Why Do Migrations Fail and What Can We Do about It?

Gong Zhang and Ling Liu
College of Computing, Georgia Institute of Technology, AtlartUSA

Abstract

This paper investigates the main causes that make the agiplicmigration to Cloud complicated and error-prone thgbu
two case studies. We first discuss the typical configuratimrsein each migration case study based on our error catego-
rization model, which classifies the configuration erroriseven categories. Then we describe the common insballati
errors across both case studies. By analyzing operatorrsrio our case studies for migrating applications to clouds w
present the design of CloudMig, a semi-automated migratadidation system with two unique characteristics. Fimgg
develop a continual query (CQ) based configuration polioyaking system, which facilitate operators to weave imprta
configuration constraints into CQ-based policies and paigally run these policies to monitor the configuration chas
and detect and alert the possible configuration constraifitdations. Second, CloudMig combines the CQ based policy
checking with the template based installation automatmhelp operators reduce the installation errors and inceedse
correctness assurance of application migration. Our ekpents show that CloudMig can effectively detect a majarfitjre
configuration errors in the migration process.

Keywords:System management, Cloud Computing, Application Migrati
Technical area Cloud Computing

1 Introduction

Cloud computing infrastructures, such as Amazon EC2 [3jyigle elastic, economical and scalable solutions and out-
sourcing opportunities for different types of consumerd and-users. Its pay-as-you-go utility-based computingleho
attracts many enterprises to build their information teslbgy services and applications on the EC2-like cloud plat{s)
and many successfully achieve their business objectiveb, & SmugMug, Twistage and so forth. An increasing numiber o
enterprises embrace Cloud computing by making their depéyt plans or engaging in the process to migrate their sesvic
or applications from a local data center to the Cloud comrmguplatform like EC2, because this will greatly reduce their
infrastructure investments, simplify operations, andagbbetter quality of information service.

However, the application migration process from the loeahdenter to the Cloud environment turns out to be quite com-
plicated: error-prone, time-consuming and costly. Evensepthe application may not work correctly after the softased
migration process. Existing approaches mainly compldateptocess in an ad-hoc manual manner and thus the chances of
error are very high. Thus how to migrate the applicationshio €loud platform correctly and effectively poses a critica
challenge for both the research community and the compsgmngjce industry.

In this paper, we investigate the factors and the causesidled the application migration process complicated arat-err
prone through two case studies, which migrate Hadoop biged system and RUBIUS multi-tier Internet service from a
local data center to Amazon EC2. We first discuss the typimafiguration errors in each migration case study based on our
error categorization model, which classifies the configaraerrors into seven categories. Then we describe the cammo
installation errors across both case studies. We illusteach category of errors by examples through selecting sesolb
the typical errors observed in our experiments. We alsogmrethe statistical results on the error distributions inheease
study and across case studies. By analyzing operator énrows case studies for migrating applications to cloud, vespnt
the design of CloudMig, a semi-automated migration vaitasystem that offers effective configuration management t
simplify and facilitate the migration configuration prosesThe CloudMig system makes two unique contributions. tFirs
we develop a continual query based configuration policy kingcsystem, which facilitate operators to weave important
configuration constraints into continual query policied prriodically run these policies to monitor the configusatthanges

and detect and alert the possible configuration constraiokstions. Second, CloudMig combines the continual qumersed

policy checking system with the template based instalatiatomation system, offering effective ways to help opeeat
reduce the installation errors and increase the correstagsurance of application migration. Our experiments stnatv

CloudMig can effectively detect a majority of the configimaterrors in the migration process.

In the following sections, we discuss the potential caubes lead to the complicated and error-prone nature of the
migration process in Section 2. We review the existing apphes and their limitations in Section 3. We report our ojpera
based case studies in Section 4 through a series of expasim@mducted on migrating distributed system applicatamms
multi-tier Internet services from local data center to Am@ZC2-like cloud, including the common migration problems
observed and the key insights for solving the problems. ktiGe 5 we present the design of the CloudMig system, which
provides both the configuration validation and installatmutomation to simplify the migration process.

