
Performance Measurements and Analysis of
Network I/O Applications in Virtualized Cloud

Yiduo Mei1,2, Ling Liu1, Xing Pu1,3, Sankaran Sivathanu1

1 Georgia Institute of Technology, Atlanta, Georgia, USA, 30332
2 Xi’an Jiaotong University, Xi’an, ShaanXi, China, 710049

3 Beijing Institute of Technology, Beijing, China, 100081

Abstract—Virtualization is a key technology for cloud based data
centers to implement the vision of infrastructure as a service (IaaS)
and to promote effective server consolidation and application
consolidation. However, current implementation of virtual machine
monitor does not provide sufficient performance isolation to
guarantee the effectiveness of resource sharing, especially when the
applications running on multiple virtual machines of the same
physical machine are competing for computing and communication
resources. In this paper, we present our performance measurement
study of network I/O applications in virtualized cloud. We focus our
measurement based analysis on performance impact of co-locating
applications in a virtualized cloud in terms of throughput and
resource sharing effectiveness, including the impact of idle instances
on applications that are running concurrently on the same physical
host. Our results show that by strategically co-locating network I/O
applications, performance improvement for cloud consumers can be
as high as 34%, and the cloud providers can achieve over 40%
performance gain.

Keywords: Cloud computing; Virtualization; Performance measurement.

I. INTRODUCTION
Cloud computing is changing the way that IT industry

operates and its corresponding profit model by providing the IT
infrastructure and software as chargeable services delivered
over the Internet. Virtual machine monitors (VMMs) are
popular in cloud environment within the service-delivery
industry. The promise of virtualization technology for server
consolidation and application consolidation is to run multiple
services on a single physical machine (host) while allowing
independent configuration of operating systems, software, and
device drivers. Virtualization helps to achieve greater system
utilization, and at the same time lowering total cost of
ownership, responding more effectively to changing business
conditions in enterprise, government and organizations.

However, current implementation of VMMs does not
provide sufficient performance isolation to guarantee the
effectiveness of resource sharing, especially when the
applications running on multiple virtual machines (VMs) of the
same physical machine are competing for computing and
communication resources [11, 14, 16, 20]. As a result, both
cloud consumers and cloud providers may suffer from
unexpected performance degradation in terms of efficiency and
effectiveness of application execution or server consolidation.

In this paper we focus on performance measurement and
analysis of network I/O applications (network-intensive
applications) in a virtualized cloud. To maximize the benefit
and effectiveness of server consolidation and application
consolidation, we argue that it is important to conduct in-depth
performance measurements for applications running on

multiple VMs hosted on a single physical machine. Such
measurements can offer deeper understanding of the key
factors for effective resource sharing among applications
running in virtualized cloud environments. We focus on
network I/O applications in the measurement study because
network intensive applications are known to be the dominating
workloads in cloud-based data centers today, as evidenced by
Amazon EC2 [22], Google AppEngine [23].

We concentrate our measurement study to two categories of
server and application scheduling problems. The first category
aims at addressing issues related to managing idle instances.
When a domain is said to be idle, it means that there is no other
runnable processes and the OS is executing idle-loop. Through
this group of experimental study, we show the impact of
running idle guest domains on system performance. We believe
that the findings from this experimental study can help cloud
service providers to effectively manage virtual machines to
better meet consumers’ demand, and at the same time, it can
also provide useful insights to cloud consumers to manage idle
instances more effectively for seamlessly scaling their
applications.

The second focus of our performance study is to understand
the performance impact of co-locating applications in a
virtualized cloud in terms of throughput performance and
resource sharing effectiveness. Through in-depth measurement
analysis, we can better understand the set of key factors that
can maximize the physical host capacity and the application
performance running on individual VMs.

In summary, through this measurement study we show that
it is important to understand the fundamental resource usage
model and performance issues for concurrent I/O applications
running in virtualized cloud. In addition, we show that the
ability of exploring and quantifying the performance gains and
losses relative to different configurations in guest domains and
applications can provide valuable insights for cloud service
providers and could consumers. Furthermore, our measurement
analysis also reveals that applications should be arranged
carefully and smartly to minimize unexpected performance
degradation and maximize desired performance gains.

The remaining of this paper is structured as follows. We
describe research related to our study in Section 2. In Section 3
and Section 4, we present our experiments and analyze the
results. Section 5 summarizes our results and presents
conclusions.

II. OVERVIEW AND BACKGROUD
In this section we first briefly review Xen [1], especially

some features and implementation details of Xen, which are
important backgrounds for our performance analysis and

measurement study. Then we briefly review the related work in
the literature and outline our basic methodology for conducting
performance measurement and analysis of network I/O
applications in virtualized cloud environments.

