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SUMMARY
Consider a client who intends to perform a massive computingtask

comprsing a number of sub-tasks, while both storage and computation are
outsourced by a third-party service provider. How could theclient ensure
the integrity and completeness of the computation result? Meanwhile, how
could the assurance mechanism incur no disincentive, e.g.,excessive com-
munication cost, for any service provider or client to participate in such a
scheme? We detail this problem and present a general model ofexecution
assurance for massive computing tasks. A series of key features distinguish
our work from existing ones: a) we consider the context wherein both stor-
age and computation are provided by untrusted third parties, and client has
no data possession; b) we propose a simple yet effective assurance model
based on a novel integration of the machineries of data authentication and
computational private information retrieval (cPIR); c) weconduct an ana-
lytical study on the inherent trade-offs among the verification accuracy, and
the computation, storage, and communication costs.
key words: Execution assurance, massive computing, computational pri-
vate information retrieval

1. Introduction

Spurred by the unprecedented data growth rate [1] and the
high cost of maintaining enterprise information infrastruc-
tures, companies and business organizations are embrac-
ing the paradigm of storage and computation outsourcing
wherein third parties (service providers) host and manage
their customers’ business data, and support online computa-
tion for end clients. More specifically, cloud computing, ex-
emplified by Amazon’s Elastic Compute Cloud (EC2) [2],
Microsoft’s Azure Service Platform [3], and Rackspace’s
Mosso [4], is envisoned to provide the next generation of
infrastructure support for online computation outsourcing.

In addition to its advantages (e.g., economies of scale,
dynamic provisioning, and low capital expenditures), such
frameworks also introduce a range of new risks, including
1) the communication-layer security, 2) the privacy of both
data and access patterns, and 3) the integrity of computa-
tion output. In this paper, we specifically focus on the third
aspect of security risks; that is, the server could be compro-
mised by malicious adversaries, and deceiving clients might
be attempted to gain business advantages, or for competition
against important clients, or for easing the workload on the
server, among other motives.

Fig. 1 illustrates the framework of storage and com-
putation outsourcing. The data owner deposits its business
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Fig. 1 Model of storage and computation outsourcing.

dataB at a third-party service provider (Phase 0) that is re-
sponsible for providing online computation services for end
clients, e.g., executing task requestq (Phase 1), and deliver-
ing resultsq[B] to the clients (Phase 2). The service provider
might attempt malicious deception by replacing the original
dataB or requestq with tampered versionB′ or q′, respec-
tively. The goal of execution assurance is to detect such
deception by ensuring the correctness of the executed com-
putation, i.e., validating the equivalence ofq′[B′] andq[B].

1.1 State of The Art

While offering great business opportunities [5], the
database-as-service paradigm (DAS) also raises severe pri-
vacy and security concerns. The problem of provid-
ing execution assurance under the outsourcing model has
been addressed to certain limited extent in both security
and database communities. The existing solutions can be
roughly classified into three categories.

The first one focuses on ensuring the integrity and
completeness of the retrieved (entire or partial) source
data [6] [7] [8], i.e., the equivalence ofB andB′ in Fig. 1,
or the proof of its retrievability [9] [10] [11].

The second category of work [12] [13] [14] [15]
[16] [17] aims at providing assurance for queries with logi-
cal comparison predicates, i.e.,q is limited to queries that
select relational tuples matching simple predicates, e.g.,
range queries. According to their backbone techniques,
the existing solutions can be categorized as Merkle hash
tree (MHT)-based approaches [12] [15] [16], or signature-
chaining-based ones [17] [14] [13]. Ensuring integrity and
completeness for general computation tasks, however, re-
mains a difficult open issue.

The third direction of research efforts concentrate on
achieving assurance from the data owner side [18] [19], i.e.,
the client has access to the entire collection ofB in Fig. 1.
Targeting lazy adversaries, [18] focuses on ensuring the ac-
tual execution of the computation at the server, via an ex-
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tended version of the ringer scheme [20]. It however does
not offer protection against malicious adversary who inten-
sionally tampers the computation result before sending it
back to the client. [19] considers the problem of verify-
ing the correctness of aggregation and selection queries over
data streams using polynomial identity random synopses.

