labels of its neighbors. L€ (x, x;)

be the kernel function used for weighting any paintin x’s neighborhood, and lex
define the geometric width of the neighborhood. We ass{miex, ..., x,} be the
points in thex’s neighborhood determined By A kernel classifier for continuous class
label§ is defined as

; Y K (%, %)y

X) = — 2
fX( ) Zi:1 K)\(X,Xi) ( )
Specifically, the kernek', (x, x;) is defined as
X —X;
e x0) = DX, @
D(t) is a function, e.g., the Gaussian kerig(t) = \/% exp{—t2/2}. Since||Rx —
Rx;|| = ||x — x;|| for rotation perturbation and is constantD(t) is not changed af-

ter rotation, and thu&, (Rx, Rx;) = K)(x,x;). Since the geometric area around the
point is also not changed, the point set in the neighborhddéxoare still the rotation
of those in the neighborhood &f, i.e., { Rx1, Rxa, ..., Rx, } and these: points are
used in training\/ x, which make€)(Mzx, (Rx) = fx(x). Itis similar to prove that
kernel methods are invariant to translation perturbafion.

Support Vector Machines: Support Vector Machine (SVM) classifiers also utilize
kernel functions in training and classification. Howevehas an explicit training pro-
cedure to generate a global model, while kernel methodsomad methods that use
training samples in classifying new instances. {,ebe the class label to a tuplg in

the training setq; and gy be the parameters determined by training. A SVM classifier
calculates the classification resultzofising the following function.

N
Fx(0) =D K (x,x;) + Bo 4)
i=1

First, we prove that SVM classifiers are invariant to rotatigth two key steps: 1)
training with the rotated dataset generates the same sarafetersy; andgy; 2) the
kernel functionk () is invariant to rotation. Second, we prove that some SVMsifigss
are also invariant to translation (empirically, SVM cldigss with the discussed kernels
are all invariant to translation).

Theorem 3. SVM classifiers using polynomial, radial basis, and neusMork kernels
are strictly invariant to rotation, and SVM classifiers gsmadial basis are also strictly
invariant to translation.

Proof. The SVM training problem is an optimization problem, whiahd the param-
etersa; and 3, to maximize the Lagrangian (Wolfe) dual objective functiptastie,
Tibshirani and Friedman, 2001)

N N
Lp = Zai —-1/2 Z i Yy K (%, %5),
i=1

ij=1

2 It has different form for discrete class labels, but the puaiti be similar.
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subject to:

N
0<a; <7, Zaiyizo,
i=1

wherey is a parameter chosen by the user to control the allowedssaround the deci-
sion boundary. The training result af is only determined by the form of kernel func-
tion K (x;,x;). With the determined;, 5, can be determined by solvir@gfx (x;)=1
for anyx; (Hastie et al., 2001), which is again determined by the Hduretion. It is
clear that if K (T'(x), T'(x;)) = K(x,x;) is held, the training procedure generates the
same set of parameters.

Three popular choices for kernels have been discussed BMNMeliterature
(Cristianini and Shawe-Taylor, 2000; Hastie et al., 2001).

d-th degree polynomial: K (x,x') = (1+ < x,x’ >)%,
radial basis: K(x,x) = exp(—||x — x/||/¢),
neural networkK (x,x’) = tanh(k; < x,x’ > +£2)

Note that the three kernels only involve distance and innedyct calculation. As we
discussed in Sectidg 4, the two operations keep invariahetootation transformation.
Thus, K (Rx, Rx') = K(x,x’) is held for the three kernels, and, thus, training with
the rotated data will not change the parameters for the S\&dsdiers using the three
popular kernels. However, with this method, we can only prthat the radial basis
kernel is invariant to translation, while the other two aoé. n

It is easy to verify that the classification function ([Ed|. 4)imvariant to rotation,
which involves only the invariant parameters and the irargrkernel functions. Simi-
larly, we can prove that the classification function withiedtasis kernel is also invari-
ant to translation’]

Although we cannot prove that polynomial and neural netwartaels are also in-
variant to translation with this method, we use experimémthow that they are also
invariant to translation.

Linear Classifiers: A linear classifier uses a hyperplane to separate the trpgsate.
Let the weight vector bev” = [wy, ..., w,] and the bias b@,. The weight and bias
parameters are determined by the training procedure @estal., 2001). A trained
classifier is represented as follows.

fx(x) =wlx+f
Theorem 4. Linear classifiers are strictly invariant to rotation arahislation.

Proof. First, it is important to understand the relationship bewthe parameters and
the hyperplane. As Figuié 3 shows, the hyperplane can besepted asr” (x — x;) =

0, wherew is the perpendicular axis to the hyperplane, apdepresents the deviation
of the plane from the origin (i.e3, = —w’'x;).

Intuitively, rotation will rotate the classification hyg#ane and feature vectors. The
perpendicular axisv is changed taRw and the deviatiorx; becomesix; after ro-
tation. Letx"” represent the data in the rotated space. Then, the rotafedgigne is
represented aw)” (x” — Rx;) = 0, and the classifier is transformedfgx (x") =
wTRT(x” — Rx,;). Sincex* = Rx andR™R = I, frx(x") = wTRTR(x — x¢)

=wTl(x — x¢) = fx(x). The two classifiers are equivalent.
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Hyperplane’

Fig. 3. Hyperplane and its parameters

It is also easy to prove that linear classifiers are invariaritanslation. We will
ignore the proof]

5.3. Perturbation Invariant Regression Methods

Regression modeling (Hastie et al., 2001) is very similacléssification modeling.
The only difference is that the class label is changed frasordie to continuous, which
requires the change of the criterion for model evaluatiomedgression model is often
evaluated by the loss functidi( f (X), y), wheref (X) is the response vector of apply-
ing the regression functiofi() to the training instanceX, andy is the original target
vector (i.e., the class labels in classification modelifglypical loss function is mean
square error (MSE).

n

Lf(X),y) = > _(f(xi) — )

i=1

As the definition of model quality is instantiated by the Idsaction L, we give the
following definition of perturbation invariant regressiorodel.

Definition 5.2. A regression method is invariant to a transformatioif and only if
IL(fx(Y),yy)—L(frx)(T(Y)),yy)| < e forany training dataset’, and any testing
datasel’. 0 < ¢ < 1 andyy is the target vector of the testing data

Similarly, the strictly invariant condition becomes
L(fx(Y),yy) = L(frx)(T(Y)),yy). We prove that

Theorem 5. The linear regression model using MSE as the loss functicstristly
invariant to rotation and translation.

Proof. The linear regression model based on the MSE loss functiofbeaepresented
asy = XT3 + ¢, wheree is a vector of random Gaussian noise with mean zero and

variances2. The estimate of is 5 = (X X7)~! Xyx. Thus, for any testing dat,
the estimated model igy = Y7 3. Since the loss function for the testing dafais
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Lfx(Y),y) = |YT(XXT)"1 Xyx — yy||. After rotation it becomes

L(fxrrr (YTR"),y) = [[YTR"(RX(RX)")'RXyx —yv |
= IY'RT(RXXTR") 'RXyx —yy||
= [[Y"R"(R")"{(XX")'RT'RXyx —yv|
= Y"(XX") ' Xyx —yvl = L(fx(Y),y) (5)

The linear regression model can also be representgdaéo + Zle Bz, where
x; is the value of dimension for the vectorx. It is Aclear that ifx is traszIated to
x’' = x+t, we can reuse the model parameters exeefpy is replaced wittbetag — dt.
Thus, the new model does not change MSE as well.

Other regression models, such as regression tree baseddadiriedman, 2001),
which partitions the global space based on Euclidean distaare also strictly invariant
to rotation and translation. We skip the details here.