A. Xen I/O Mechanism
Xen is an x86 VMM (hypervisor) developed based on

paravirtualization [1]. VMM interfaces between the virtual
machine tier and the underlying physical machine resources. At
boot time, an initial domain, called Domain0, is created and
serves as the privileged management domain, which uses the
control interface to create and terminate other unprivileged
domains (guest domains), and manages the CPU scheduling
parameters and resource allocation policies.

In Xen [1], Domain0 also serves as a driver domain by
containing: (1) unmodified Linux drivers for I/O devices, (2)
network bridge for forwarding packets to guest domains, and
(3) netback interface to each guest domain. Devices can be
shared among guest operating systems running in guest
domains, denoted as Dom1, Dom2, …, Domn (n>1). A guest
domain implements a virtual network interface controller driver
called netfront to communicate with corresponding netback
driver in Domain0. Xen processes the network I/O requests
through the event channel mechanism and the page flipping
technique. For example, consider the guest domain which is
receiving a network packet, whenever a network packet arrives,
the hardware raises an interrupt. The hypervisor intercepts the
interrupt and then initializes a virtual interrupt through the
event channel to inform the driver domain of the arrival of the
packet. When the driver domain is scheduled to run, it sees the
I/O event notification. The device driver in the driver domain
fetches the packet and delivers it to the network bridge. The
network bridge inspects the header of the packet to determine
which netback to send to. After the network packet is put into
proper netback driver, the network driver notifies the
destination guest domain with a virtual interrupt through the
event channel, and it encapsulates the network packet data into
the form of memory pages. Next time when the guest domain is
scheduled to run, the guest domain sees the notification. Then
the memory page containing the network packet data in the
netback driver is exchanged with an unused page provided by
the destination guest OS through the network I/O channel. This
process is called memory page flipping, which is designed to
reduce the overhead caused by copying I/O data across
domains. The procedure is reversed for sending packets from
the guest domains via the driver domain [1, 4, 9, 10, 16, 19].

B. Credit Scheduler
Xen [1] employs the credit scheduler to facilitate load

balancing on symmetric multiprocessing (SMP) host. The non-
zero cap parameter specifies the maximum percentage of CPU
resources that a virtual machine can get. The weight parameter
determines the credit associated with the VM. According to the
remaining amount of credits of each VCPU, its states can be:
under (-1) and over (-2). If the credit is no less than zero, then
the VCPU is in the under state, otherwise, it’s in the over state.
Each physical CPU checks VCPUs in the following steps
before it goes into idle: First, it checks its running queue to find
out the ready VCPU which is in the under state, then it will
check other physical CPU’s running queue to fetch VCPU that
is in the under state. After that the scheduler will execute the

VCPU in the over state in its own running queue from
beginning. It will never go to idle states before it finally checks
other physical CPU’s running queue to see whether there exists
runnable VCPU in the over state. To alleviate the high I/O
response latency, the credit scheduler introduces the boost state
to prompt the I/O processing priority. An idle domain can enter
the boost state when it receives a notification over the event
channel and it is previously in the under state, resulting in high
scheduling priority [3, 6, 10, 16].

C. Related Work
Over the last few years, a fair number of research and

development efforts have been dedicated to the enhancement of
virtualization technology. Most of the efforts to date can be
classified into two categories: (i) performance monitoring and
enhancement of VMs on a single physical machine, and (ii)
performance evaluation, enhancement, and migration of VMs
running on multiple physical hosts. We below provide a brief
summary about the research conducted. We can characterize
this line of research in two directions. On one hand, a number
of research projects have been devoted to performance
monitoring tools for VMM and VMs, represented by the
monitoring tools [3, 4, 7, 12, 15] for Xen [1, 5]. On the other
hand, a fair amount of work has been conducted on varying
CPU scheduler configurations [3, 9, 10, 15] or network I/O
related parameter tuning [12, 13, 19], such as network bridging,
TCP Segmentation Offload (TSO).

Concretely, some previous study has shown that
performance interference exists among multiple virtual
machines running on the same physical host due to the shared
use of computing resources [15, 18, 20] and the implicit
resource scheduling of different virtual machines done by
VMM in privileged driver domain [11]. For example, in the
current Xen implementation, all the I/O requests have to be
processed by the driver domain, and Xen does not explicitly
differentiate the Domain0 CPU usage caused by I/O operations
for each guest domain. The lacking of mechanism for Domain0
to explicitly separate its usage contributes to the unpredictable
performance interference among guest domains [8].

