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SUMMARY

Consider a client who intends to perform a massive compu#iag
comprsing a number of sub-tasks, while both storage and etatipn are
outsourced by a third-party service provider. How coulddlent ensure
the integrity and completeness of the computation resuitarivhile, how
could the assurance mechanism incur no disincentive,exgessive com-
munication cost, for any service provider or client to paptte in such a
scheme? We detail this problem and present a general modgéotition
assurance for massive computing tasks. A series of keyrésatlistinguish
our work from existing ones: a) we consider the context wihdveth stor-
age and computation are provided by untrusted third pagies client has dataB at a third-party service provider (Phase 0) that is re-
no data possession; b) we propose a simple ffettve assurance model sponsible for providing online computation services fad en

based on a novel integration of the machineries of data atitaéon and . . .
computational private information retrieval (cPIR); ¢) wenduct an ana- clients, e.g., executing task requq:{Phase 1)' and deliver-

Iytical study on the inherent tradefe among the verification accuracy, and ~ iNg resultsy[B] to th_e_C"entS (Pha_-se 2). The S?rVice pro_\/iqer
the computation, storage, and communication costs. might attempt malicious deception by replacing the origina
key words: Execution assurance, massive computing, computatioral pr - dataB or requesy with tampered versioB’ or q’, respec-
vate information retrieval : : :

tively. The goal of execution assurance is to detect such
deception by ensuring the correctness of the executed com-
putation, i.e., validating the equivalenceqdfB’] andq[B].
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Fig.1 Model of storage and computation outsourcing.

1. Introduction

Spurred by the unprecedented data growth rate [1] and the
high cost of maintaining enterprise information infrastru ~ 1-1  State of The Art
tures, companies and business organizations are embrac-
ing the paradigm of storage and computation outsourcingWhile offering great business opportunities [5], the
wherein third parties (service providers) host and managedatabase-as-service paradigm (DAS) also raises severe pri
their customers’ business data, and support online computavacy and security concerns. The problem of provid-
tion for end clients. More specifically, cloud computing; ex ing execution assurance under the outsourcing model has
emplified by Amazon’s Elastic Compute Cloud (EC2) [2], been addressed to certain limited extent in both security
Microsoft’'s Azure Service Platform [3], and Rackspace’s and database communities. The existing solutions can be
Mosso [4], is envisoned to provide the next generation of roughly classified into three categories.
infrastructure support for online computation outsougcin The first one focuses on ensuring the integrity and
In addition to its advantages (e.g., economies of scale,completeness of the retrieved (entire or partial) source
dynamic provisioning, and low capital expenditures), such data [6] [7] [8], i.e., the equivalence &fandB’ in Fig. 1,
frameworks also introduce a range of new risks, including or the proof of its retrievability [9] [10] [11].
1) the communication-layer security, 2) the privacy of both The second category of work [12] [13] [14] [15]
data and access patterns, and 3) the integrity of computa{16] [17] aims at providing assurance for queries with logi-
tion output. In this paper, we specifically focus on the third cal comparison predicates, i.g.js limited to queries that
aspect of security risks; that is, the server could be compro select relational tuples matching simple predicates,, e.g.
mised by malicious adversaries, and deceiving clients migh range queries. According to their backbone techniques,
be attempted to gain business advantages, or for comjpetitio the existing solutions can be categorized as Merkle hash
against important clients, or for easing the workload on the tree (MHT)-based approaches [12] [15] [16], or signature-
server, among other motives. chaining-based ones [17] [14] [13]. Ensuring integrity and
Fig. 1 illustrates the framework of storage and com- completeness for general computation tasks, however, re-
putation outsourcing. The data owner deposits its businesamains a dificult open issue.
The third direction of researchferts concentrate on
Manuscript revised January 1, 2010, achieying assurance from the de_lta owner _side_[18]_ [19],i.e.
f{twang, lingliy@cc.gatech.edu, Distributed Data Intensive the C“?m has access to_ the entire collectior o F_'g' 1.
Systems Lab, Georgia Institute of Technology, USA Targeting lazy adversaries, [18] focuses on ensuring the ac
DOI: 10.1587trans.E0.7?.1 tual execution of the computation at the server, via an ex-
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tended version of the ringer scheme [20]. It however doesenabled to construct the challenge objects requiring no di-
not offer protection against malicious adversary who inten- rect access to the original input data. Furthermore, the tas
sionally tampers the computation result before sending it result checking is achieved by afiieient sampling scheme,
back to the client. [19] considers the problem of verify- which provides probabilistic guarantee of verificationwacc
ing the correctness of aggregation and selection quergs ov racy. Although cPIR has been criticized of being excesgivel
data streams using polynomial identity random synopses. computationally costly to be practical [22], for given ver-
Nevertheless, none of the approaches above are appliificaiton accuracy, our scheme requires to retrieve only a
cable to our setting, given their requriement for data ppsse small, constant amount of data, independent of the size of
sion by the client. As an equally important scenario, enforc entire data collection, which implies the feasibility oflBP
ing assurance from end clients who have no possession ofn our framework.
source data remains a challenging problem. Our contributions can be summarized as follows:

e |dentity and articulate the problem of execution assur-
ance for oursourced massive computing tasks without
data possession, and expose its intrinsic characteristics
and technical challenges;

e Propose anféicient client-side solution via novel inte-
gration of the machineries of data authentication and
computational private information retrieval;

e Provide a theoretical analysis regarding the intricate
trade-dfs among the signature construction cost (by
data owner), the communication and computation costs
(by server and client), and the verification accuracy.

1.2 Scope and Problem Definition

In this paper, we intend to address the problem of provid-
ing execution assurance for massive computing tasks while
both storage and computation are provided by untrusted ser-
vice providers. Specifically, we target the setting wherein
the computation task comprises a number of sub-tasks, each
as a black-box function; 2) the end client (the task issuer)
has no possession of the original input data. Under this set-
ting, assurance is needed to ensure that 1) the input data is
authenticate, 2) the batch of sub-tasks are completely exe-
cuted according to the Service Level Agreement (SLA), and
3) each sub-task is executed correctly over the intended por2. Models and Assumptions
tion of input data.
Evidently, a straightforward solution to bypassing the 2.1 Essentials
difficulty is to provide the clients with direct access to the
original dataB by the data owner or other authorities; for this The framework of massive computing outsourcing follows
transformed problem, a bulk of existing solutions are avail the basic model as shown in Fig. 1, with three main entities
able. The feasibility of this naive solution, however, igg- as data owner, service provider, and end client. In thispape
tionable: 1) the data owner might have iffszient informa- we consider the case that the data owner and the end clien
tion infrastructure to support clients’ requests, whicless exist independently; hence, the client has no direct adoess
sentially one main motive of data management outsourcing;the original data (without data possession). Following, we
2) the trustworthiness of commercial data storage prosider clarify a set of fundamental concepts.
is usually proplematlc n _real applications. There_zforee O Definition 1 (Data): The input dat® comprisesn data
needs to consider execution assurance for massive comput- . . . .
. . : . locksB = {b;}" ,. A block is the basic unit over which the
ing tasks without data possession as a unique problem de- L=l
; " : : computation is executed.
manding specifically designed solution.
We assume that the number of blocks known to all the
1.3 Contributions entities, and the client has the privilege of accessinghall t
blocks. The imposition of access control and trust manage-
This work presents a general model for validating the in- ment [23] [24] for both client and server is perpendicular to
tegrity and completeness of the results of massive com-the focus of this work.
pgtlng t.asks. The overall_ framework_ls c.onstrugted atop 4 Definition 2 (Task): A massive computing tagkconsists
client-side random checking mechanism: the client creates
. of a set of sub-task§ = {q;}".. Each sub-task; can be
a set ofchallenge objectbased on a set of randomly se- ; i=1" ° i
. . considered as a black-box function that takes as input data
lected sub-tasks and a small fraction of input data retdeve B, and produces outpaf[B]
from the server. The returned result is evaulated agaiest th ™’ '
challenge objects, and their equivalence functions asrtie p Without loss of generality, we assume tinat n, and
requisite to accept the result as accurate. each sub-tast is only executed over the data bldgkthus,
More specifically, our solution is built partially based we can use the indeixto refer to both the sub-task and
on the theory of computationptivate information retrieval ~ the blockb;. For a sub-task that takes as input multiple data
(cPIR) [21], which allows a client to privately retrieve in- blocks from the databa$k one can typically decompose it
formation from a server without exposing the requested in- into even smaller sub-tasks that take single blocks as input
formation. By carefully integrating cPIR with the crypto- We note that this definition is fairly general in the sensé tha
graphic machinery of data authentication, an end client isitis only required to be a valid surjective mapping: givea th
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Fig.2 Framework of execution assurance for massive computirkg.tas
same input, it generates identical output, iggfbi] = q;[b;] Meanwhile, a public-key digital sighature scheme en-
if bj =b. ables authenticating the integrity of a signed message [26]