5.4. Perturbation Invariant Clustering Algorithms

There are several metrics used to evaluate the quality sfasing result, all of which
are based on cluster membership, i.e., reédrelongs to clustef’;. Suppose the num-
ber of cluster is fixed a&’. The same clustering algorithm applied to the original data
and the perturbed data will generate two clustering ressitee the record ID does not
change before and after perturbation, we can compare tfegatite between two sets
of clustering results to evaluate the invariance prop&ky.use theconfusion matrix
method (Jain, Murty and Flynn, 1999) to evaluate this differe, where each element
cij 1 < 4,5 < K represents the number of points from the clugtém the original
dataset assigned to clustdry the clustering result on the perturbed data. Since aluste
labels may represent different clusters in two clusteresults. Let{(1), (2), ..., (K)}

be any permutation of the sequence of cluster labg]®, ..., K. There is a permu-
tation that best matches the clustering results of befodeafter data perturbation and
maximizes the number of consistent points for clustering algorithnC.

K
me =max{» ¢, forany{(1),(2),...,(K)}}

i=1

We define the error rate d8Qc(X,T(X)) = 1 — &, whereN is the total number
of points. DQ¢ is the quality difference between the two clustering resuthen, the
criterion for perturbation invariant clustering algorittcan be defined as

Definition 5.3. A clustering algorithm is invariant to a transformatiérif and only if
DQc(X,T(X)) < e for any dataseX, and a small valué < ¢ < 1.

For strict invarianceDQ¢ (X, T(X)) = 0.

Theorem 6. Any clustering algorithms or cluster visualization algbms that are based
on Euclidean distance are strictly invariant to rotatiod &ranslation.

Since geometric data perturbation aims at preserving ttodidéan distance relation-
ship, the cluster membership does not change before andpafteirbation. Thus, it is
easy to prove that the above theorem is true and we skip ttod. pro
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Decision boundary:

Points in range 6>20 has small
chance perturbed out of the boundary

Fig. 4. Analyzing the points being
perturbed out of boundary.

5.5. Effect of Noise Perturbation to the Invariance Propery

Intuitively, the noise component will affect the quality data mining model. In this
section, we give a formal analysis on how the noisy intereditycts the model quality
for classification (or clustering) modeling.

Assume the boundary for the data perturbed without the remisgonent is shown
in Figure[4 and the noises are drawn from the normal disidbu¥ (0, o%). Let's look at
the small band witld distance (one side) around the classification or clustdymgd-
ary. The increased error rate is determined by the numbeoiotpthat are original
properly classified or clustered but now are perturbed tamther side of the boundary.
Out of the band the points are less likely perturbed to theratide of the boundary. For
a d-dimension pointk = (z1,z2,...,2q), its perturbed version (with only the noise
component) is represented&s= (x1 + €1, 22 + €2,..., x4 + €4), Wheree; is drawn
from the same distributiov (0, o2). To further simplify the analysis, assume a decision
boundary is perpendicular to one of the dimensions (we caaya rotate the dataset to
meet this setting), say;, and there are points uniformly distributed in thé band.

According to normal distribution, faf > 20, the points located out of theband,
will have small probability € 0.025) to be perturbed to the other side of the boundary.
Therefore, we consider only the points within the- 20 band. Letp(y) be the proba-
bility of a point that has distanagto the boundary perturbed out of the boundary, then
the average number of points perturbed out of the boundary is

20 20
— d = ex 252 d:v — d
/O p(y)o=dy = / / ey P y.

Expandlngexp =7 with Taylor senes (Gallier, 2000) for the flrst three terme w
obtainexp™ = ~ 1 — 35 + . With the factj exp = dr = 1/2 —

F
fo 271'0' exp‘zT2 dz, we solve the equation and get the number of out-of-the-tayn

points= (% — 5\;7)71 ~ 0.18n. The other side of the boundary has the similar amount

of points perturbed out of the boundary. Depending on tha detribution andr, the
amount of affected data points can vary. Borrowing the cphoE‘margin” from SVM
literature, we understand that if the margin is greater #tdathe model accuracy is not
affected at all; if the margin is less than, the model quality is affected by the amount
of points in the24 region.
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5.6. Effect of General Multiplicative Perturbation to Model Quality

In geometric data perturbation, the rotation and trarslatbmponents strictly preserve
distance, which is then slightly perturbed by distanceysbsgtion. If we relax the con-
dition of strictly preserving distance, what will happerthe discussed mining models?
This relaxation may use any linear transformation matrixejglace the rotation com-
ponent, e.g., projection perturbation (Liu, Kargupta ary@i® 2006). In this section,
we will discuss the effect of a general multiplicative pepation withG(x) = Ax to
classification model quality, wheté is ak x d matrix andk may not equal tel. We
analyze why arbitrary projection perturbations do not galtepreserve geometric de-
cision boundaries and what are the alternative ways toiootgerturbation to generate
decision-boundary (or approximately) preserving multgtive perturbations.

This analysis is based on a simplified model of data distiobut multidimensional
Gaussian mixture model. Assume the dataset can be modelethwitiple data clouds,
each of which has approximately normal (Gaussian) didiobuV (u;, ;), wherep; is
the mean vector ang; is the covariance matrix. Since such a general multipliegier-
turbation does not necessarily preserve all of the geooyatoiperties for the dataset, it
is not guaranteed that the discussed data mining modelbevitivariant to these trans-
formations. Let's first consider a more general case thas doéput a constraint oh.
The rationale of projection perturbation is based on apiprate distance preservation
supported by the Johnson-Lindenstrauss Lemma (Johnsdrrathehstrauss, 1984).

Theorem 7. For any0 < € < 1 and any integen, let k be a positive integer such that

k> 52‘/*210%2‘/3. Then, for any se$ of n data points inl dimensional spac&?, there is

a mapping functiorf: R — R* such that, for alk € S,
(1= )lx—x|> < [f(x) = fF)* < (1 +e)llx — x|
where|| - || denotes the vector 2-norm.

This lemma shows that any setwfpoints ind-dimensional Euclidean space could be

embedded into é)(l‘)g") -dimensional space with some linear transformagfpsuch
that the pair-wise distance of any two pomts are maintaingld a controlled error.
However, there is a cost to achieve high precision in digagmeserving. For example,
a setting ofn = 1000, a quite small dataset, arnd= 0.01, will requirek ~ 0.5 million
dimensions, which makes the transformation impossibletéopm. Increasing to 0.1,
we still need about ~ 6, 000. In order to further reduck, we have to increasemore,
which brings larger errors, however. In the case of incréasstance error, the decision
boundary may not be well preserved.

We also analyze the effect of transformation from a moreitiRiperspective. In
order to see the connections between the general lineafdramation and data mining
models, we use classifiers that are based on geometricalebisundaries for example.

Below we name a dense area (a set of points are similar to éheh ascluster,
while the points with the same class label are in the selass We can approximately
model the whole dataset with Gaussian mixtures based omritsityy property. Without
loss of generality, we suppose that a geometrically separdhass consists of one or
more Gaussian clusters as shown in Fiddre 5.,Lé&e the density center, arid be
the covariance matrix of one Gaussian cluster. A cluStezan be represented with the
following distribution.

N ®) = s exp{=e = ) 574 e = 0)/2)
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Decision
Boundary

Fig. 5. Use mixture to describe the
classes in the original dataset.

1 describes the position of the cluster aridiescribes théyper-elliptic shapef the
dense area. After the transformation with invertillehe center of the cluster is moved
to Au agd the covariance matrix (corresponding to the shape afedarea) is changed
to AXA*.