D. Basic Methodology and Performance Metrics
Experimental Setup. All experiments were conducted on

an DELL Precision Workstation 530 MT with dual 1.7 GHz
Intel Xeon processors, 1 GB ECC RAM, Maxtor 20 GB 7200
RPM IDE disk and 100Mbps network connection. We used the
Ubuntu 8.0.4 distribution and Xen 3.2 with the default credit
scheduler. The physical machine hosts multiple virtual
machines. Each VM is running Apache web server to process
web requests from remote clients. Each client generates file
retrieval requests for a particular virtual machine such that the
clients will not become the bottlenecks. Each connection issues
one file request by default. A control node coordinates
individual clients and collects profiling data. The web server
performance is measured as a maximum achievable number of
connections per second when retrieving files of various sizes.
We use httperf [14] to send client requests for web document of
size 1kB, 10kB, 30kB, 50kB or 70kB. Authors of [4, 18]
showed that web server performance is CPU bound under a
mix of small size files, and is network bound under a mix of
large files. The criteria for small or large files depend on the

capacity of the machine. For our experimental setup, files with
size larger than 10K are network bounded.

Performance Metrics. The following metrics are used in
our measurement study. They are collected using Xenmon [7]
and Xentop [24].
• Server throughput (#req/sec). It quantitatively measures

the maximum number of successful requests served per
second when retrieving web documents.

• Normalized throughput. We typically choose one
measured throughput as our baseline reference throughput
and normalize the throughputs of different configuration
settings in order to make adequate comparison.

• Aggregated throughput (#req/sec). We use aggregated
throughput as a metric to measure the impact of using
varying number of VMs on the aggregated throughput
performance of a physical host.

• CPU time per execution (μs/exe). It is a performance
indicator that shows the average obtained CPU time in
microseconds (μs) during each run of the given domain.

• Execution per second (#exe/sec). It measures the number
of guest domains being scheduled to run on a physical
CPU during one unit time.

• CPU utilization (%). To understand the CPU resource
sharing across VMs running on a single physical machine,
we measure the average CPU utilization of each VM,
including Domain0 CPU usage and guest domain CPU
usage respectively.

• Network I/O per second (kByte/sec). We measure the
amount of network I/O traffic in kB per second, transferred
to/from a remote web server for the corresponding
workload.

• Memory pages exchange per second (pages/sec). We
measure the number of memory pages exchanged per
second in the I/O channel. It indicates how efficient the
I/O processing is.

• Memory pages exchange per execution (pages/exe). This
metric is a performance indicator that shows the average
memory pages exchanged during each run of the given
domain.

E. Measurement Study: Objectives and Methodology
In a virtualized cloud environment, cloud providers

implement server consolidation by slicing each physical
machine into multiple virtual machines (VMs) based on server
capacity provisioning demands. Cloud consumers may reserve
computing resources through renting VMs from cloud
providers. However, there has not been much dedicated study
on the ways that multiple VMs hosted on the same physical
machine may impact on the performance of the applications
running on them, including when some of these VMs are idle,
some are running CPU intensive workloads or I/O intensive
applications.

With this problem in mind, we design our measurement
study on the following two important issues: (i) understanding
the impact of idle instances on application performance; (ii)

understanding the impact of co-locating applications in a
virtualized cloud in terms of throughput performance and
resource sharing effectiveness. Through in-depth measurement
analysis of these issues, we can better understand the set of key
factors that can maximize the physical host capacity and the
application performance. In addition, cloud service providers
can provide more effective management of virtual machines to
better meet consumers’ demand, and at the same time, cloud
consumers can utilize the insights gained from this study to
manage and scale their applications more effectively.

III. DEALING WITH IDLE INSTANCES
Consider a set of n (n>0) VMs hosted on a physical

machine, at any point of time, a guest domain (VM) can be in
one of the following three states: (i) execution state, namely the
guest domain is currently using CPU; (ii) runnable state,
namely the guest domain is on the run queue, waiting to be
scheduled for execution on the CPU; and (iii) blocked state,
namely the guest domain is blocked and is not on the run
queue. A guest domain is called idle when the guest domain is
executing idle-loop, i.e., there is no VM that is not blocked and
not idle.

In this group of experiments, we intent to study the
following two issues: First, we want to understand the
advantage and drawbacks of keeping idle instances from the
perspective of both cloud providers and cloud consumers.
Second, we want to measure and understand the start-up time
of creating one or more new guest domains on a physical host,
its impact on existing applications, and the key factors impact
the application performance and new domain start-up time.

We setup the first set of experiments in two steps. First, we
use one single guest domain, denoted as Domain1, to serve all
http requests. We stress Domain1 with as high workload as
possible to find out its service limit. Then, we varied the
number of idle guest domains in addition to Domain1 from
zero to three. Note that, the Apache web server starts
automatically in the idle domain to simulate the situation that
an instance which has been booted up can respond to requests
immediately. This is a more practical way to simulate the real
world scenario. Table I shows the results of four experimental
setups. Domain1 is running I/O application in high workload
rate, with zero, one, two, or three other VMs in idle execution
state. Each setup records the maximum achievable throughputs
for all five I/O applications (1kB, 10kB, 30kB, 50kB and
70kB).