2 Why Migration to Cloud is Complicated and Error-prone

There are some causes that make the migration process td Ctouplicated and error-pronefirst, the computing
environmental changes render many environment dependefigarations invalid. For example, as the database sesver i
migrated from local data center to the Cloud, the IP addrepsssibly changed and this inevitably imposes the reqantm
of updating the IP address in all the components that depertiis database server. The migration process incurs large
number of configuration update operations and even a sirgjligence of a single update may render the whole system out
of operation. Secondthe deployment of today’s enterprise system consistsrgélaumber of different components. For
example, for load balancing purpose, there may be multipdb servers and application servers in the systems. Thus the
dependencies among the many components are rather cotegliad can be broken very easily in the migration process.
Sorting the dependency out to restore the normal operdtitatus of the applications may take much more time than the
migration process itself.Third, there are massive hidden controlling settings which mayprdo&en inadvertently in the
migration process. For example, the access controls ardift components may be rumpled, which confront the system t
the security threatd.astly, the human operators in the complicated migration processmake many careless errors which
are very difficult to identify. Overall, the complicated deyments, the massive dependencies, and the lack of alitomat
make the migration process difficult and error-prone.

3 Related Work

Most of the existing migration approaches are either doneually or limited to only certain types of applications. For
example, the suggestions recommended by Opencrowd agr hagfin level and abstract and lack the concrete assistamces
the migration problem [4]. The solution provided by OfficEtoud is only limited to the type of Microsoft Office products
and does not even scratch the surface of large applicatigration [5]. We argue that a systematic and realistic stutdihe
complexity of migrating large scale applications to Cloaassential to direct the Cloud migration efforts. Furthemen an
automatic and operational approach is highly demandeadrtplgy and facilitate the migration process.

Nagaraja et al. [8] proposed a testbed for inserting fawoltstady the error behaviors. In our study, we study operator
errors by migrating real practical applications from lodalta center to EC2. This forms a solid problem analysis atnte
which motivates the effective solution for the migratiomlplem. Vieira and Madeira [9] proposed to assess recovdyabi
of database management systems through fault emulationeandery procedure emulation. However, they assumed that
human operators had the fault identification capabilityodin work, we assume that human operators only have certan er
identification capability but still cannot avoid errors.

Thus an automated configuration management system is higinhanded. There is already intensive research work on
design and evaluation of interactive systems with humamatpes involved in the field of human computer interactionr F
example, Maxion and Reeder in [7] studied the genesis of huoperator errors and how to reduce them through user
interface.

4 Migration Operations and Error Model

In this section, we describe a series of application migrafiractices conducted in migrating typical applicationsrf a
local data center to EC2 Cloud platform. We first introduce élkperimental setup and then discuss the migration pesctic
on representative applications in details and in particul@ focus on the most common errors made during the migratio
process. Based on our observations, we build the migratimn model through the categorization of the migration esro

4.1 Experiment Setup

Our experimental testbed involves both a local data cemig 202 Cloud. The local data center in College of Computing,
Georgia Institute of Technology, is called “loki”, which &12-node,24-core Dell PowerEdgé_&850 cluster. Because the
majority of today’s enterprise infrastructures are notuwatized, the physical to virtual (P2V) migration paradigsnthe
mainstream for migrating applications to virtualized adalatacenters. In this work, we focus on P2V migration.

We deliberately selected representative applicationsigsation subjects. These applications are first deployeithén
local data center and then operators are instructed to teigiram local data center to the Cloud. Our hypothesis is that
application migration to the cloud is a complicated and reprone process and thus a semi-automated migration valida
system can significantly improve the efficiency and effesi®ss of application migration. With the experimental geitross
the local data center and Amazon EC2 platform, we are abletogl moderate enterprise scale of applications for migmat
from a real local data center to the real Cloud platform astlttee hypothesis under the setting of real workload, realsinea
systems, and real powerful Cloud.