Let x andy be any two points. After the transformation, the distandsvben the
two becomes)’ = ||A(x —y)|| = (x —y)T AT A(x — y). If we compare this distance
to the original distanc®, we get their difference as

D' —D=(x-y) (ATA-D)(x—-y) (6)

We study the property od” A — I to find how the distance changes. First, for a random
invertible anddiagonalizablgBhatia, 1997) matrix4 that preserves dimensions, i.e.,
k = d, we will have AT A positive definite for the following reason. Singeis diago-
nalizable,A can be eigen-decomposedfd AU, whereU is an orthogonal matrix is
the diagonal matrix of eigenvalues, and all eigenvaluesanezero for the invertibility
of A. Then, we havel” A = UTAUUTAU = UTA%U, where all eigenvalues of?
are positive. Therefored™ A is positive definite. If all eigenvalues of” A are greater
than 1, thend” A — I will be positive definite and)’ — D > 0 for all distances. Simi-
larly, if all eigenvalues ofA” A are less than 1, thea” A — I will be negative definite
andD’ — D < 0 for all distances. For any case else, we are unable to deternow
distances change - it can be lengthened or shortened. Beohtie possibly arbitrary
change of distances for an arbitrafly the points belonging to one cluster may possi-
bly become members of another cluster. Since we define sléassed on clusters, the
change of clustering structure may also perturb the declsimndary.

Then, what kind of perturbations will preserve clusteritigctures? Besides the
distance preserving perturbations, we may also use a farhilystance-ordering pre-

servingperturbations. Assume, y, u, v are any four points in the original space, and

IIx —yl| < |Ju—v||,ie, "%, (& —v)* < S0, (ui — v;)2 which defines the

order of distances, wherg;, y;, u;, andv; are dimensional values. It is easy to ver-
ify that if distance ordering is preserved after transfdiomg i.e.,||G(x) — G(y)|| <
[|G(u) — G(v)||, the clustering structure is preserved as well and thus #oésion
boundary is preserved. Therefore, distance ordering prieggperturbation is an alter-
native choice to rotation perturbation.

In the following we discuss how to find a distance orderingpreing perturbation.
LetA?,i = 1,...,d, be the eigenvalues of" A. Then, the distance ordering preserving
property require$ | A2(z; —y:)? < 2%, A2 (u; —v;)2. Apparently, for arbitrary,
this condition cannot be satisfied. One simple setting wilirgntee to preserve distance
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ordering that is\; = )\, where) is some constant. This results in distance ordering
preserving matriced = AR whereR is a rotation matrix and is an arbitrary constant

— we name itscalingof the rotation matrix. Based on this analysis, we can alsivele
approximate distance ordering preserving by perturbing A\ + J;, whered, is a small
value drawn from a distribution. In fact, scaling is alsocdissed in transformation-
based data perturbation for privacy preserving clustei@liyeira and Zaiane, 2010).

6. Attack Analysis and Privacy Guarantee of Geometric Data
Perturbation

The goal of random geometric perturbation is twofold: preisg the data utility and
preserving the data privacy. The discussion about thefsemation-invariant classifiers
has proven that geometric transformations theoreticalfrgntee preserving the model
accuracy for many models. As a result, numerous such geimnpetrturbations can
present the same model accuracy, and we only need to find ahen#éiximizes the
privacy guaranteén terms of various potential attacks.

We dedicate this section to discuss how good the geomettigrpation approach is
in terms of preserving privacy. The first critical step is &fide amulti-column privacy
measurefor evaluating the privacy guarantee of a geometric pedtioh to a given
dataset. It should be distinct from that used for additiveeysbation (Agrawal and
Srikant, 2000), which assumes each column is independgettyrbed, since geomet-
ric perturbation changes the data on all columns (dimes$imgether. We will use this
multi-column privacy metric to evaluate several attackd aptimize the perturbation
in terms of attack resilience.

6.1. A Conceptual Privacy Model for Multidimensional Perturbation

Unlike the existing random noise addition methods, wherdéiple columns are per-
turbed independently, random geometric perturbation aieegerturball columns to-
gether. Therefore, the privacy quality of all columns isretated under one single trans-
formation and should be evaluated under a unified metric. i&ediesent a conceptual
model for privacy evaluation in this section, and then wd didcuss the design of the
unified privacy metric and a framework for incorporatingaak evaluation.

In practice, since different columns (attributes) may héiféerent privacy con-
cern, we consider that the general-purpose privacy métifier entire dataset should
be based omrolumn privacy metric. A conceptual privacy evaluation model is de-
fined as follows. Letp be the column privacy metric vectegr = (p1,p2,...,Dd),
and there argrivacy weights associated to thé columns, respectively, denoted as
w = (wy,ws,...,wy). Without loss of generality, we assume that the weights are

normalized, i.e.Zjl:1 w; = 1. Then,® = ®(p, w) defines the privacy guarantee. In
summary, the design of the specific privacy model shouldidenshe three factorp,
w, and the functiorb.

We will leave the concrete discussion about the desigmiafthe next section, and
define the other two factors first. We notice that differedtiolns may have different
importance in terms of the level of privacy-sensitivity €lfirst design idea is to take the
columnimportance into consideration. Intuitively, thenmonportant the column is, the
higher level of privacy guarantee will be required for thetpebed data, corresponding
to that column. If we use; to denote the importance of columim terms of preserving
privacy,p; /w; can be used to represent theighted column privackor columni.
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The second intuition is the conceptaiimum privacy guarantemmong all columns.
Normally, when we measure the privacy quality of a multiwwoh perturbation, we
need to pay special attention to the column that has the tomaighted column privacy,
because such a column could become the breaking point afqyritience, we design
the first composition functio®; = min?_, {p;/w;} and call it the minimum privacy
guarantee. Similarly, thaverage privacy guaranteaf the multi-column perturbation,
defined by®, = é Zle p;/w;, could be another interesting measure.

With the definition of privacy guarantee, we can evaluateptiieacy quality of a
perturbation to a specific dataset, and most importantlycaveuse it to find a multi-
dimensional perturbation that locally maximizes the prjwguarantees. With random
geometric perturbation, we demonstrate that it is conven@gadjust the perturbation
method to obtain high privacy guarantees, without the conegpreserving the model
accuracy for the discussed classifiers.

6.1.1. A Unified Column Privacy Metric

Intuitively, for a data perturbation approach, the quatifypreserved privacy can be
understood as the difficulty level of estimating the origidata from the perturbed
data. We name such estimation methods as “inference att#clsified metric should
be a generic metric that can be used to evaluate as many typefei@nce attacks
as possible. In the following, we first derive a unified priyawetric from the mean-
square-error method, and then discuss how to apply theatteteivaluate the attacks to
geometric perturbation.

We compare the original value and the estimated value tarmdéte the uncer-
tainty brought by the perturbation. This uncertainty is fhigacy guarantee that pro-
tects the original value. Let the difference between thgioal column dataY and
the perturbed/reconstructed dafabe a random variabl®. We use the root of mean
square error (RMSE) to estimate this difference. Assumetiginal data samples are
Y1, Y2, - - -, yn. Correspondingly, the estimated values &gy, . .., Jn. The root of
mean square error of estimation,is defines as

As we have discussed, to evaluate the privacy quality ofirdihensional perturbation,
we need to evaluate the privacy of all perturbed columnsthegeUnfortunately, the
single-column metric is subject to the specific column distion, i.e., the same amount
is not equally effective for different value scales. For rapde, the same amount of
RMSE for the “age” column has much stronger protection than“$alary” due to
the dramatically different value ranges. One effective waynify the different value
ranges is viamormalization e.g., max-min normalization or standardization. We emplo
the standardization procedure, which is simply descritee@ &ansformation to the
original valuey’ = Y=, wherey is the mean of the column andis the standard
deviation. By using this procedure all columns are apprakaty unified into the same
datarange. The rationale behind the standardization guveés that for large sampleset
(e.g. hundreds of samples) normal distribution would beadgpproximation for most
distributions (Lehmann and Casella, 1998). The standatidiz procedure normalizes
all distributions to standard normal distribution (with amezero and variance one).
According to normal distribution, the rande — 20, 1 + 20] covers more than 95%
points in the population. Let's use this range, i4r,to approximately represent the
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Original value could be
in this range\-r, v+r].

| | | |
7

k_Y_/ %—/l
1-r/20, the risk of

privacy breach

Fig. 6. The intuition behind the privacy met-
ric.

value range. We use the normalized values, the definitiolMBR, and the normalized
value range to represent the unified privacy metric.