TABLE I. MAXIMUM THROUGHPUT FOR DOMAIN1 [#REQ/SEC]

App. (# of guest domains, # of idle domains)
(1,0) (2,1) (3,2) (4,3)

1kB 1070 1067 1040 999
10kB 720 717 714 711
30kB 380 380 380 380
50kB 230 230 230 230
70kB 165 165 165 165

Figure 1. CPU time per execution [μs/exe] for
1kB application under 1 VM and 4 VMs with 3
idle VMs setups

Figure 2. Exeution counts per second for 1kB
application under 1 VM and 4 VMs with 3 idle
VMs setups

Figure 3. Throughputs for 1kB and 70kB
applications and startup time [s] of one and two
new guest domains.

We observe some interesting facts from Table I. First, there
is no visible performance impact of keeping the idle domain(s)
running when the running domain are serving 30kB, 50kB and
70kB applications, because their performance are network
bounded. Second, the worst performance degradation occurs in
the 1kB application, which is CPU bound. Compared with the
single VM setup where the highest throughput value achieved
is 1070 #req/sec, we see about 6% performance degradation
when the number of guest domains is four (999 #req/sec). It is
apparent that adding idle guest domains induced overhead
which can impact the performance of CPU intensive
applications in the running domain.

Figure 1 and Figure 2 present more detailed measurements
of performance impact of idle instances, which helps us to
quantitatively characterize the overhead occurred for 1kB
application. We measured the CPU time per execution as well
as the number of execution counts per second with one VM and
four VMs with three idle setups for 1kB application. From
Figure 1 and Figure 2, we make two observations. First, on
average, each of the three idle guest domains can get about
250μs for each run, which is about only 10% of the CPU time
of Domain0 for each execution. Second, comparing 4 VMs
with 3 idle VMs setup with single VM setup, we see the CPU
time for each run is dropped from 2464�μs to 2407�μs in
domain0 and from 2130μs to 2046�μs in domain1, and
similarly, the execution count per second is dropped from
400,000 to 300,000 in domon1, though the execution count per
second in domain0 sees a slight increase. The drop in CPU
time per execution and execution per second is primarily due to
the following two factors: (1) the execution of timer tick for the
idle guest domain and the context switch overhead, and (2) the
processing of network packets such as address resolution
protocol (ARP) packets, which causes I/O processing in guest
domain.

Now we report the second set of experiments in this group.
In this set of experiments, we want to study how CPU intensive
applications and network I/O intensive applications may impact
the throughput performance when an idle instance is present.
We also want to understand the startup time for creating one or
more new guest domains on demand and the other factors that
may impact such start-up time. We adopted the methodology as
follows. Domain1 is serving the 1kB or 70kB applications
alone. Then we create one or two idle instances. Figure 3
records the fluctuations in Domain1’s throughput and startup
time for the idle guest domains. It shows the throughput for
running Domain1 alone (Exp1), running Domain1 with startup
one VM on demand (Exp2), and running Domain1 with startup
two VMs on demand (Exp3), respectively. In this set of

experiments, the request rate is fixed at 900 requests/second for
the 1kB application or 150 requests/second for the 70kB
application, both of which are approaching 90% of maximum
throughput values given in Table I. The primary y-axis is the
normalized throughput with 900 successful requests/sec for
1kB application or 150 #req/sec for 70kB application as
baseline. The second y-axis denotes the start-up time (sec) for
one, two or three VMs. Note that the circles in Exp1 denote the
startup time for one single instance without running Domain1.

Figure 3 shows three interesting observations. First, on
demand start-up of guest domains has severe short term impact
on the performance of running domain no matter what type of
application is hosted by it. This is because starting up a VM
instance is I/O intensive, in our experiment, it means to create
one 2GB guest domain instance. As the measurement results
showed, to start up a new VM, the average CPU consumption
is about 20%. The peak CPU consumption to finish this task
can be as high as 75%. In addition, it requires about 900 virtual
block device read operations and about 200 virtual block
device write operations. These I/O related activities to start-up
new domains cannot be finished without the presence of
Domain0, which plays a key role in processing Domain1’s web
workloads. Our second observation is that the 70kB application
suffers less in terms of start-up time than the 1kB application.
This is because the performance of the 70kB application is
network bounded, and it consumes less CPU, which alleviates
the CPU contention. In our case, it will consume about 90%
CPU resources in addition to about 5400 memory page
exchanges per second between Domain0 and Domain1 to serve
the 900 requests/sec for 1kB application. In contrast, only 60%
CPU resource is reserved to serve 150 requests/sec for the
70kB application. Furthermore, for the 1kB application, the
startup time for creating two guest domains in Exp3 grows
from 47 sec in Exp1 to 75 sec, which is about 1.5 times bigger.
In contrast, for 70kB application, the difference in start-up time
from creating two VMs to one VM is relatively smaller. This
shows that the start-up time for creating new VMs on demand
is related to both the type of resource-bound applications in the
running domain and the number of new VMs being created.
Given the CPU and disk I/O demands involved in creating new
domains, both CPU intensive or disk I/O intensive applications
in running domain will cost more start-up time than network
I/O bounded applications. Finally, our third observation is that
the duration of performance degradation experienced due to
creating new VMs on demand is typically bounded within 100
seconds in our experiments. Our experience shows that, the
experienced duration of performance degradation is related
with the machine capacity, the workload level in the running
domain, and the number of new VM instances to start up.