Nevertheless, none of the approaches above are appli-
cable to our setting, given their requriement for data posses-
sion by the client. As an equally important scenario, enforc-
ing assurance from end clients who have no possession of
source data remains a challenging problem.

1.2 Scope and Problem Definition

In this paper, we intend to address the problem of provid-
ing execution assurance for massive computing tasks while
both storage and computation are provided by untrusted ser-
vice providers. Specifically, we target the setting wherein
the computation task comprises a number of sub-tasks, each
as a black-box function; 2) the end client (the task issuer)
has no possession of the original input data. Under this set-
ting, assurance is needed to ensure that 1) the input data is
authenticate, 2) the batch of sub-tasks are completely exe-
cuted according to the Service Level Agreement (SLA), and
3) each sub-task is executed correctly over the intended por-
tion of input data.

Evidently, a straightforward solution to bypassing the
difficulty is to provide the clients with direct access to the
original dataB by the data owner or other authorities; for this
transformed problem, a bulk of existing solutions are avail-
able. The feasibility of this naı̈ve solution, however, is ques-
tionable: 1) the data owner might have insufficient informa-
tion infrastructure to support clients’ requests, which ises-
sentially one main motive of data management outsourcing;
2) the trustworthiness of commercial data storage providers
is usually problematic in real applications. Therefore, one
needs to consider execution assurance for massive comput-
ing tasks without data possession as a unique problem de-
manding specifically designed solution.

1.3 Contributions

This work presents a general model for validating the in-
tegrity and completeness of the results of massive com-
puting tasks. The overall framework is constructed atop a
client-side random checking mechanism: the client creates
a set ofchallenge objectsbased on a set of randomly se-
lected sub-tasks and a small fraction of input data retrieved
from the server. The returned result is evaulated against the
challenge objects, and their equivalence functions as the pre-
requisite to accept the result as accurate.

More specifically, our solution is built partially based
on the theory of computationalprivate information retrieval
(cPIR) [21], which allows a client to privately retrieve in-
formation from a server without exposing the requested in-
formation. By carefully integrating cPIR with the crypto-
graphic machinery of data authentication, an end client is

enabled to construct the challenge objects requiring no di-
rect access to the original input data. Furthermore, the task
result checking is achieved by an efficient sampling scheme,
which provides probabilistic guarantee of verification accu-
racy. Although cPIR has been criticized of being excessively
computationally costly to be practical [22], for given ver-
ificaiton accuracy, our scheme requires to retrieve only a
small, constant amount of data, independent of the size of
entire data collection, which implies the feasibility of cPIR
in our framework.

Our contributions can be summarized as follows:

• Identity and articulate the problem of execution assur-
ance for oursourced massive computing tasks without
data possession, and expose its intrinsic characteristics
and technical challenges;
• Propose an efficient client-side solution via novel inte-

gration of the machineries of data authentication and
computational private information retrieval;
• Provide a theoretical analysis regarding the intricate

trade-offs among the signature construction cost (by
data owner), the communication and computation costs
(by server and client), and the verification accuracy.

2. Models and Assumptions

2.1 Essentials

The framework of massive computing outsourcing follows
the basic model as shown in Fig. 1, with three main entities
as data owner, service provider, and end client. In this paper,
we consider the case that the data owner and the end client
exist independently; hence, the client has no direct accessto
the original data (without data possession). Following, we
clarify a set of fundamental concepts.

Definition 1 (Data): The input dataB comprisesn data
blocksB = {bi}ni=1. A block is the basic unit over which the
computation is executed.

We assume that the number of blocksn is known to all the
entities, and the client has the privilege of accessing all the
blocks. The imposition of access control and trust manage-
ment [23] [24] for both client and server is perpendicular to
the focus of this work.

Definition 2 (Task): A massive computing taskQ consists
of a set of sub-tasksQ = {qi}mi=1. Each sub-taskqi can be
considered as a black-box function that takes as input data
B, and produces outputqi [B].

Without loss of generality, we assume thatm = n, and
each sub-taskqi is only executed over the data blockbi ; thus,
we can use the indexi to refer to both the sub-taskqi and
the blockbi. For a sub-task that takes as input multiple data
blocks from the databaseB, one can typically decompose it
into even smaller sub-tasks that take single blocks as input.
We note that this definition is fairly general in the sense that
it is only required to be a valid surjective mapping: given the
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Fig. 2 Framework of execution assurance for massive computing tasks.

same input, it generates identical output, i.e.,qi [bi] = qi [b′i ]
if bi = b

′
i .