2r 1 1< Yi —
Pm’v(y,y’):E:% NZ(”U — )2
i=1

This definitiofi can be explained with Figuré 6. The normalized RMSE

r= \/% Zfil (£ — ) represents the average error on value estimation. The real

value can be in the range @f; — r, §; + r|. The rate of this rang2r to the value range
40 represents the normalized uncertainty of estimation. fatescan be possibly higher
than 1, which means extremely large uncertainty. If theinabdata is standardized
(o = 1), this metric is reduced to = r /2.

6.1.2. Incorporating Attack Analysis into Privacy Evalioat

The proposed metric should compare the difference betweeatasets: the original
dataset and thebserved or estimated datas&¥ith different level of knowledge, the
attacker observes the perturbed dataset differently. Ttheks we know so far can be
summarized into the following three categories: (1) thedakatistical methods that
estimate the original data directly from the perturbed dagrawal and Srikant, 2000;
Agrawal and Aggarwal, 2002), without any other knowledgeudtihe data (as known
as “naive inference”); (2) data reconstruction methodsré@onstruct data from the per-
turbed data with any released information about the datdtengerturbation, and then
use the reconstructed data to estimate the original datay(igéa et al., 2003; Huang
et al., 2005) (as known as “reconstruction-based infergnaed (3) if some particular
original records and their image in the perturbed data cadéified, e.g., outliers of
the datasets, based on the preserved distance informgt@omapping between these
points can be used to discover the perturbation (as knowistade-based inference).

Let X be the normalized original datase?, be the perturbed dataset, aGdbe
the observed dataset. We calcul®@gX, O), instead of®(X, P), in terms of different
attacks. Using rotation perturbatié®(X) = RX for example, we can summarize the
evaluation of privacy in terms of attacks.

1. Naive inferenceO = P, there is no more accurate estimation than the released
perturbed data;

2. Reconstruction-based inference: methods like Indep@r@mponent Analysis (ICA)
are used to estimat@. Let & be the estimate ok, andO = R~1P;

3 Note that this definition is improved from the one we gave ] $DM paper (Chen et al., 2007).
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3. Distance-based inference: the attacker knows a smaif sptecial points inX that
can be mapped to certain set of pointdinso that the mapping helps to estimate

and therD = R~ P.
4. Subset-based inference: the attacker knows a signifieanber of original points
that can be used to estimaeand therD = R~ P.

The higher the inference level is, the more knowledge alimubtiginal dataset the
attacker needs to break the perturbation. In the followawiens, we analyze some in-
ference attacks and see how geometric perturbation previddience to these attacks.

Note that the proposed privacy evaluation method is a geneethod that can be
used to evaluate the effectiveness of a general perturhatizere nothing but the per-
turbed data is released to the attacker. It is importantt@reber that this metric should
be evaluated on the original data and éstimateddata. We cannot simply assume the
perturbed data is the estimated data as the original adgiévturbation does (Agrawal
and Srikant, 2000), which makes the assumption that thekattéhas no knowledge
about the original data.

6.2. Attack Analysis and Perturbation Optimization

In this section, we will use the unified multi-column privametric to analyze a few
attacks. The similar methodology can be used to analyze @amattacks. Based on the
analysis, we develop a randomized perturbation optingraigorithm.

6.2.1. Privacy Analysis on Naive Estimation Attack

We start with the analysis on multiplicative perturbatiamich is the key component
in geometric perturbation. With the proposed metric overribrmalized data, we can
formally analyze the privacy quality of random rotationtpepation. LetX be the nor-
malized datasetX’ = RX be the rotation ofX, andI, be thed-dimensional identity
matrix. Thus, the difference matriX’ — X can be used to calculate the privacy metric,
and the columnwise metric is based on the elentgn} in K = (X' — X)(X' — X)T
(note thatX and X’ are column vector matrices as we defined), \€K; ;) /2, where

K ;5 is represented as

Ky =(R—I)XXT(R—10)") () 7)

Since X is normalized XX is also the covariance matrix, where the diagonal
elements are the column variances. Lgtrepresent the elemefi j) in the matrixR,
andc;; be the elementi, j) in the matrix ofXX. K, ;) is transformed to

d

d
Koy =YY rijTincrj — 2> 1ijcij + Cii (8)
=1 k=1 =1

When the random rotation matrix is generated following tleaiHdistribution, a con-
siderable number of matrix entries are approximately iedejent normal distribution
N(0,1/d) (Jiang, 2005). The full discussion about the numerical attaristics of the
random rotation matrix is out of the scope of this paper. Fop#city and easy under-
standing, we assume that all entries in random rotationixegtproximately follow in-
dependent normal distributia¥ (0, 1/d). Therefore, sample randomly rotations should
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makeK; ;) changing around the mean valgg as shown in the following resuilt.

d

d d
E[Knl ~ > > ElrilElrales; — 2 Elrijleij + ci = cii
j=1k=1 j=1

It means that the original column variance could substtytig#luence the result of
random rotation. However;[K; ;)] is not the only factor determining the final privacy
guarantee. We should also look at the varianc&gf;). If the variance is considerably
large, we still have great chance to get a rotation with Idkgg;) in a set of sample
random rotations, and the larger the variance is, the miketylthe randomly generated
rotation matrices can provide a high privacy level. With sivaplicity assumption, we
can also roughly estimate the factors that contribute tawéhiance.

d

Var(K,) ZZV@T ri;)Var(ri) c -+ 4ZVa7’ Tij)Cij ct

=1 j=1 Jj=1

1/d2220 +4/dz 2 9)

=1 j=1

The above result shows that the variance is approximatktetto the average of the
squared covariance entries, with more influence from theiroficovariance matrix.

A simple method is to select the best rotation matrix amongrech of randomly
generated rotation matrices. But we can do better or be nfficeat in a limited num-
ber of iterations. In Equatidd 8, we also notice that:ttle row vector of rotation matrix,
i.e., the values,,, plays a dominating role in calculating the metric. Hentis,possible
to simply swap the rows aR to locally improve the overall privacy guarantee, which
drives us to propose a row-swapping based fast local otz method for finding
a better rotation from a given rotation matrix. This methad significantly reduce the
search space and thus provides better efficiency. Our empets show that, with the
local optimization, the minimum privacy level can be inaed by about 10% or more.
We formalize the swapping-maximization method as follolet {(1), (2),...,(d)}
be a permutation of the sequen{de 2, . . ., d}. Let the importance level of privacy pre-
serving for the columns b& = (wy,ws, ..., w4). The goal is to find the permutation
of rows of a given rotation matrix that results in a new raatimatrix that maximizes
the minimum or average privacy guarantee .

d d d
argmaz{(1),(2),..., )}{minlgigd{(z Z T()5T(i)kChj — 2 Z T(3);Cij + Cii)/wi}}
j=1k=1 j=1

(10)

Since the matrix?’ generated by swapping the rowsBfis still a rotation matrix, the
above local optimization step will not change the rotafiovariance property of the
discussed classifiers.