Figure 4. Normalized throughput, CPU
utilization and Network I/O between Domain1
and Domain2, both with identical 1kB
application at 50% workload rate

Figure 5. Average throughput [#req/sec] per
guest domain, with both guest domains running
identical application at the same workload rate

Figure 6. CPU usage for Domain0, aggregated
CPU usage for guest domains, and percentage of
idle CPU [%]

Figure 7. Domain1 throughput when Domain1
is serving 1kB appliaction and Domain2 is
serving 1kB to 70kB applications

Figure 8. Domain2 throughput when Domain1
is serving 1kB application and Domain2 is
serving 1kB to 70kB applications

Figure 9. Aggregated throughput ratio for
Domain1 and Domain2 across five applied
workload rates

IV. IMPACT OF NEIGHBOR APPLICATION
In a virtualized cloud, some resources like CPU, memory

are sliced across multiple VMs, whereas other resources like
the network and the disk subsystem are shared among multiple
VMs. We design three groups of experiments to perform an
extensive measurement study on performance impact of co-
locating applications with different resource usage patterns and
different number of VMs. The first group and the second group
of experiments focus on performance impact of running
applications with different resource usage patterns. To isolate
the number of factors that impact on the impact of co-locating
patterns of applications, we choose the five I/O applications of
1kB, 10kB, 30kB, 50kB and 70kB in our experiments, but
divide the experiments into two steps. In the first group, we
run identical application on all VMs for all five applications. In
the second step we study the slightly more complex scenarios
where different applications are running on different VMs. In
the third group of experiments, we study the problem of
distributing workloads among multiple VMs.

A. Co-locating Identical Applications
In this group of experiments, we design two guest domains,

Domain1 and Domain2, both serve identical web requests
issuing at the same workload rates. In this simplified scenario,
our experimental results show that when two identical I/O
applications are running together, the credit scheduler can
approximately guarantee their fairness in CPU slicing, network
bandwidth consumption, and the resulting throughput.

Figure 4 shows the experimental results for two VMs when
both are serving 1kB applications with 50% workload rate. We
measured throughput, CPU utilization, Network I/O. For
example, Domain1 consumes 36.1% CPU resources while
Domain2 consumes 36.8% CPU resources. The throughputs
and network bandwidths for Domain1 and Domain2 are: 480
#req/sec and 487 #req/sec, 609 kByte/sec and 622 kByte/sec

respectively. We present these three metrics in normalized
values to show their similarities. For each metrics pair, we use
the value for Domain1 as the comparative baseline. In Figure 4
the difference between the measurement in VM1 and the
measurement in VM2 is trivial and can be ignored.

Figure 5 measures the average throughput of Domain1 and
Domain2 for all five I/O applications. We observe that (1) all
the applications arriving at the peak performance under applied
workload of 50% or 60%, (2) there is crucial difference
between small-sized file application and large-sized file
application. For small-sized file application such as 1kB and
10kB, obvious performance degradation can be observed at
workload rates higher than 50% or 60%. However, this is not
the case for large-sized file applications. The significant skew
happened in the 1kB application because: (1) its performance
is bounded by the CPU resources, (2) the guest domain spends
much more time to deal with the fast arrival of network
packets when the workload rate is high, (3) compared with the
single domain experiment for all five applications shown in
Table I, the overhead has increased due to the network
bridging happened in Domain0, and the context switch.

Figure 6 measures the CPU usages for 1kB and 70kB
applications under varying workload rates. We add up CPU
used by Domain1 and Domain2 together since the results in
Figure 4 indicate that Domain1 and Domain2 always get
almost the same amount of CPU allocation. Figure 6 shows:
under the same workload rate, the guest domain CPU usage for
1kB file is much larger than that of the 70kB application,
despite the fact that the memory page exchange rate for 1kB
file is much less than that of the 70kB application. This is
because the CPU consumed to process network requests is
mainly composed of two major components: the time spent in
establishing TCP connections, and the time spent in
transporting web file content. Furthermore, the connection
phase demands significantly more CPU resources than the
transportation phase.