Furthermore, we assume that the client lackiiGent
computation capability to execute the entire computink tas
Q, but is equipped to 1) verify the authenticity of data blocks
using digital signatures and 2) execute a limited number of
sub-tasks if given the input data.

Definition 5 (Signature): After constructing a pair of keys
(sk, pk), the signer keepsk secret, and publishes the public
keypk. Subsequently, for any messagsent by the signer,
an unforgeable signatued gq) (x) = S(x, sk) is produced.
The recipient can verify the integrity afby running a veri-

2.2 Adversary Model fication proceduré/(x, pk, siggy (x)).

In general, the untrusted service provitleray compromise 3. Execution Assurance: Our Solution

the integrity and completeness of computation output in two

ways: 1) without actually executing a sub-taglover an This section presents our framework of providing execution
block b, she guesses the query resijlt]’; or 2) after exe-  assurance without data possession, and elaborates orythe ke
cutingq overb and obtaining the correct resalib], she re- techniques involved in building the solution.

places it with a modified versiog{b]’. Although caused by

different behaviors, the faked or tampered computation re-3.1 Overview

sults are essentially equivalent, from the perspectivendf e

client. Hence we argue that it is possible to design a unified Fig. 2 sketches the overall framework of our computing as-
execution assurance solution against both faking and tam-surance solution. The three entities involved in the play ar
pering attacks. It is worth emphasizing that the techniquesdata owner, service provider, and end client. In the setup
designed for ensuring execution completeness, e.g., [18]stage (step 0), the data owner outsources its business dat
can be readily plugged into our framework to help achieve as a collection of blockB = {b;}!! ; to the service provider.
even stronger security. In this paper, we design our salutio Each blockb is associated Wlth an unforgeablerification
aiming at a general adversary model as follows: objectv(b) signed by the data owner, which enables the
client to verify the authenticity and ownership of the data
retrieved from the service provider.

The assurance of computation execution is achieved in
two phaseschallenge objects contructicendcomputation
result verification Specifically, in the first phase (step 1 and
2 in Fig. 2), the client randomly samples a set of data blocks,
2.3 Basic Building Blocks {bf}ile, from the entire collection at the service provider.

After verifying their authenticity via the associated Veri
We now introduce the basic blocks that serve as the fOUnda'Cation Objects’ the client composes a set of Cha”enge ob-
tion of our execution assurance model. jects{ c(qs) }._1» corresponding to the sampled blocks. In the

Definition 4 (Hash): A hash functiosH(") is an dficiently ~ second phase (step 3 and 4 in Fig. 2), after receiving the re-
computable function that takes a variable-lengthinpand ~ Sults returned by the service providég;[bi]’};, the end
generates a fixed-length output= H(x). The hash func- cIient validates the results corresponding to the sammed s
tions used in this work are assumed to be collision resistant (a®},_; using the constructed challenge objects. The batch of
i.e., itis computationally infeasible to find two inputst x’ computation results are accepted as accurate, only ifell th
such thatH(x) = H(x’). verifications indicate positive.