Attacks to Rotation Center The basic rotation perturbation uses the origin as the ro-
tation center. Therefore, the points closely around thgiare still around the origin
after the perturbation, which leads to weaker privacy potide about these points. We
address this problem with random translation so that théky@&rturbed points around
the rotation center are not detectable due to the randonafi¢iss rotation center. At-
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fault rotation center.

tacks to translation perturbation will depend on the susadshe attack to rotation
perturbation, which will be described in later sections.

6.2.2. Privacy Analysis on ICA-based Attack

The unified privacy metric evaluates the privacy guarantekthe resilience against
the first type of privacy attack the naive inference. Considering the reconstruction-
based inference, we identify that Independent Componeatyais (ICA) (Hyvarinen

et al., 2001) could be the most powerful one to estimate tiggnal datasetX, if more
column statistics are known by the attacker. We dedicate dbction to analyze the
ICA-based attacks with the unified privacy metric.

Requirements of Effective ICA. ICA is a fundamental problem in signal process-
ing which is highly effective in several applications suchldind source separation
(Hyvarinen et al., 2001) of mixed electro-encephalogrefititG) signals, audio sig-
nals and the analysis of functional magnetic resonanceingd§VRI) data. Let ma-
trix X composed by source signals, where row vectors represertessignals. Sup-
pose we can observe the mixed signls which is generated by linear transformation
X’ = AX. The ICA model can be applied to estimate the independenpoaents
(the row vectors) of the original signal§, from the mixed signal&”, if the following
conditions are satisfied:

1. The source signals are independent, i.e., the row veotoXsare independent;

2. All source signals must be non-Gaussian with possibleti@n of one signal;

3. The number of observed signals, i.e. the number of rowovedf X', must be at
least as large as the independent source signals.

4. The transformation matrid must be of full column rank.

For rotation matrices and full rank random projection, thet@hd 4th conditions are
always satisfied. However, the first two conditions, esplydiae independency condi-
tion, although practical for signal processing, seem nog eemmon in data mining.
Concretely, there are a few basic difficulties in applying #8ibove ICA-based attack to
the rotation-based perturbation. First of all, if thereigngficant dependency between
any attributes, ICA fails to precisely reconstruct the mréd data, which thus cannot
be used to effectively detect the private information. ®ec@ven if ICA can be done
successfully, the order of the original independent corepts\cannot be preserved or
determined through ICA (Hyvarinen et al., 2001). Formadlyy permutation matri®
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and its inversé®—! can be substituted in the model to gi¥é = AP~'PX. ICA could
possibly give the estimate for some permutated soi&e Thus, we cannot identify
the particular column if the original column distributioage unknown. Finally, even if
the ordering of columns can be identified, ICA reconstructioes not guarantee to pre-
serve the variance of the original sigrathe estimated signal may scale up the original
one but we do not know how much it scales, without knowing théstical property of
the original column.

In summary, without the necessary knowledge about ther@igiataset, the at-
tacker cannot simply use the ICA reconstruction. In casedtiackers know enough
distributional information that includes the maximum/iminim values and the prob-
ability density functions (PDFs) of the original columnise teffectiveness of ICA re-
construction will totally depend on the independency cbadiof the original columns.
We observed in experiments that, since pure independerey ot exist in the real
datasets, we can still tune the rotation perturbation sbwieacan find one resilient
enough to ICA-based attacks, even though the attacker ktimsvsolumn statistics.
In the following, we analyze how the sophisticated ICA-lthattacks can be done and
develop a simulation based method to evaluate the resdliefa particular perturbation.

ICA Attacks with Known Column Statistics. When the basic statistics, such as the
max/min values and the PDF of each column are known, ICA datanstruction can
possibly be done more effectively. We assume that ICA isegefitective to the dataset
(i.e., the four conditions are approximately satisfied) #mel column PDFs ardis-
tinctive Then, the reconstructed columns can be approximatelyhedto the original
columns by comparing the PDFs of the reconstructed columehe original columns.
When the maximum/minimum values of columns are known, thenstructed data can
be scaled to the proper value ranges. We define an enhanaek with the following
procedure.

1. Running ICA algorithm to get a reconstructed data;

2. Estimate column distributions for the reconstructediguis, and for each recon-
structed column find the closest match to the original colloyrcomparing their
column distributions;

3. Scale the columns with the corresponding maximum/mininalues of the original
columns;

Note if the four conditions for effective ICA are exactlyiséied and the basic statis-
tics and PDFs are all known, the basic rotation perturbaigoroach will not work.
However, in practice, since the independency conditioamat all satisfied for most
datasets in classification, we observed that differentiostgerturbations may result
in different quality of privacy and it is possible to find ongtation that is consider-
ably resilient to the enhanced ICA-based attacks. For thipgse, we can simulate
the enhanced ICA attack to evaluate the privacy guaranteerofation perturbation.
Concretely, it can be done in the following steps.

First step is called “PDF Alignment”. We need to calculate fimilarity between
the PDF of the original column and that of the reconstructgd dolumn to find the best
matches between the two sets of columns. A direct methodcisltnlate the difference
between the two PDF functions. L¢fx) andg(x) be the original PDF and the PDF
of the reconstructed column, respectively. A typical mdttmdefine the difference of
PDFs employs the following function.

aPDF = [ |f(@) - gla)lds (11)
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Fig. 8. Comparing PDFs in different ranges results in largere(The
lined areas are calculated as the difference between the.PDF

In practice, for easy calculation we discretize the PDF bits. It is then equivalent to
use the discretized versiop:_, | f(b;) — g(b;)|, whereb; is the discretized bin. The
discretized version is easy to implement by comparing tleehistograms with a same
number of bins. However, the evaluation is not accuratesifidues in the two columns
are not in the same range as shown in Fidgure 8. Hence, thestegoted PDF needs
to be translated to match the range, which requires to knewrthximum/minimum
values of the original column. Since the original columnligeady scaled to [0, 1] in
calculating unified privacy metric, we can just scale theonstructed data to [0, 1],
making it consistent with the normalized original data (®ed6.1.1). Meanwhile, this
also scales the reconstructed data down so that the variamge is consistent with the
original column. As a result, after the step of PDF Alignmevd can directly calculate
the privacy metrics between the matched columns to medseigrivacy quality.

Without loss of generality, we suppose that the level of dmfce for an attack
is primarily based on the PDF similarity between the two rhattcolumns. LeOD
be the reconstruction of the original datasét APDF(O;,X;) represents the PDF
difference of the column in X and the columry in O. Let {(1),(2),...,(d)} be
a permutation of the sequen¢e, 2, ...,d}, which means a match from the original
columni to (¢). Let an optimal match minimize the sum of PDF differencedligiairs
of matched columns. We define the minimum privacy guarardsed on the optimal
match as follows.

) 1
p™" = min{—priv(Xg, Ouy), 1 <k < d} (12)
W

Where{( ( ), .. ( } = argmm{(l) (2),...,(d)} ZZ 1 APDF(XZ, X(l ) Similarly,
we can deflne the average privacy guarantee based on an bitirt.

With the above multi-column metric, we are able to estimaie hesilient a rota-
tion perturbation is to the ICA-based attack equipped withknown column statistics.
We observed in experiments that, although the ICA method effagtively reduce the
privacy guarantee for certain rotation perturbations, e always find some rotation
matrices so that they can provide satisfactory privacy gpuiae to ICA-based attacks.

6.2.3. Attacks to Translation Perturbation

Previously, we use random translation to address the weatiegiion on the points
around the rotation center. We will see how translationyybsgtion is attacked if the
ICA-based attack is applied .

Let each dimensional value of the random translation vectsruniformly drawn
from the range [0, 1], so that the center hides in the norredlgata space. The pertur-
bation can be represented as

f(X)=RX+V=R(X+R ')
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mapping

Fig. 9. Using known points and distance relationship
to infer the rotation matrix.