Figure 10. CPU utilization for Domain1 is
serving 1kB with Domain2 is serving 1kB to
70kB when the applied workload is 100%

Figure 11. Aggregated Network I/O when
Domain1 is serving 1kB application and
Domain2 is serving 1kB to 70kB applications

Figure 12. Maximum aggregated throughput
ratio for all combinations with respect to dual
guest domain tests

B. Co-locating Different Applications
From experimental results in the previous subsection, we

know that when two applications are identical, then
approximate fairness can be obtained by using the default
credit scheduler in Xen. Thus the main factors that impact the
performance of applications co-located on the same physical
host are applied workload rates and resource usage patterns of
applications. In this subsection we examine the performance
for guest domains when they are serving different applications
as this is more likely to happen in real world scenario. We
simulate two cloud consumers, one is using Domain1 and
serving the 1kB application, the other is using Domain2,
running the application, which is by design varying from 1kB
to 70kB.

Figure 7 and Figure 8 measure the throughputs for
Domain1 and Domain2 under the 70% workload respectively.
We observe two interesting facts: (1) although Domain1
always serves the 1kB file, its performance highly depends on
the application running in its neighbor Domain2. For example,
in the 1kB and 70kB combination (661 reqs/sec for 1kB)
compared with in the 1kB and 1kB combination (494 reqs/sec
for 1kB), the performance difference can be 34%. (2) The
highest throughput points occurring in Figure 7 and Figure 8
show considerably different tendencies. Take the 1kB and
70kB application combination as an example, for the two guest
domains, the highest throughput points come out under
different applied workloads: the highest point for the 1kB file
appears at 70% workload rate, while it comes at 100%
workload for the 70kB application. Clearly, this phenomenon is
due to the resource usage pattern of 1kB and 70kB applications,
1kB is CPU bounded and 70kB is network bounded.

Figure 9 measures the aggregated throughput ratio as a
function of workload rate. We use the maximum throughput of
single VM for five applications in the first column of Table I as
the baseline to get individual throughput ratio for each guest
domain under each specific workload. For example, the
throughput for Domain1 is 661 #req/sec under 70% workload,
thus the throughput ratio is about 62% (i.e., 661/1070).
Similarly we have the aggregated throughput ratio of 130% for
the 70kB application. From the results for five combinations of
neighboring applications in Figure 9, we observe that the best
co-locating case is the 1kB and 70kB combination with
aggregated throughput ratio of 1.3, and the worst case is the
1kB and 1kB combination with aggregated throughout ratio of
0.92, The performance difference could be more than 40%
((1.3-0.92)/0.92=41%).

Figure 10 measures the CPU usages of Domain0, Domain1,
and Domain2 for five different combinations of applications.

We make three interesting observations from this set of
experiments: (1) The decrease in Domain2 CPU usage is
expected when the application in Domain2 is resized from 1kB
to 70kB and from CPU-intensive to network intensive
application. (2) The increase in Domain0 CPU utilization is
expected when the neighbor application combination is
changed from 1kB and 1kB to 1kB and 70kB, this is because
for the 70kB application, the large amount of data transferred
cause higher consumption of the device driver in Domain0. (3)
The increase in Domain1 CPU utilization is also expected since
it explains the performance improvement occurred for the 1kB
application in Figure 7, when domain2 is changing to pairing
with 70kB network bounded application, allowing the released
CPU in domain2 to be utilized by the CPU intensive 1kB
application in domain1.

Figure 11 plots the aggregated network I/O consumption as
a function of workload rates across five different combinations
of neighboring applications. We observe that the 1kB and 70kB
application combination consumes the highest network
bandwidth. This experimental result is consistent with the
results in Figure 9 and Figure 10. For the 1kB and 70kB
application combination, while the majority of requests (80%)
processed are the 1kB file retrieval requests (see domain1 CPU
utilization for 1kB&70kB), the majority of network bytes
consumed (94%) are due to transferring the 70k file objects.

Figure 12 shows the maximum aggregated throughput ratio
for all the possible combinations with two guest domains and
five applications of different file sizes. Our goal for this
experiment is to comprehensively examine the performance
impact of different types of application combinations. This is a
super set of the experiments in Figure 9 where five
combinations are examined. We draw three insights from
Figure 12: (1) If we co-locate two CPU intensive applications,
such as 1kB and 10kB combination, then the performance of
both applications will suffer. (2) If we choose the network
intensive application combinations such as 30kB and 50kB,
then each will equally contribute 50% of the aggregated
throughput performance, and there is no performance
degradation. (3) The best co-locating strategy is to use the CPU
intensive and network intensive application combination,
which always achieves strikingly high aggregated throughput.

C. Co-locating Applications among Multiple VMs
We have studied the impact of co-locating applications on

two guest domains hosted on a single physical node. In this
section we dedicate our measurement study to examine the
impact of multiple VMs on application co-location strategy.

Our first set of experiments is designed by varying the
number of guest domains from one to six and each guest

Figure 13. Average CPU utilization for each VM
when varying the number of VMs from one to
six, each is serveing 10% workload rate

Figure 14. CPU usage by one and two guest
domains with varying workload rates

Figure 15. CPU usage for one, two, three, four
and six guest domains with 120% workload rate

Figure 16. Aggregated throughput ratio for one, two, four and six VMs, half
serving 1kB files, the other half serving 70kB files.