Before presenting the detailed techniques involved in
each phase, we first demonstrate the probablistic guarantee
provided by our verification scheme. Following the assump-
tion that the adversary compromisesut of n sub-task re-

*Henceforth, without ambiguity, we use the terms “adversary Sults, and the client testsof the received results indepen-
and “server” interchangeably. dently at random, the probability that the adversary is de-

Definition 3 (Adversary): Given a computing task =
{ai}{, and a collection of input daa= {b;}] ;, among then
results{qi[bi]}i ; delivered to the client, the adversary com-
promises of them, while keeping the rest{e) ones intact.

One example of such collision-resistant hash function is
SHAL [25], which takes variable-length bit-string and pro-
duces 160-bit output.
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required counterfeit detection accuracy.

tected of performing counterfeig(n, g, f), is equivalent to
the classical sampling experiment without replacement:

f
P(n,e f)=1- C”;e

1)
n

It can be derived that &/n is a constant fraction, e.g., 1%,
the minimum number of samples (denotedtgsrequired
to achieve certain level of counterfeit detection accurcy
i.e., P(n,et*) > 4, is constant and independent mf In
particular, sincé“;%ﬁi < € for anyi > 0, for giveni, we
have the following upper bound fd:

t" < “Ogn%e(l -]

Fig. 3 shows the required sampling ratén with respect
to the sizen of the entire data collection which varies from
10* to 1P, ande/n = 0.01, when the counterfeit detection
accuracyl is set as 8, 0.9, and 099. It is noticed that 1)
the required sampling raté/n is fairly low, even for very
high detection accuracy, e.¢f:/nis below 1% fori = 99%
whenn reaches 5 10%; 2) for given detection accuracy
the required sampling raté/n decreases reciprocally as
grows, which implies approximately constant costs of net-
work communication and computation.

Clearly, the key element leading to thextiveness of
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symbol | definition

B data collection
b data block
n number of blocks irB
Q massive computing task
q sub-task
H() hash function
S() signing function
V() verifying function
h hash digest
sig signature digest
v(+) verification object
c() challenge object
e number of counterfeits
f number of challenge objects
Table1l Symbols and notations.

on other PIR schemes, e.g., the one constructed based ol
¢-hiding number-theoretic assumption [27].

3.2.1 Sampling with Basic cPIR

The databasB is organized into & x ¢ matrix (01 = r x c)
such that each blodk is mapped to one unique position of
the matrix. Note that the placement of the blocks is flexible,
given that it is agreed upon among the data owner, the servel
and the client. Following, we denote the data collectioR as
={bj}(l<i<r,l<j<o).

Each entry of the matrix corresponds to the concate-
nation of the data block, and its verification object(b),
i.e., bllv(b). Letd be the length of the data entnd =
max j [bijlIv(bi;)I. The database at the service provider con-
sists ofd matrices{Mk}g:1 with My comprised of thek-th
bit of each entry. Without loss of generality, the following
discussion considers the casedcf 1.

Let (K, &, D) (K, & and D represent the key gener-
ation, encryption, and decryption algorithms, respebfjve
be a cryptosystem which satisfies 1) secure against choser
plaintext attacks, and 2) homomorphic over an abelian group
G, i.e., given the plaintext and ciphertext set€GaandG’,

our execution assurance scheme lies in the ability of the D(E(a) x &(b)) = a* b wherea, b € G, andx, = represent

client to privately construct the set of challenge objects,

which in turn depends on the retrieval of untampered data

samples from the service provider. In the following, we pro-

the group operations @ andG’, respectively.
Assuming that the client intends to retriebg;. of
the database and its associated verification object, tHe cPlI

ceed to elaborating on how our approach achieves this goalscheme works as follows:

3.2 Private Data Sampling and Authentication

A straightforward, yet unrealistic solution to achievingrp
vate sampling off out of n blocks would be to transfer the
entire collection of input data to the client side, which how
ever incurs the prohibitive communication cosQih), i.e.,
linear in the size of the entire data collection.