It is easy to verify thal’ = R~ is also a translation matrix. An effective attack to
estimate the translation component should be based on fkmf€rence toR and then
remove the compone® ' ¥ based on the unknown distribution &F. Concretely, the
process can be described as follows.

By applying ICA attack, the estimate 86+ T'is X + 7' = R~ P. Suppose that the
original column; has maximum and minimum values:z; andmin;, respectively, and

R'P hasmaz; andmin!, respectively. Since translation does not change the sifape
column PDFs, we can align the column PDFs first. As scalingiésaf the major effect
of ICA estimation, we rescale the reconstructed column aatme factos, which can

be estimated by ~ % Then, the columr of R~!P is scaled down to the
same span ok by the factors. Then, we can extract the translatigrior column: with

tAl- =7 min’i X § — min;

Since the quality of the estimation is totally dependentar of ICA reconstruction
to rotation perturbation, a good rotation perturbatiorl wibtect translation perturba-
tion as well. We will show some experimental results to see vell we can protect
the translation component.

6.2.4. Privacy Analysis on Distance-inference Attack

In the previous section, we have discussed naive-inferatiaeks and ICA-based at-
tacks. In the following discussion, we assume that, bedigesnformation necessary
to perform these two kinds of attacks, the attacker managgsttmore knowledge about
the original dataset: s/he also knows at lelist original data points{x, xs, ..., X441},
d points of which are also linearly independent. Since théctgsometric perturbation
preserves the distances between the points, the attaakg@osaibly find the mapping
between these points and their images in the perturbededatas, oo, .. ., 0441}, if
the point distribution is peculiar, e.g. the points are ieuwl With the known mapping
the rotation componert and translation componetican be calculated consequently.
There is also discussion about the scenario that the attéaokevs less tham points
(Liu, Giannella and Kargupta, 2006).

The mapping might be identified precisely for low-dimensismall datasets{ 4
dimensions). With considerable cost, it is not impossiblehigher dimensional larger
datasets by simple exhaustive search if the known points $aecial distribution. There
may have multiple matches, but the threat can be substantial

So far we have assumed the attacker has obtained the riglimgalpetween the
known points and theirimages. In order to protect from tiséedice-inference attack, we
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use the noise componefitto protect geometric perturbatienG(X) = RX + U+ A.
After we append the distance perturbation component, we tie/original points and
their maps qul, X2, ... 7xd+1} — {01, 02, ... 70d+1}y 0; = Rx; +t + ¢;, wheres;
is the noise. The attacker can perform a linear regressisadbastimation method.

1) R is estimated with the known mapping. The translation vectan be canceled
from the perturbation and we géequationso; — 0q+1 = R(z; — Za41) + € — €d+1,
1<i<d LetO =[o1 —0d4+1,02 — Odt1,---,0d — Odt1)y X = [T1 — Tgq1,T2 —
Td4l, .- Ld — Tas1], ANDE = [g1 — €41, €2 — €441, - - ., €4 — E4+1). The equations
are unified ta@) = RX + &, and estimatind? becomes a linear regression problem. The
minimum variance unbiased estimator fois R = O’ X (X'X)~' (Hastie et al., 2001).

2) With R, the translation vectdrcan also be estimated. Singe- Rz, —¢; = t and

¢, has mean value 0, witR the attacker has the estimatetcdst = - (o —

Ra)) - e ~ P, S (0; — Ra;). t will have certain variance brought by the
components? ande;.

3) Finally, the original dat& can be estimated as follows. &= RX + ¥ + A,
using the estimator& and ¥ = [t,...,t], we getX = R~1(O — ¥). Due to the
variance introduced bg, ¥, andA, the attacker may need to run several times to get
the average of estimateXi, in practice.

By simulating the above process, we are able to estimateftbetieeness of the
added noise. As we have discussed, as long as the geometnddry is preserved, the
geometric perturbation with noise addition can presereentiodel accuracy. We have
formally analyzed the effect of the noise component to mqdality in Sectioh 515. We
will further study the relationship between the noise letle¢ privacy guarantee, and
the model accuracy in experiments.

6.2.5. Privacy Analysis on Other Attacks

We have studied a few attacks, according to the differergi$esf knowledge that an
attacker may have. There are also studies about the extraseetitat the attacker can
know a considerable number of poinis (d)in the original dataset. In this case, classical
methods, such as Principle Component Analysis (PCA) (Lian@ella and Kargupta,
2006) and ICA (Guo, Wu and Li, 2008), can be used to recontstinecoriginal dataset
with the higher order statistical information derived frdrath the known points and
the perturbed data. In order to make these methods effettigdnown points should
be representative for the original data distribution, sat thigher order statistics can
be preserved, such as the covariance matrix of the origatakeét that both PCA and
ICA based methods depend on. As a result, what portion of ksmTgre known by
the attacker and how different the known sample distrilbuigofrom the original one
become the important factor for the success of attacks. Muystrtantly, these attacks
become less meaningful in practice: when a large numberiaftpbave been cracked
it is too late to protect data privacy and security. In additioutliers in the dataset may
be easily under attacks, if additional knowledge about tigiral outliers is available.
Further study should be performed on the outlier-basedlataNe will leave these
issues for future study.

6.2.6. A Randomized Algorithm for Finding a Better Pertditia

We have discussed the unified privacy metric for evaluatiegjuality of a random geo-
metric perturbation. Three kinds of inference attacks asdyaed under the framework
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of multi-column privacy evaluation, based on which we desig algorithm to choose
good geometric perturbations that are resilient to theudised attacks. In addition, the
algorithm itself, even published, should not be a weak paiptivacy protection. Since
a deterministic algorithm in optimizing the perturbatioayralso provide extra clues to
privacy attackers, we try to bring some randomization ihedptimization process.

Algorithm[6.1 runs in a given number of iterations, aimingraximizing themin-
imum privacy guaranteeAt the beginning, a random translation is selected. In each
iteration, the algorithm randomly generates a rotationrimatocal maximization of
variance through swapping rows is then applied to find a bettation matrix. And
then, the candidate rotation matrix is tested by the ICAeHasttack§ 6.212 assuming
the attacker knows column statistics. The rotation magigdcepted as the currently
best perturbation, if it provides higher minimum privacyagantee in terms of both
naive estimation and ICA-based attacks than the previousinpations. Finally, the
noise component is appended to the perturbation, so thalistence-inference attack
cannot reduce the privacy guarantee to a safety lévelg.,¢ = 0.2. Algorithm[6.1
outputs the rotation matrik,, the random translation matrik, the noise leves?, and
the corresponding minimum privacy guarantee. If the psivggarantee is lower than
the anticipated threshold, the data owner can choose netdase the data. Note that
this optimization process is applied to a sample set of i@ dderefore, the cost will
be manageable even for very large original dataset.

Algorithm 6.1 Finding a Good PerturbatioX{;« 7, W, m)

Input: X4 n:the original datasety: weights of attributes in privacy evaluatiom: the number of itera-
tions.
Output: R;: the selected rotation matrix;: the random translations2: the noise levelp: privacy guar-
antee
calculate the covariance matiix of X;
p = 0, and randomly generate the translatign
for Each iteratiordo
randomly generate a rotation matix
swapping the rows oR to getR’, which maximize&ninlsisd{w#(Cov(R’X = X)) s
po = the privacy guarantee @t’, p1 = 0;
if po > pthen
generateX with ICA;
{(1), (), ()} = argming (1) 2).... (@)} 2= APDF(X;,0;)
p1= minlgkgdﬁkpriv(xk, O(x))
end if
if p < min(po,p1) then
p = min(po,p1), Rt = R';
end if
end for
p2 = the privacy guarantee to the distance-inference attadktit perturbatiorz(X) = R: X + ¥ + A.