Figure 17. Throughputs for one, two, three, four guest domains with repsect
to with repsect to five applications

domain serves 10% applied workload. Total workload rate can
be calculated by multiplying the number of guest domains with
the applied workload rate. Using 10% workload applied to each
guest domain guarantees no severe resource contention will
occur. Figure 13 shows when there are six guest domains
running, the CPU time spent (9.8%) to process the same
amount of I/O data (10% workload per guest domain) equals to
1.5 times of the CPU time spent (6.9%) in the single guest
domain case. This group of experiments intends to show that
compared with single guest domain case, when multiple guest
domains are running, the context switches among the guest
domains will lead to more frequent cache miss and TLB miss
[12], which will result in more CPU time consumption in
serving the same data. The cost of VM context switches is
typically proportional to the number of guest domains hosted
on a physical machine.

For the second set of experiments, we fix the total workload
rates to 20%, 40%, 60%, 80% and 100%. The 1kB and 70kB
application are chosen as they are the two representative
applications. Figure 14 shows the CPU utilization measured for
both driver domain and guest domain under two types of
virtual machine configurations: single VM and two VMs. For
example, 01k-1VM-Dom0 denotes the measurement of dom0
CPU utilization for 1kB application running on a single VM.
01k-2VM-Dom0 denotes the measurement of dom0 CPU
utilization for 1kB application running on two VMs. 01k-2VM-
Dom1+Dom2 measures the combined CPU usage of both
Domain1 and Domain2 for 1kB application. Two VCPUs are
configured for each guest domain. When two guest domains
are running, six VCPUs are waiting for being scheduled into
the physical CPUs, compared with four VCPUs in single guest
domain case. Frequent context switches incur undesirable
cache miss and TLB miss. For the two guest domain
experiments, Domain0 has to deal with both the context switch
and the scheduling overhead, also the network bridging
overhead is raised due to transferring packets to individual
guest domains. Thus Domain0 gets larger fraction of CPU
resources for the two guest domain setting. This set of

experimental results also shows that the CPU usage in the guest
domain increases sharply as the workload rate approaches
100%.

Figure 15 shows the CPU usages under high contention
situation. We varied the total workload rates to 120%. As seen
from the figure, when the number of guest domains grows from
one to six, the CPU share for Domain0 reduces at a more
gradual rate for the 70kB application (32.5% to 31.3%). In
contrast, when the number of guest domains is changed to six,
the CPU utilization at Domain0 for the 1kB application is
reduced from 33.8% to 18.6%. For the 1kB application, the
significant reduction in Domain0 CPU utilization indicates the
growing CPU contention due to the continuous growth in the
guest domain CPU usages. The credit scheduler tries to fairly
share CPU slices among domains including Domain0.

Figure 16 measures the impact of the number of guest
domains on aggregated throughput ratio with half of guest
domains serving the 1kB application and the other half serving
the 70kB application. We use the maximum throughput of
single VM for five applications in the first column of Table I as
the baseline to get individual throughput ratio for each guest
domain. The first observation is: The configuration for two
guest domains outperforms than other configurations. When
the number of guest domains switches to four or six, the
aggregated throughput ratios reduce to one. This means: when
the number of guest domains expended beyond some value,
which is four in our case, the overhead raised by hosting
multiple guest domains depletes the benefits of the best
combination. Compared to the six guest domain case (1.01),
the best case (1.31) when there are two guest domains shows
about 30% performance gains.

Figure 17 measures the maximum overall throughput
performance for five applications, each is distributed on
multiple guest domains. This set of experiments shows how the
application characteristics combined with the number of guest
domains together may affect the overall throughput
performance. For the 10kB application, the maximum
aggregated throughput is 608 #req/sec when two guest domains

are running, compared with 720 #req/sec achieved in one guest
domain experiment, showing 15% performance decline. When
three guest domains are present, the aggregated throughput is
652 #req/sec. When compared with one single guest domain
case, 10% performance decline has shown. The slight
throughput increase for the case of four guest domains is due to
the global load balancing capabilities of the credit scheduler [3].

V. CONCLUSIONS
To maximize the benefit and effectiveness of server

consolidation and application consolidation in virtualized cloud
environments, we argue that it is important to conduct in-depth
performance measurements for applications running on
multiple VMs hosted on a single physical machine. Such
measurements can provide quantitative and qualitative analysis
of performance bottlenecks that are specific to virtualized
environments, offering deeper understanding of the key factors
for effective resource sharing among applications running in
virtualized cloud environments. We have presented our
performance measurement study of network I/O applications in
virtualized cloud environments. We focus our measurement
based analysis on performance impact of co-locating
applications in a virtualized cloud in terms of throughput
performance and resource sharing effectiveness, including the
impact of idle instances on applications that are running
concurrently on the same physical host, and how different CPU
resource scheduling and allocation strategies, and different
workload rates may impact the performance of a virtualized
system.