We, instead, construct our solution partially based on
computational private information retrieval (cPIR), wiic
allows a client to privately retrieve information from a
server without exposing the particular requested informa-
tion. For ease of presenation, in this paper we exemplify

the cPIR schemes based on group-homomorphic encryp-

tion [21], while our framework is general enough to be built

e The client picks a non-identity elemente G, and
sends a query of the foriX = {x,—}?zl such that

identity of G i
D(x)) = { gy j (2)

e The server responds with a set of resufts- {y;};_,,
wherey; is defined a§];_; bij - X;. Without ambiguity,
we use the multiplicative notation to denote the oper-
ations of bothG andG’, and use to represent th&
module operation;

e After receivingy, the client can now recover the in-
tended entryp;.j- via computing the quantitP(y;-) as
below: D(yi-) = D([151bicj - X)) = biej: - D(x;r) =
bi+j- - g, i..,D(yi-) = g only if bj.j» = 1.
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Assume that eaclk € X andy € Y are encoded in S(H(h.1l[h.2[lh.s][h..4))
a same length, the communication complexity of this cPIR
scheme iO(c + d - r) (for sending queryX and deliver-
ing d sets ofYs), and the computation at the server mainly
involvesd - ¢ - r times of group operations. Therefore, for
givennandd, the overall communication complexity is min-
imized whenr = +/n/d andc = vn-d. We will revise
this setting when the construction of verification objects a
taken into consideration.

h4 : H(h144||h2,4|\h3,4|\h4,4)

hiy
ha 4
hs 4
hyg

Fig.4 lllustration of vertical Merkle hash tree.

3.2.2 Verification Object nation operation. The root corresponds to the hash digest
of the concatenation of the column digests, and a signature
The verification object(b) of a data block enables a client 3(7{(|_|J@=1 h.j)) is created. For thg*-th column, one con-
to verify its authenticity, which is the prerequisite forneo  structs a meta verification objegb. j-) as the concatenation
structing a valid challenge object. Our design of verifiwati  of the digests of all but th¢*-th column and the signature
object aims to minimize 1) its size, since as revealed aboveat the root:v(b. j-) = LIS_1 j»j- h.jllsig. One then divides
the communication and computation costs linearly dependv(b',j*) into r equal-length parts, denoted as(b.;-)}_,,
on the length of each data enfbjiv(b); and 2) its construc-  with v;-(b. ;-) assigned as the verification objecttgfj-. A
tion cost (for the data owner), which is especially impottan sample)-MHT is illustrated in Fig. 4. On receiving the veri-
in the case of frequent data updates. Without loss of gener<ication objects of an entire column, the client can readily
ality, below, we assume that= 2% andr = ¢ = n. re-construct the root of-MHT, and validate the data in-
A straightforward solution to verifying blocks is to  tegrity in sequel. Clearly, within this scheme, the verifica
construct a Merkle hash tree (MHT) [28], a method of col- tjon object of each data entry is of size {(1)- |h| +|sigl] /r
lectively authenticating a set of objects. Specificallypur (I(vn—=1)- |h| + |sigl]/ v/n for the case of = c), and only
setting, one can adopt a quadrant variga¥HT), whichis  one signing operation is required for the data owner. Also,
essentially a 4-way balanced tree structure: each leaf nodet can be derived that under this setting, in order to minémiz

corresponds to the hash (digest) of a data entry, each nonthe communication cost, the optimal settingcof is
leaf node corresponds to the hash of the concatenation of its

direct children, and the root contains the digital signatfr c* = +/n-|b|/(h] + 1) r=n/c )

its digest. The verification object of each block consists of

the set of hash digests of the sibling nodes along its path to

the root, which enables the client to reconstruct the root of 3.3 Computation Execution and Verification

MHT, and verify the integrity by comparing its equivalence

with the original signature. On obtaining the set of sampled input data blocks and en-
In implementation, the entire data block matrix can be suring their authenticity, the client enters the secondspha

divided into 2-9 equal-size squares, called data squares,she constructs a set of challenge objects, which later serve

and within each square, @MHT of heightd’/2 is con- to validate the integrity and completeness of the received

structed. The verification object of each data block is there computation result. In this section, we discuss in detail th

fore of sizegd'|h|+|sig|, and totally 3% signatures are re-  construction of challenge objects, and model the intricate

quired for the data owner. Clearly, a tradé-exists between  trade-df between the construction cost and the correspond-

the communication and signature construction costs: at ongng verification power, with respect to several alternatite

extremed’ = d, the whole database is considered as a datatack strategies.