Tune the noise levet?, so thatps > pif p < ¢porps > ¢if p < .

7. Experiments

We design four sets of experiments to evaluate the geommgricirbation approach.
The first set is designed to show that the discussed class#fierinvariant to rotations
and translations. In this set of experiments, general titrgasformations, including
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Dataset N d k kNN SVM(RBF)
orig R A orig R A

Breast-w 699 10 2 976 —-0.5£0.3 —0.5+0.3 972 040 —0.24+0.2
Credit-a 690 14 2 829 0408 —0.7+0.8 855 0+0 +0.9+£0.3
Credit-g 1000 24 2 729 —-1.240.9 —1.8£0.8 76.3 0+0 +0.9+£0.9
Diabetes 768 8 2 733 +0.440.5 —04+£14 773 0£0 —3.6+1.0
E.Coli 336 7 8 857 —-04+0.8 —2.0+£22 786 0+0 —-4.3+1.5
Heart 270 13 2 804 +0.6+0.5 —-1.7+£1.1 848 0x0 —2.3+1.0
Hepatitis 155 19 2 811 +0.8+1.5 0+14 794 0+0 +3.3£1.9
lonosphere 351 34 2 874 +05+06 —-300£1.0 897 0%£0 +0.4+04
Iris 150 4 3 966 +1.2+04 —2.0+2.1 96.7 0+0 —-10.2+3.0
Tic-tac-toe 958 9 2 999 -03+04 —8.3+04 983 040 +1.6£6.9
\otes 435 16 2 929 0404 —126+3.1 956 040 —0.5+1.9
Wine 178 13 3 977 0=+0.5 —2.0+0.2 989 040 —5.7+1.3

Table 1. Experimental result on transformation-invara@assifiers

dimensionality-preserving transformation and projatticansformation, are also in-
vestigated to see the advantage of distance preservirgfdramations. The second set
shows the optimization of the privacy guarantee in geomeirturbation without the
noise component, in terms of the naive-inference attackth@dCA-based attack. In
the third set of experiments, we explore the relationshigveen the intensity of the
noise component, the privacy guarantee and the model agumaerms of distance-
inference attack. Finally, we compare the overall privaagrgntee provided by our
geometric perturbation and another multidimensionalysbetion— condensation ap-
proach. All datasets used in the experiments can be founddhrahchine learning
databas8.

7.1. Classifiers Invariant to Rotation Perturbation

In this experiment, we verify the invariance property of exab classifiers discussed
in section 5.1 to rotation perturbation. Three classifiki¢N classifier, SVM classi-
fier with RBF kernel, and perceptron, are used as the repisess. To show the ad-
vantage of distance preserving transformations, we wstl tiee invariance property of
dimensionality-preserving general linear transformatiad projection perturbation.

Each dataset is randomly rotated 10 times in the experirgewsh of the 10 resultant
datasets is used to train and cross-validate the classifibes reported numbers are
the average of the 10 rounds of tests. We calculate the éliféer of model accuracy,
between the classifier trained with the original data andeheained with the rotated
data.

In the tableL, ‘orig’ is the classifier accuracy to the orajidatasets, ‘R’ denotes

4 http://www.ics.uci.edutmlearn/Machine-Learning.html

orig
80.4
73.6
75.1
68.9

75.6
77.4
75.5

76.4
90.7

Perceptron
R A
—-87+03 —-80%£15
-73+10 —-88=£0.7
0+0 —0.2+£0.2
0.0£0.7 —2.5+£28
—-52+£03 -39%1.1
—-1.24+04 -—-1.8+24
-35£10 -56%1.0
—-53+00 —-52%£0.1
—43+10 —-83%49
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the result of the classifiers trained with rotated data, bachtimbers in ‘R’ columns are
the performance difference between the classifiers traiitkcbriginal and rotated data,
for example, “-1.0 & 0.2” means that the classifiers trained with the rotated date hav
the accuracy raté.0% lower than the original classifier on average, and the stahda
deviation is0.2%. We use single-perceptron classifiers in the experimergréfbre,
the datasets having more than two classes, such as “E.Qo#”,and “Wine” datasets,
are not evaluated for perceptron classifier. ‘A’ means gahily generated nonsingular
linear perturbations that preserves the dimensionalitheforiginal dataset. From this
result, we can see that rotation perturbation almost fulgserves the model accuracy
for all of the three classifiers, except that perceptron irlighsensitive to rotation per-
turbation for some datasets (e.g., “Breast-w"). Arbitsegienerated linear perturbations
may downgrade the model accuracy a lot for some datasets asutnonosphere” for
kNN (-30.0%), and “Iris” for SVM (RBF) (-10.2%).

7.2. The Effect of Random Projection to Model Accuracy

To see whether random projection can safely replace théiontperturbation com-
ponent in geometric data perturbation, we perform a set péements to check how
model accuracy is affected by random projection. We implartiee standard random
projection method (Vempala, 2005). Random projection fsed as

o« B,

whereR is ad x k matrix with orthonormal columns? can be generated in multiple
methods. One simple method is to generate a random mattixeaith element drawn
from the standard normal distributia¥i(0, 1) first, and then apply Gram-Schmidt pro-
cess (Bhatia, 1997) to orthogonalize the columns. From ¢asbn-Lindenstrauss
Lemma (Johnson and Lindenstrauss, 1984), we understahdhthaumber of pro-
jected dimensions is the major factor affecting the acqudanodels. We will look
at this relationship in the experiment. For clear pres@ntatve will pick three datasets
for each classifier that show great impact to accuracy. Sigjleach result is based on
the average of ten rounds of different random projections.

For clear presentation, for each classifier modeling, wecsealnly three datasets
that show the most representative patterns. In Fifuke EOxthxis is the difference
between the projected dimensions and the original dimessiad the y-axis is the dif-
ference between original model accuracy and the perturtetthaccuracy (perturbed
accuracy - original accuracy). Note that random projedtitirat preserve dimension-
ality (dimension difference=0) is as same as rotation peation. It shows that the
kNN model accuracy for the three datasets can decrease titallyaegardless of in-
creased or decreased dimensionality. The numbers are ¢hagavof ten runs for each
dimensionality setting. In Figutell1, SVM models also shieeihodel accuracy is sig-
nificantly reduced with a dimensionality different to thegimal one. The “Diabetes”
data is less affected by changed dimensionality. Intergisti the perceptron models
(Figure[12) are less sensitive to changed dimensionalitgdme datasets such as “Di-
abetes” and “Heart”, while very sensitive to others suchBrgastW”. In general, the
error caused by random projection perturbation that chedgeensionality is so large
that the resultant models are not useful.
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bation to Perceptron.

7.3. Effectiveness of Translation Perturbation

The effectiveness of translation perturbation is two-félust, we show that translation
perturbation cannot be effectively estimated based on ifmislsed techniques. Then,
we give complementary experimental results to show thatthssifiers: SVMs with
polynomial kernel and sigmoid kernel indeed invariant emglation perturbation.

As we have mentioned, if the translation vector could be ipedg estimated, the
rotation center would be exposed. We applied the ICA-basiedlato rotation center
that is described in Sectién 6.2.3. The data in Fifute 13 skedev(t — t). Compared
to the range of the elementstni.e., [0, 1], the standard deviations are quite large, so
we can conclude that random translation is also hard to estiifiwe have optimized
rotation perturbation in terms of ICA-based attacks.