Furthermore, we assume that the client lacks sufficient
computation capability to execute the entire computing task
Q, but is equipped to 1) verify the authenticity of data blocks
using digital signatures and 2) execute a limited number of
sub-tasks if given the input data.

2.2 Adversary Model

In general, the untrusted service provider† may compromise
the integrity and completeness of computation output in two
ways: 1) without actually executing a sub-taskq over an
block b, she guesses the query resultq[b]′; or 2) after exe-
cutingq overb and obtaining the correct resultq[b], she re-
places it with a modified versionq[b]′. Although caused by
different behaviors, the faked or tampered computation re-
sults are essentially equivalent, from the perspective of end
client. Hence we argue that it is possible to design a unified
execution assurance solution against both faking and tam-
pering attacks. It is worth emphasizing that the techniques
designed for ensuring execution completeness, e.g., [18],
can be readily plugged into our framework to help achieve
even stronger security. In this paper, we design our solution
aiming at a general adversary model as follows:

Definition 3 (Adversary): Given a computing taskQ =
{qi}ni=1 and a collection of input dataB = {bi}ni=1, among then
results{qi [bi ]}ni=1 delivered to the client, the adversary com-
promiseseof them, while keeping the rest (n−e) ones intact.

2.3 Basic Building Blocks

We now introduce the basic blocks that serve as the founda-
tion of our execution assurance model.

Definition 4 (Hash): A hash functionH(·) is an efficiently
computable function that takes a variable-length inputx and
generates a fixed-length outputy = H(x). The hash func-
tions used in this work are assumed to be collision resistant,
i.e., it is computationally infeasible to find two inputsx , x′

such thatH(x) = H(x’).

One example of such collision-resistant hash function is
SHA1 [25], which takes variable-length bit-string and pro-
duces 160-bit output.

†Henceforth, without ambiguity, we use the terms “adversary”
and “server” interchangeably.

Meanwhile, a public-key digital signature scheme en-
ables authenticating the integrity of a signed message [26]:

Definition 5 (Signature): After constructing a pair of keys
(sk, pk), the signer keepssk secret, and publishes the public
keypk. Subsequently, for any messagex sent by the signer,
an unforgeable signaturesigsk(x) = S(x, sk) is produced.
The recipient can verify the integrity ofx by running a veri-
fication procedureV(x, pk, sigsk(x)).

3. Execution Assurance: Our Solution

This section presents our framework of providing execution
assurance without data possession, and elaborates on the key
techniques involved in building the solution.

3.1 Overview

Fig. 2 sketches the overall framework of our computing as-
surance solution. The three entities involved in the play are
data owner, service provider, and end client. In the setup
stage (step 0), the data owner outsources its business data
as a collection of blocksB = {bi}ni=1 to the service provider.
Each blockb is associated with an unforgeableverification
object v(b) signed by the data owner, which enables the
client to verify the authenticity and ownership of the data
retrieved from the service provider.

The assurance of computation execution is achieved in
two phases,challenge objects contructionandcomputation
result verification. Specifically, in the first phase (step 1 and
2 in Fig. 2), the client randomly samples a set of data blocks,
{bs

i }
f
i=1, from the entire collection at the service provider.

After verifying their authenticity via the associated verifi-
cation objects, the client composes a set of challenge ob-
jects{c(qs

i )}
f
i=1, corresponding to the sampled blocks. In the

second phase (step 3 and 4 in Fig. 2), after receiving the re-
sults returned by the service provider,{qi [bi]′}ni=1, the end
client validates the results corresponding to the sampled set
{qs

i }
f
i=1 using the constructed challenge objects. The batch of

computation results are accepted as accurate, only if all the
verifications indicate positive.