square, which achieves the minimum signature construction

cost, at the expense of the largest size of verification ohjec 3.3.1 Construction of Challenge Object

while at the other extremal’ = 0, each block itself is a

data square, with the minimum communication cost, but the In general, two criteria need to be considered in execution

largest number of required signing operations. assurance, namely, completeness and integrity. By com-
We have the following key observation regarding the pleteness, we refer to that all the given sub-tasks have beer

property of the cPIR scheme: at each round the server refaithfully executed, and a server violating this criteriisn

turns the encrypted version of an entire column, instead oftermed as dazy adversary By integrity, we refer to that

a single data block. Based on this observation, we pro-the computation results have not been tampered or modified

pose a novevVertical Merkel hash tre¢p-MHT), a variant before being sent to the client, and a server violating this ¢

of MHT that achieves minimum verification object size and terion is termed as malicious adversaryThis work mainly

minimum construction cost simultaneously. focuses on the case of malicious adversaries, with the aim
For each data colump, one computes its digest of ensuring the integrity of computation results.
as the hash of the concatenation of the digests of its ele- Clearly, given the resuly[b]’ as returned by the ser-

ments: h.; = H(LJi_, hij), where| | denotes the concate- vice provider for the sub-task over the block, the client
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can verify its integrity only if she knows the corregfbl], %sampled colum challenge object< counterfeit
by checking the equivalence gfb] andqg[b]’. Hence, each % % % % %7 %
challenge object(q) is essentially the “correct” result of oo oo O
performing the sub-tasl over the targeted data blodk

Moreover, it usually sfiices to check the equivalence of @) @)

their hash digests to determine the equivalencg{bf and @ o

, . . @) @) @)
q[b]’, leading to lower storage requirement. We thus have scattored —— columnowise
Definition 6 (Cha"enge ObleCt): Fora sampled data block Fig.5 Alternative counterfeit strategies of the adversary.

b3 with verified authenticity, a challenge objext;’) is con- _ .

: i ; i ject construction costé&r and the parameterg,(f) can
structed as the hash digest of the result of performing the ; cons >
sub-taskg® overb?, i.e.,c(q) = H(q[b?)). be summarized asdSTcomm o g, CosTeons o f. Below we

' ! ! e analyze the verification power of the challenge objects with

Provided the collision resistance of the hash function, it respect to several alternative attack strategies expleitay
is computationally infeasible to fake a resgfb]’ with an the adversary.

equivalent hash digest qfb].
3.3.3 Analysis of Verification Power
3.3.2 Amortization of Construction Cost
As revealed above, the amelioration on the communication

The discussion so far has been assuming that at each roundnd challenge object construction costs is achieved bg-intr
of random sampling, a single challenge object is con- ducing the correlations among the challenge objects with re
structed. Thus, all the challenge objects are construated i spect to their corresponding data blocks. The adversary can
dependently at random, whiclffers the maximum possible  potentially leverage such correlations to improve her ckan
verification power, according to Eg. 1, but also incurs the of escaping from the integrity verification, given the same
prohibitive challenge-object construction cost at therdi ~ amount of counterfeits in the query results.
side. Specifically, the cost comprises two main parts, the Following the adversary model defined in Section 2.2,
transfer of the data blocks and the associated verificationwe assume that the adversary attempts to counterfmi
objects, and the construction of the set of challenge ahject of n sub-tasks of a massive computing t&skWe also as-
Following, we show that the inherent structure of the ran- sume that compromising the result corresponding to every
dom sampling scheme allows flexible balance between thesub-task ffers the same amount of incentive for the adver-
construction cost and the corresponding verification power sary. Though this assumption is somewhat restrictive, the