In this work, we showed that by strategically co-locating
network I/O applications together, considerable performance
gain could be obtained. However, we did not show how to
utilize this strategy to help decision making in the cloud. In the
future, we plan to utilize our findings as knowledge base to
facilitate the scheduling in the cloud. Another limitation of this
research work is we conducted our experiments on Xen
platform. We are going to repeat some of these experiments in
other virtual machine monitors.

ACKNOWLEDGMENT
This work is partially supported by grants from NSF CISE

NetSE program, NSF CISE CyberTrust program, and an IBM
faculty award, an IBM SUR grant, and a grant from Intel
Research Council. The first author performed this research as a
visiting PhD student at the Distributed Data Intensive Systems
Lab (DiSL) in the School of Computer Science, Georgia
Institute of Technology, supported by China Scholarship
Council and Department of CS in Xi’An Jiaotong University.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, Xen and the Art of Virtualization,
ACM Symposium on Operating Systems Principles (SOSP), 2003.

[2] Z. Chen, D. Kaeli, and K. Murphy, Performance Evaluation of Virtual
Appliances, First International Workshop on Virtualization
Performance: Analysis, Characterization, and Tools (VPACT 08), 2008.

[3] L. Cherkasova, D. Gupta, A. Vahdat, Comparison of the Three CPU
Schedulers in Xen, ACM SIGMETRICS Performance Evaluation
Review, Vol. 35, Issue 2, September 2007. pp. 42-51.

[4] L. Cherkasova, R. Gardner. Measuring CPU Overhead for I/O
Processing in the Xen Virtual Machine Monitor. USENIX Annual
Technical Conference, pp: 24-24, 2005.

[5] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, J.
N. Matthews, Xen and the Art of Repeated Research, Annual
Conference on USENIX Annual Technical Conference 2004.

[6] Credit Based Scheduler. http://wiki.xensource.com/xenwiki/.
[7] D. Gupta, R. Gardner, L. Cherkasova, XenMon: QoS Monitoring and

Performance Profiling Tool,
 http://www.hpl.hp.com/techreports/2005/HPL-2005-187.html

[8] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, Enforcing
Performance Isolation across Virtual Machines in Xen, Middleware
2006, LNCS 4290, pp. 342-362, 2006.

[9] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, A. Sivasubramaniam,
Xen and Co.: Communication-aware CPU Scheduling for Consolidated
Xen-based Hosting Platforms, VEE 07, pp. 126-136.

[10] H. Kim, H. Lim, J. Jeong, H. Jo, J. Lee, Task-aware Virtual Machine
Scheduling for I/O Performance, VEE 09, pp. 101-110.

[11] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. An
Analysis of Performance Interference Effects in Virtual Environments.
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2007, pp. 200-209.

[12] A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman, and W.
Zwaenepoel, Diagnosing Performance Overheads in the Xen Virtual
Machine Environment, ACM/USENIX International Conference on
Virtual Execution Environments, VEE 05, 2005, pp. 13-23.

[13] A. Menon, A. L. Cox, W. Zwaenepoel, Optimizing Network
Virtualization in Xen, 2006 USENIX Annual Technical Conference.

[14] D. Mosberger, T. Jin. Httperf-A Tool for Measuring Web Server
Performance. ACM SIGMETRICS Performance Evaluation Review,
Volume 26, Issue 3, December 1998. pp. 31-37.

[15] Naoki Nishiguchi: Evaluation and Consideration of the Credit Scheduler
for Client Virtualization,
http://www.xen.org/xensummit/xensummit_fall_2008.html

[16] D. Ongaro, A. L. Cox, S. Rixner, Scheduling I/O in Virtual Machine
Monitors, Fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments (VEE 08), pp. 1-10.

[17] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin. Performance
Evaluation of Virtualization Technologies for Server Consolidation. HP
Laboratory, Palo Alto, April 11, 2007.
http://www.hpl.hp.com/techreports/2007/HPL-2007-59R1.pdf

[18] F. Prefect, L. Doan, S.Gold, and W. Wilcke. Performance Limiting
Factors in Http (Web) Server Operations. Proc. of COMPCON’96.

[19] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, S. Rixner, Achieving 10
Gb/s using Safe and Transparent Network Interface Virtualization, VEE
09, pp. 61-70.

[20] G. Somani and S. Chaudhary, Application Performance Isolation in
Virtualization, IEEE Int. Conf. on Cloud Computing, 2009.

[21] T. Wood, L. Cherkasova, K. Ozonat, and Prashant Shenoy, Profiling and
Modeling Resource Usage of Virtualized Applications, Middleware
2008, LNCS 5346, pp. 366-387, 2008.

[22] http://aws.amazon.com/ec2/
[23] http://code.google.com/appengine/
[24] http://linux.die.net/man/1/xentop