Before presenting the detailed techniques involved in
each phase, we first demonstrate the probablistic guarantee
provided by our verification scheme. Following the assump-
tion that the adversary compromisese out of n sub-task re-
sults, and the client testsf of the received results indepen-
dently at random, the probability that the adversary is de-



4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

2 4 6 8 10

x 10
4

0

0.01

0.02

0.03

0.04

0.05

Number of data blocks (n)

S
am

pl
in

g 
ra

te
 (

f/n
)

99% detection accuracy
90% detection accuracy
80% detection accuracy

Fig. 3 Sampling rate with respect to the size of data collection andthe
required counterfeit detection accuracy.

tected of performing counterfeit,P(n, e, f ), is equivalent to
the classical sampling experiment without replacement:

P(n, e, f ) = 1− C f
n−e

C f
n

(1)

It can be derived that ife/n is a constant fraction, e.g., 1%,
the minimum number of samples (denoted ast∗) required
to achieve certain level of counterfeit detection accuracyλ,
i.e., P(n, e, t∗) ≥ λ, is constant and independent ofn. In
particular, sincen−e−i

n−i < n−e
n for any i > 0, for givenλ, we

have the following upper bound fort∗:

t∗ < ⌈logn−e
n

(1− λ)⌉

Fig. 3 shows the required sampling ratet∗/n with respect
to the sizen of the entire data collection which varies from
104 to 105, ande/n = 0.01, when the counterfeit detection
accuracyλ is set as 0.8, 0.9, and 0.99. It is noticed that 1)
the required sampling ratet∗/n is fairly low, even for very
high detection accuracy, e.g.,t∗/n is below 1% forλ = 99%
whenn reaches 5× 104; 2) for given detection accuracyλ,
the required sampling ratet∗/n decreases reciprocally asn
grows, which implies approximately constant costs of net-
work communication and computation.

Clearly, the key element leading to the effectiveness of
our execution assurance scheme lies in the ability of the
client to privately construct the set of challenge objects,
which in turn depends on the retrieval of untampered data
samples from the service provider. In the following, we pro-
ceed to elaborating on how our approach achieves this goal.

3.2 Private Data Sampling and Authentication

A straightforward, yet unrealistic solution to achieving pri-
vate sampling off out of n blocks would be to transfer the
entire collection of input data to the client side, which how-
ever incurs the prohibitive communication cost ofO(n), i.e.,
linear in the size of the entire data collection.

We, instead, construct our solution partially based on
computational private information retrieval (cPIR), which
allows a client to privately retrieve information from a
server without exposing the particular requested informa-
tion. For ease of presenation, in this paper we exemplify
the cPIR schemes based on group-homomorphic encryp-
tion [21], while our framework is general enough to be built

symbol definition

B data collection
b data block
n number of blocks inB
Q massive computing task
q sub-task

H(·) hash function
S(·) signing function
V(·) verifying function
h hash digest
sig signature digest

v(·) verification object
c(·) challenge object
e number of counterfeits
f number of challenge objects

Table 1 Symbols and notations.

on other PIR schemes, e.g., the one constructed based on
φ-hiding number-theoretic assumption [27].

3.2.1 Sampling with Basic cPIR

The databaseB is organized into ar × c matrix (n = r × c)
such that each blockb is mapped to one unique position of
the matrix. Note that the placement of the blocks is flexible,
given that it is agreed upon among the data owner, the server
and the client. Following, we denote the data collection asB

= {bi j } (1 ≤ i ≤ r, 1 ≤ j ≤ c).
Each entry of the matrix corresponds to the concate-

nation of the data blockb, and its verification objectv(b),
i.e., b‖v(b). Let d be the length of the data entry:d =
maxi, j |bi j ‖v(bi j )|. The database at the service provider con-
sists ofd matrices{Mk}dk=1 with Mk comprised of thek-th
bit of each entry. Without loss of generality, the following
discussion considers the case ofd = 1.

Let (K ,E,D) (K , E andD represent the key gener-
ation, encryption, and decryption algorithms, respectively)
be a cryptosystem which satisfies 1) secure against chosen
plaintext attacks, and 2) homomorphicover an abelian group
G, i.e., given the plaintext and ciphertext sets asG andG′,
D(E(a) × E(b)) = a ∗ b wherea, b ∈ G, and×, ∗ represent
the group operations ofG andG′, respectively.