It is noticed that for each round of communication, the analysis presented below provides interesting insights in
random sampling scheme retrieves a complete column ofthe probabilistic behavior of the verification power of our
data blocks of the database. Therefore, instead of comstruc scheme. We consider three alternative attack strategégs us
ing a single challenge object, one can construct multiple by the adversary in choosing the sub-tasks to inject compro-
ones from the retrieved column, to save the network band-mised results, namebcatteredcolumn-wiseandrow-wise
width. However, the amelioration on communication cost counterfeit, and analyze their impacts over the verificatio
is achieved at the expense of breaking the ideal assumptiorpower of the set of challenge objects.
that all the challenge objects are constructed indepehlydent Scattered Counterfeit. Within this basic scheme, the
at random, since now it is known to the adversary that the set ofe compromised sub-tasks are chosen randomly at the
set of challenge objects are constructed from the data en-basis of individual sub-task, as illustrated in the leftipst
tries belonging to a single column. Clearly, a balance sxist of Fig. 5. The probability that the adversary manages to
between the cost of constructing the challenge objects and'dodge” thef challenge objects embedded in theolumns
their verification power, about which a theoretical anaysi can be calculated as follows:
is presented in the following. ce

More generally, assume that a seyafolumns{B?}’_, Pscattered€ f, g, N) = é—;f
of the data collectiorB are retrieved, each representing a n
distinct column of the collection. The end client can con- which is equivalent to the ideal case as shown in Eq. 1,
struct the challenge objects from a poolkofy data blocks.  where all the challenge objects are constructed indepen-
Meanwhile, note that two challenge objects correspondingdently at random, i.e., the correlation does not lend the
to an identical data block does not provide higher verifi-  scattered counterfeit scheme any advantage in dodging the
cation power than each single one, i.e., the adversary carchallenge objects. Therefore, this scheme will serve as the
pass the verification by faithfully returning the correct re benchmark for evaluating other counterfeit strategies.
sultg[b]. Hence, we assume that dlichallenge objects are Row-wise Counterfeit. In the strategy of row-wise
constructed from distinct data blocks. Aiming at addregsin counterfeit, the adversary randomly seleets rows (for
the worst-case scenario, we further assume that the numbersimplicity, assume thagis divisible byc), and compromises
(g, T) both are known to the adversary. The relationships be-the results of sub-tasks corresponding to these rowspasiill
tween the communication cosb&comm the challenge ob-  trated in the middle plot of Fig. 5. Under this strategy, the
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Fig.6 Attack success rate of the adversary witlfetient counterfeit

strategies (under the column-based sampling scheme) efigtuld setting:

n =10000,e = 100, f = 100, andy = 6.

probability that the adversary escapes from thehallenge
objects embedded in thecolumns is essentially equivalent
to that all the challenge objects fall out of the overlapped
region of theg sampled columns and theggc compromised
rows, formally

f
Prow-uwise(€, T,g,n) = Cg'(;fg)
C

9T

Column-wise Counterfeit. Orthogonal to the row-
wise counterfeit, within the column-wise scheme, the ad-
versary choosesy'r columns, and compromises the sub-task
results over all these columns, as illustrated in the rigistm
plot of Fig. 5. Again, we are interested in calculating the
probability that the adversary dodges thehallenge ob-
jects after compromising the results corresponding togthes
sub-tasks. The calculation can be divided into two parts, th
probability thati columns selected by the adversary overlap
with that selected by the client, and the probability that no
challenge objects appear in thesmlumns. Therefore,

min(g, ¥)

2

i=max(Qg+£-c)

g-i f
Coe Cioie
&

Cf

gr

C.
r (4)

PCO|—wiS€(e7 fv g, n) =

where the first term corresponds to the probability that

3.3.4 A Revised Sampling Strategy

To remedy this drawback of the original random sampling
scheme with respect to the column-wise counterfeit styateg
we introduce a hybrid sampling scheme: the client now is-
sues cPIR on both column and row basises, i.e., the retrieved
data blocks could be either column-wise and row-wise. Due
to the space constraint, we omit the algorithmic detail$: Fo
lowing, we analyze the verification power of this scheme,
with respect to the above three counterfeit strategies.