SVMs with polynomial kernel, and sigmoid kernel, are alsaaniant to translation
transformation. Tablg]2 lists the experimental result awloan translation for the 12
datasets. We randomly translate each dataset for ten tithesiesult is the average of
the ten runs. For most datasets, the result shows zero atdirigtion from the standard
model accuracy.
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Table 2. Experimental result on random translation

Dataset SVM(polynomial) SVM(sigmoid)

orig Tr orig Tr

breast-w 96.6 0+0 65.5 0+0

credit-a 88.7 0+0 55.5 0+0

credit-g 87.3 —-04+04 70 0+0

diabetes 785 0+0.3 65.1 0+0

ecoli 899 —-0.1+£05 426 0+0

heart 91.1 —-0.2+0.2 556 0+0
hepatitis 96.7 —-04+03 794 0+0

ionosphere 98 +40.3+£0 635 +0.6+0

iris 97.3 0+0 293 -—-18+£04

tic-tac-toe 100 0+0 65.3 0+£0

votes 99.2 +0.2+£0.1 655 —-4.7+06

wine 100 0+0 39.9 0£0
1 14
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Fig. 14. Minimum privacy guarantee Fig. 15. Average privacy guarantee

generated by local optimization, com- generated by local optimization, com-
bined optimization, and the perfor- bined optimization, and the perfor-
mance of ICA-based attack. mance of ICA-based attack.

7.4. Perturbation Optimization against Naive Estimation and ICA-based
Attack

We run the randomized opt|m|zat|on algorithm and show hdeuati/e it can generate
resilient perturbatloﬁs Each column in the experimental dataset is consideredlgqua
important in privacy evaluation. Thus, the weights are nolided in evaluation.
Figure[I4 andI5 summarize the evaluation of privacy qualityexperimental
datasets. The results are obtained in 50 iterations witlophienization algorithm de-

5 Since we slightly changed the definition of privacy guararftem our SDM paper (Chen et al., 2007), we
need to re-ran the experiments that use this metric for casgra Therefore, the numbers in this section can
be slightly different from those in the paper (Chen et alQ20
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Fig. 16. Optimization of perturbation Fig. 17. Optimization of perturbation
for Diabetes data. for Votes data.

scribed in Section 6.2.6. “LocalOPT” represents the |lgagtitimized minimum privacy
guarantee addressing naive estimation at a number ofidesatBest ICA attack” is the
worst perturbation that gives the best ICA attack perforceane., getting the lowest
privacy guarantee among the perturbations tried in thedsufCombinedOPT"is the
combined optimization result given by AlgoritHim b.1 aften@mber of iterations. The
above values are calculated with the proposed privacy ekésed on the estimated
dataset and the original dataset. The LocalOPT values ¢an mfach a relatively high
level after 50 iterations, which means that the swappindotkts very efficient in lo-
cally optimizing the privacy quality in terms of naive esétion. In the contrast, the
best ICA attacks often result in very low privacy guaranteglich means some rota-
tion perturbations are very weak to ICA-based attacks. GoedtDPT values are much
higher than the corresponding ICA-based attacks, whiclpatip our conjecture that
we can always find one perturbation that is sufficiently ressilto ICA-based attacks in
practice.

We also show the detail in the course of optimization for tvatadets “Diabetes”
and “Votes” in Figur¢ 1 anld 17, respectively. For both detsathe combined optimal
result is between the curves of best ICA-attacks and thelbeait optimization result.
Different datasets or different randomization processag cause different change pat-
terns of privacy guarantee in the course of optimizationwel@r, we see after a few
rounds the results are quickly stabilized round satisfgcpmivacy guarantee, which
means the proposed optimization method is very efficient.

7.5. Distance Perturbation: the Tradeoff between Privacy ad Model
Accuracy

Now we extend the geometric perturbation with random nosepmonent :G(X) =
RX + V¥ + A, to address the potential distance-inference attacksn Ene formal
analysis, we know that the noise componfritan conveniently protect the perturbation
from distance-inference attack. Intuitively, the highlee hoise level is, the better the
privacy guarantee. However, with the increasing noisel lére model accuracy could
also be affected. In this set of experiments, we first studyrétationship between the
noise level, represented by its variangg and the privacy guarantee, and then the
relationship between the noise level and the model accuracy

Each known I/O attack is simulated by randomly picking a nands records (e.g.,
5% of the total records) as the known records and then apptii@ estimation proce-
dure discussed in Sectign 6.2.4. After running 500 runsrofifted attacks for each
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Fig. 20. The change of accuracy of Fig. 21. The change of accuracy of per-
SVM(RBF) classifier vs. the increase ceptron classifier vs. the increase of
of noise level. noise level.

noise level, we get the average of minimum privacy guaramesddition, since the pa-
per (Huang et al., 2005) showed that the PCA based noiserfgteachnique may help
reduce the noise for some noise perturbed datasets, weirmlslate the PCA filtering
method based on the described algorithm (Huang et al., 2&@b)hecked its effec-
tiveness. The results show that in most cases (except foe smise levels for “Iris”
data) when the number of principal components equals to tingoer of the original
dimensions (i.e., no noise reduction is applied), the ktimenost effective. Since the
PCA method cannot clearly distinguish the noise from otlegtysbation components,
removing the smallest principal components will inevitabhange the non-noise part
as well. Figurd_II8 shows the best attacking results for iffenoise levels. Overall,
the privacy guarantee increases with the increase of neis for all three datasets.
At the noise leveb = 0.1, the privacy guarantee is between the range 0.1-0.2. Figure
[19 and 2D show a trend of decreasing accuracy for KNN clasaifi¢ SVM (RBF ker-
nel) classifier, respectively. However, with the noise léswer than 0.1, the accuracy
of both classifiers is only reduced less than 6%, which iseqaiiceptable. Meanwhile,
perceptron (Figurle21) is less sensitive to different leeéinoise intensity. We perform
experiments on all datasets at the noise level 0.1 to see how the model accuracy is
affected by the noise component.

We summarize the privacy guarantees at the noise level 0.&llf@xperimental
dataset8 in Figure[22, and also the change of model accuracy for KNNVIGRBF),

6 “lonosphere” is not included because the existence of yearistant value in one column.
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and Perceptron in Figute 3. Among the three types of classifKNN is the most sta-
ble one while perceptron classifiers are most sensitivestaii¢e perturbation. Overall,
the distance perturbation component may affect model acgubut it has much less
impact on model accuracy. Last but not least, it is worthnpthat the noise compo-
nent can be removed if the data owner makes sure to secuoedythe original data.

This important feature provides extra and valuable fleitjbih geometric perturbation

for data mining.

8. Conclusion

We present a random geometric perturbation approach tagypreserving data clas-
sification. Random geometric perturbatié?,X) = RX + ¥ + A, includes the linear
combination of the three components: rotation perturibpaticanslation perturbation,
and distance perturbation. Geometric perturbation casepve the important geomet-
ric properties, thus most data mining models that searcgdometric class boundaries
are well preserved with the perturbed data. We proved thatyrdata mining models,
including classifier, regression models, and clusterinthods, are invariant to geomet-
ric perturbation.

Geometric perturbation perturbs multiple columns in oaasformation, which in-
troduces new challenges in evaluating the privacy guagdiotamulti-dimensional per-
turbation. We propose a multi-column privacy evaluationdelcand design a unified
privacy metric to address these problems. We also thorguaylyze the resilience
of the rotation perturbation approach against three tyfésference attacks: naive-
inference attacks, ICA-based attacks, and distanceeinfer attacks. With the privacy
model and the analysis of attacks, we are able to constriartdomized optimization
algorithm to efficiently find a good geometric perturbatibattis resilient to the attacks.
Our experiments show that the geometric perturbation ampraot only preserves the
accuracy of models, but also provides much higher privaarantee, compared to ex-
isting multidimensional perturbation techniques.
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