Assuming that the client intends to retrievebi∗ j∗ of
the database and its associated verification object, the cPIR
scheme works as follows:

• The client picks a non-identity elementg ∈ G, and
sends a query of the formX = {x j}cj=1 such that

D(x j) =

{

identity ofG j , j∗

g j = j∗
(2)

• The server responds with a set of resultsY = {yi}ri=1,
whereyi is defined as

∏c
j=1 bi j · x j . Without ambiguity,

we use the multiplicative notation to denote the oper-
ations of bothG andG′, and use· to represent theZ
module operation;
• After receivingY, the client can now recover the in-

tended entrybi∗ j∗ via computing the quantityD(yi∗ ) as
below: D(yi∗ ) = D

(

∏c
j=1 bi∗ j · x j

)

= bi∗ j∗ · D(x j∗ ) =
bi∗ j∗ · g, i.e.,D(yi∗ ) = g only if bi∗ j∗ = 1.
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Assume that eachx ∈ X and y ∈ Y are encoded in
a same length, the communication complexity of this cPIR
scheme isO(c + d · r) (for sending queryX and deliver-
ing d sets ofYs), and the computation at the server mainly
involvesd · c · r times of group operations. Therefore, for
givennandd, the overall communication complexity is min-
imized whenr =

√
n/d and c =

√
n · d. We will revise

this setting when the construction of verification objects are
taken into consideration.

3.2.2 Verification Object

The verification objectv(b) of a data blockb enables a client
to verify its authenticity, which is the prerequisite for con-
structing a valid challenge object. Our design of verification
object aims to minimize 1) its size, since as revealed above,
the communication and computation costs linearly depend
on the length of each data entry|b‖v(b)|; and 2) its construc-
tion cost (for the data owner), which is especially important
in the case of frequent data updates. Without loss of gener-
ality, below, we assume thatn= 2d andr = c=

√
n.

A straightforward solution to verifyingn blocks is to
construct a Merkle hash tree (MHT) [28], a method of col-
lectively authenticating a set of objects. Specifically, inour
setting, one can adopt a quadrant variant (q-MHT), which is
essentially a 4-way balanced tree structure: each leaf node
corresponds to the hash (digest) of a data entry, each non-
leaf node corresponds to the hash of the concatenation of its
direct children, and the root contains the digital signature of
its digest. The verification object of each block consists of
the set of hash digests of the sibling nodes along its path to
the root, which enables the client to reconstruct the root of
MHT, and verify the integrity by comparing its equivalence
with the original signature.

In implementation, the entire data block matrix can be
divided into 2d−d′ equal-size squares, called data squares,
and within each square, aq-MHT of height d′/2 is con-
structed. The verification object of each data block is there-
fore of size3

2d′|h|+ |sig|, and totally 2d−d′ signatures are re-
quired for the data owner. Clearly, a trade-off exists between
the communication and signature construction costs: at one
extreme,d′ = d, the whole database is considered as a data
square, which achieves the minimum signature construction
cost, at the expense of the largest size of verification object;
while at the other extreme,d′ = 0, each block itself is a
data square, with the minimum communication cost, but the
largest number of required signing operations.

We have the following key observation regarding the
property of the cPIR scheme: at each round the server re-
turns the encrypted version of an entire column, instead of
a single data block. Based on this observation, we pro-
pose a novelvertical Merkel hash tree(v-MHT), a variant
of MHT that achieves minimum verification object size and
minimum construction cost simultaneously.

For each data columnj, one computes its digesth·, j
as the hash of the concatenation of the digests of its ele-
ments: h·, j = H(

⊔r
i=1 hi, j), where

⊔

denotes the concate-

S(H(h·,1‖h·,2‖h·,3‖h·,4))

h1,4

h2,4

h3,4

h4,4

h·,4 : H(h1,4‖h2,4‖h3,4‖h4,4)

Fig. 4 Illustration of vertical Merkle hash tree.

nation operation. The root corresponds to the hash digest
of the concatenation of the column digests, and a signature
S(H(

⊔c
j=1 h·, j)) is created. For thej∗-th column, one con-

structs a meta verification objectv(b·, j∗) as the concatenation
of the digests of all but thej∗-th column and the signature
at the root:v(b·, j∗) =