Following the previous setting, except that instead of
retrievingg columns, the client now retrieveg columns
andg; rows from the server, which form the pool for con-
structing thef challenge objects. Since the behavior of the
scattered strategy is independent of the sampling scheme
we focus our discussion on the row-wise and column-wise
strategies. Moreover, because of the symmetry, here we an-
alyze the behavior of the column-wise strategy only. Now,
the probability that the adversary dodges thehallenge
objects after compromising the results correspondirejito
columns of data blocks, can be formulated as follows: given
thati columns selected by the server overlap with that se-
lected by the client, it should be satisfied that the sampled
sub-tasks selected by the client do not appear in 1) these
columns, or 2) the intersected region of heows (by the
client) and thee/r columns (by the server). Therefore,

min@e,7)  Cl . Cgc_i
N e Lo e
Pcol—wise(e’ f,gr.gc,n) = W
i=max(Qgc+E-c) c
f
(gc_i)'r"'gr'(C"’i_?)_gc'%

Cf

ge'T+9r-C—gcgr

Fig. 7 demonstrates the attack success rate of the adver-
sary with diferent counterfeit strategies under our revised
sampling scheme. It is clear that the hybrid sampling strat-
egy is robust against both column-wise and row-wise coun-

columns selected by the client overlap with that selected byterfeits, with verification accuracy close to the ideal baun

the adversary, and the second corresponds to thdtc¢hal-
lenge objects fall out of theintersected columns.

The attack success rate of the adversary witfecgnt
counterfeit strategies with respect to varying setting,df
andg is shown in Fig. 6. One can obtain the following inter-
esting observations: 1) the success rate of the scatteadd st
egy is independent of the paramejeand decreases sharply
asf or e grows; 2) the row-wise strategyfers the adver-

but with much lower communication cost and computation
burden on the serverf {g times of improvement). It is also
interesting to notice that the enlargement of the sampled
pool (y) does not improve the verification power, as shown
in the rightmost plot of Fig. 7. What matters here is the ratio
of the number of challenge objects over the size of the pool
(f/g9). This is good news, since the client can now achieve
high verification accuracy with relative smalffor fixed f,

sary with the least leverage for taking advantage of the cor-which implies low network communication cost.

relations among the challenge objects; 3) the correlattbns

Given the required verification accuragyit is desir-

data blocks have the most significant impact on the col-wiseable to estimate the minimum values @f g, and f that
strategy, with success rate close to one for all the settings achieve the least resource consumption. Formallyp/lgt
Clearly, this phenomenon stems from the unique behavior ofandéco be the cost of retrieving a column and a row of data

our random sampling scheme: when the sampling g8 (

blocks respectively, andc., be the construction cost of a

is low, the columns selected by the adversary and that by thechallenge objects, one attempts to solve the following-opti

client have extremely low chance to intersect.

mization problem:



8
—— scattered
-©- row-wise 18]
—A— col-wise
1 1 1 o]
@ 08 08 08
@ o 0
et 0t —e—"_—2p
o 0. 0.4 [10]
£ o2 0.2 04
0 0 02 [11]
1 2 3 4 5 1 2 3 4 5 " 7 8 9 10
e (%) f (%) 9=9.+9, [12]
Fig.7 Attack success rate of the adversary witltetient counterfeit [13]
strategies (under the hybrid sampling scheme), with defatting: n =
10000,e = 100, f = 100, andy = 6 (g = [¢/21, gr = Lg/2]). [14]
MmN ¢row * gr + Peol * g + Yoon- |
s.t. { PE"“J*‘”ise(n’ & f.gr.gc) < 1-4 [15]
l:)col—wise(n’ ef.gng)<1-2
Unfortunately, no closed forms are available for optirhal 16
gc andg; one can however applyfisthe-shelf combinato- [16]
rial optimization tools [29] to find approximate solutions.
[17]

4, Conclusion and Future Work

This paper presents a systematic study of the problem of [18]
providing execution assurance for massive computing tasks [19]
wherein both storage and computation are outsourced by
untrusted third parties. We proposed a novel client-side

checking solution by carefully intergrating the machieeri [20]
of data authentication and computational private informa-
tion retrieval (CPIR). This work also opens several diusi (21
for future research. First, how tdfectively maintain the
validity of the verification and challenge objects in facing 23

frequent data updates? Second, how to incorporate more so-
phisticated optimization techniques, e.g., batch codef [3  [23]
to improve data retrievalfgciency? Third, how to construct

more dfective execution assurance solutions based on alter- 4
nating primitives other than cPIR?
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