⊔c
j=1, j, j∗ h·, j‖sig. One then divides

v(b·, j∗) into r equal-length parts, denoted as{vi(b·, j∗)}ri=1,
with vi∗ (b·, j∗) assigned as the verification object ofbi∗ j∗ . A
samplev-MHT is illustrated in Fig. 4. On receiving the veri-
fication objects of an entire column, the client can readily
re-construct the root ofv-MHT, and validate the data in-
tegrity in sequel. Clearly, within this scheme, the verifica-
tion object of each data entry is of size [(c−1) · |h|+ |sig|]/r
([(
√

n− 1) · |h| + |sig|]/
√

n for the case ofr = c), and only
one signing operation is required for the data owner. Also,
it can be derived that under this setting, in order to minimize
the communication cost, the optimal setting ofc, r is

c∗ =
√

n · |b|/(|h| + 1) r∗ = n/c∗ (3)

3.3 Computation Execution and Verification

On obtaining the set of sampled input data blocks and en-
suring their authenticity, the client enters the second phase:
she constructs a set of challenge objects, which later serve
to validate the integrity and completeness of the received
computation result. In this section, we discuss in detail the
construction of challenge objects, and model the intricate
trade-off between the construction cost and the correspond-
ing verification power, with respect to several alternativeat-
tack strategies.

3.3.1 Construction of Challenge Object

In general, two criteria need to be considered in execution
assurance, namely, completeness and integrity. By com-
pleteness, we refer to that all the given sub-tasks have been
faithfully executed, and a server violating this criterionis
termed as alazy adversary. By integrity, we refer to that
the computation results have not been tampered or modified
before being sent to the client, and a server violating this cri-
terion is termed as amalicious adversary. This work mainly
focuses on the case of malicious adversaries, with the aim
of ensuring the integrity of computation results.

Clearly, given the resultq[b]′ as returned by the ser-
vice provider for the sub-taskq over the blockb, the client
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can verify its integrity only if she knows the correctq[b],
by checking the equivalence ofq[b] andq[b]′. Hence, each
challenge objectc(q) is essentially the “correct” result of
performing the sub-taskq over the targeted data blockb.
Moreover, it usually suffices to check the equivalence of
their hash digests to determine the equivalence ofq[b] and
q[b]′, leading to lower storage requirement. We thus have

Definition 6 (Challenge Object): For a sampled data block
bs

i with verified authenticity, a challenge objectc(qs
i ) is con-

structed as the hash digest of the result of performing the
sub-taskqs

i overbs
i , i.e.,c(qs

i ) =H(qs
i [b

s
i ]).

Provided the collision resistance of the hash function, it
is computationally infeasible to fake a resultq[b]′ with an
equivalent hash digest ofq[b].

3.3.2 Amortization of Construction Cost

The discussion so far has been assuming that at each round
of random sampling, a single challenge object is con-
structed. Thus, all the challenge objects are constructed in-
dependently at random, which offers the maximum possible
verification power, according to Eq. 1, but also incurs the
prohibitive challenge-object construction cost at the client
side. Specifically, the cost comprises two main parts, the
transfer of the data blocks and the associated verification
objects, and the construction of the set of challenge objects.
Following, we show that the inherent structure of the ran-
dom sampling scheme allows flexible balance between the
construction cost and the corresponding verification power.

It is noticed that for each round of communication, the
random sampling scheme retrieves a complete column of
data blocks of the database. Therefore, instead of construct-
ing a single challenge object, one can construct multiple
ones from the retrieved column, to save the network band-
width. However, the amelioration on communication cost
is achieved at the expense of breaking the ideal assumption
that all the challenge objects are constructed independently
at random, since now it is known to the adversary that the
set of challenge objects are constructed from the data en-
tries belonging to a single column. Clearly, a balance exists
between the cost of constructing the challenge objects and
their verification power, about which a theoretical analysis
is presented in the following.

More generally, assume that a set ofg columns{Bs
i }
g

i=1
of the data collectionB are retrieved, each representing a
distinct column of the collection. The end client can con-
struct the challenge objects from a pool ofr · g data blocks.
Meanwhile, note that two challenge objects corresponding
to an identical data blockb does not provide higher verifi-
cation power than each single one, i.e., the adversary can
pass the verification by faithfully returning the correct re-
sult q[b]. Hence, we assume that allf challenge objects are
constructed from distinct data blocks. Aiming at addressing
the worst-case scenario, we further assume that the numbers
(g, f ) both are known to the adversary. The relationships be-
tween the communication cost Ccomm, the challenge ob-

challenge object counterfeitsampled column

scattered row-wise column-wise

Fig. 5 Alternative counterfeit strategies of the adversary.

ject construction cost Ccons, and the parameters (g, f ) can
be summarized as Ccomm ∝ g, Ccons ∝ f . Below we
analyze the verification power of the challenge objects with
respect to several alternative attack strategies exploitable by
the adversary.

3.3.3 Analysis of Verification Power

As revealed above, the amelioration on the communication
and challenge object construction costs is achieved by intro-
ducing the correlations among the challenge objects with re-
spect to their corresponding data blocks. The adversary can
potentially leverage such correlations to improve her chance
of escaping from the integrity verification, given the same
amount of counterfeits in the query results.

Following the adversary model defined in Section 2.2,
we assume that the adversary attempts to counterfeite out
of n sub-tasks of a massive computing taskQ. We also as-
sume that compromising the result corresponding to every
sub-task offers the same amount of incentive for the adver-
sary. Though this assumption is somewhat restrictive, the
analysis presented below provides interesting insights into
the probabilistic behavior of the verification power of our
scheme. We consider three alternative attack strategies used
by the adversary in choosing the sub-tasks to inject compro-
mised results, namelyscattered, column-wise, androw-wise
counterfeit, and analyze their impacts over the verification
power of the set of challenge objects.

Scattered Counterfeit. Within this basic scheme, the
set ofe compromised sub-tasks are chosen randomly at the
basis of individual sub-task, as illustrated in the leftmost plot
of Fig. 5. The probability that the adversary manages to
“dodge” thef challenge objects embedded in theg columns
can be calculated as follows:

Pscattered(e| f , g, n) =
Ce

n− f

Ce
n

which is equivalent to the ideal case as shown in Eq. 1,
where all the challenge objects are constructed indepen-
dently at random, i.e., the correlation does not lend the
scattered counterfeit scheme any advantage in dodging the
challenge objects. Therefore, this scheme will serve as the
benchmark for evaluating other counterfeit strategies.

Row-wise Counterfeit. In the strategy of row-wise
counterfeit, the adversary randomly selectse/c rows (for
simplicity, assume thate is divisible byc), and compromises
the results of sub-tasks corresponding to these rows, as illus-
trated in the middle plot of Fig. 5. Under this strategy, the
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Fig. 6 Attack success rate of the adversary with different counterfeit
strategies (under the column-based sampling scheme) with default setting:
n = 10000,e= 100, f = 100, andg = 6.

probability that the adversary escapes from thef challenge
objects embedded in theg columns is essentially equivalent
to that all the challenge objects fall out of the overlapped
region of theg sampled columns and thee/c compromised
rows, formally

Prow−wise(e, f , g, n) =
C f
g·(r− e

c )

C f
g·r

Column-wise Counterfeit. Orthogonal to the row-
wise counterfeit, within the column-wise scheme, the ad-
versary choosese/r columns, and compromises the sub-task
results over all these columns, as illustrated in the rightmost
plot of Fig. 5. Again, we are interested in calculating the
probability that the adversary dodges thef challenge ob-
jects after compromising the results corresponding to thesee
sub-tasks. The calculation can be divided into two parts, the
probability thati columns selected by the adversary overlap
with that selected by the client, and the probability that no
challenge objects appear in thesei columns. Therefore,

Pcol−wise(e, f , g, n) =
min(g, e

r )
∑

i=max(0,g+ e
r −c)

Ci
e
r
·Cg−i

c− e
r

Cg
c

·
C f

(g−i)·r

C f
g·r

(4)

where the first term corresponds to the probability thati
columns selected by the client overlap with that selected by
the adversary, and the second corresponds to that thef chal-
lenge objects fall out of thei intersected columns.

The attack success rate of the adversary with different
counterfeit strategies with respect to varying setting ofe, f
andg is shown in Fig. 6. One can obtain the following inter-
esting observations: 1) the success rate of the scattered strat-
egy is independent of the parameterg, and decreases sharply
as f or e grows; 2) the row-wise strategy offers the adver-
sary with the least leverage for taking advantage of the cor-
relations among the challenge objects; 3) the correlationsof
data blocks have the most significant impact on the col-wise
strategy, with success rate close to one for all the settings!
Clearly, this phenomenon stems from the unique behavior of
our random sampling scheme: when the sampling rate (g/c)
is low, the columns selected by the adversary and that by the
client have extremely low chance to intersect.

3.3.4 A Revised Sampling Strategy

To remedy this drawback of the original random sampling
scheme with respect to the column-wise counterfeit strategy,
we introduce a hybrid sampling scheme: the client now is-
sues cPIR on both column and row basises, i.e., the retrieved
data blocks could be either column-wise and row-wise. Due
to the space constraint, we omit the algorithmic details. Fol-
lowing, we analyze the verification power of this scheme,
with respect to the above three counterfeit strategies.

Following the previous setting, except that instead of
retrievingg columns, the client now retrievesgc columns
andgr rows from the server, which form the pool for con-
structing thef challenge objects. Since the behavior of the
scattered strategy is independent of the sampling scheme,
we focus our discussion on the row-wise and column-wise
strategies. Moreover, because of the symmetry, here we an-
alyze the behavior of the column-wise strategy only. Now,
the probability that the adversary dodges thef challenge
objects after compromising the results corresponding toe/r
columns of data blocks, can be formulated as follows: given
that i columns selected by the server overlap with that se-
lected by the client, it should be satisfied that the sampled
sub-tasks selected by the client do not appear in 1) thesei
columns, or 2) the intersected region of thegr rows (by the
client) and thee/r columns (by the server). Therefore,

P∗col−wise(e, f , gr , gc, n) =
min(gc,

e
r )

∑

i=max(0,gc+
e
r −c)

Ci
e
r
·Cgc−i

c− e
r

Cgc
c

·
C f

(gc−i)·r+gr ·(c+i− e
r )−gc·gr

C f
gc·r+gr ·c−gc·gr

Fig. 7 demonstrates the attack success rate of the adver-
sary with different counterfeit strategies under our revised
sampling scheme. It is clear that the hybrid sampling strat-
egy is robust against both column-wise and row-wise coun-
terfeits, with verification accuracy close to the ideal bound,
but with much lower communication cost and computation
burden on the server (f /g times of improvement). It is also
interesting to notice that the enlargement of the sampled
pool (g) does not improve the verification power, as shown
in the rightmost plot of Fig. 7. What matters here is the ratio
of the number of challenge objects over the size of the pool
( f /g). This is good news, since the client can now achieve
high verification accuracy with relative smallg for fixed f ,
which implies low network communication cost.

Given the required verification accuracyλ, it is desir-
able to estimate the minimum values ofgc, gr and f that
achieve the least resource consumption. Formally, letφrow

andφcol be the cost of retrieving a column and a row of data
blocks respectively, andψcon be the construction cost of a
challenge objects, one attempts to solve the following opti-
mization problem:
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Fig. 7 Attack success rate of the adversary with different counterfeit
strategies (under the hybrid sampling scheme), with default setting: n =
10000,e= 100, f = 100, andg = 6 (gc = ⌈g/2⌉, gr = ⌊g/2⌋).

min φrow · gr + φcol · gc + ψcon · f

s.t.

{

P∗row−wise(n, e, f , gr, gc) ≤ 1− λ
P∗col−wise(n, e, f , gr , gc) ≤ 1− λ

Unfortunately, no closed forms are available for optimalf ,
gc andgr ; one can however apply off-the-shelf combinato-
rial optimization tools [29] to find approximate solutions.

4. Conclusion and Future Work

This paper presents a systematic study of the problem of
providing execution assurance for massive computing tasks
wherein both storage and computation are outsourced by
untrusted third parties. We proposed a novel client-side
checking solution by carefully intergrating the machineries
of data authentication and computational private informa-
tion retrieval (cPIR). This work also opens several directions
for future research. First, how to effectively maintain the
validity of the verification and challenge objects in facing
frequent data updates? Second, how to incorporate more so-
phisticated optimization techniques, e.g., batch codes [30],
to improve data retrieval efficiency? Third, how to construct
more effective execution assurance solutions based on alter-
nating primitives other than cPIR?
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