We selected two types of applications in the migration casgies: Hadoop and RUBIS. These represent typical types of
applications used in many enterprise computing systeneytotihe selection was made mainly by taking into account the
service type, the architecture design and the migratiomezdn

e Hadoop [1], as a powerful distributed computing paradigias been increasingly attractive to many enterprises to
analyze large scale data generated daily, such as Facel@ug, etc. Many enterprises utilize Hadoop as a key com-
ponent to achieve data intelligence. Because of its digiibnature, the more nodes participating in the compurtatio
the more computation power is obtained in running HadoopusTkvhen the computation resources are limited at
local site, enterprises tend to migrate their data intetlice applications to Cloud to scale out the computationmFro
the aspect of service functionality, Hadoop is a very typiepresentation of data-intensive computation appliceti
and thus the migration study on Hadoop provides us goodewrfi@t value on data intensive application migration
behaviors.

Hadoop consists of two subsystems, map-reduce computatisystem and Hadoop Distributed File System (HDFS),
and thus migrating Hadoop from local data center to the Cioallides both computation migration and file system
migration or data migration. Thus it is a good example of cosilieg migration. From the angle of architecture design,
Hadoop adopts the typical master-slave structure in itslawyers of subsystems. Namely, in map-reduce layer, a job
tracker manages multiple task trackers and in the HDFS ||a&y/BiameNode manages multiple DataNodes. Thus the
dependency relationships among multiple system compsrierth a typical tree structure. The migration study on
Hadoop reveals the major difficulties or pitfalls in migragiapplications with tree-style dependency relationships

In our P2V experiment setup, we deployt-anode physical Hadoop cluster, and designate one physickd to work

as NameNode in HDFS or job tracker in map-reduce and fouripalysodes as DataNode in HDFS or task tracker in
map-reduce (the NameNode or job tracker also hosts a Databladsk tracker). The Hadoop version we are using is
Hadoop-0.20.2. The migration job is to migrate source Haddoster to the EC2 platform into a virtual cluster with
4 virtual nodes.

e RUBIS [2] is an emulation of multi-tiered Internet servic®¥e selected RUBIS as a representative case of large scale
enterprise services. To achieve the scalability, enteegrbften adopt the muti-tiered service architecture. iplelt
servers are used for receiving Web requests, managing dsssiogic, and storing and managing data: Web tier,
application tier, and database tier. Depending on the wearklone can add or reduce the computation capability at a
certain tier by adding more servers or removing some exjgérvers. Concretely, a typical three tier setup consfsts o
using an Apache HTTP server, Tomcat application server aM@QL database as the Web tier, application tier and
database tier respectively.

We selected RUBIS benchmark in our second migration casy styiconsidering the following factors. First, Internet
service is a very basic and prevalent application type itydde. E-commerce enterprises such as EBay, usually
adopts multi-tiered architecture as emulated by RUBIS maletheir services and this renders RUBIS a representative
case of Internet service architecture migration. Secdm&l dependency relationship among the tiers of multi-tiered
services follows an acyclic graph structure, rather thaigid tree structure, making it a good alternative in studyin
the dependency relationship preservation during the ria@rgrocess. Third, the migration content of this type of
application involves reallocation of application, logiedadata and thus its migration provides a good case study on
rich content migration. In the P2V experiment setup, one himecinstalls the Apache HTTPD server as the first

tier, and two machines install the Tomcat application seagethe second tier, and two machines install the MYSQL
database as the third tier.

In the following subsections, we introduce two migratioseatudies we have conducted: Hadoop migration and RUBIS
migration, focusing mainly on configuration errors and atisttions errors. The configuration errors are our primaryuls
because they are the most frequent operator errors, somieich are also difficult to identify and correct. Installatierrors
can be corrected or eliminated by more organized instaliagteps or semi-automated installation tools with moreitst
installation scripts and instructions.

We first discuss the typical configuration errors in each atign case study based on our error categorization model,
which classifies the configuration errors into seven caiegordependency preservation error, network connectaitgr,
platform difference error, reliability error, shutdowndrestart error, software and hardware compatibility eramid access
control and security error. Then we describe the commoraliagion errors across both case studies. We illustraté eac
category of errors by examples through selecting a substteofypical errors observed in our experiments. Finally we
present the statistical results on the error distributiorsach case study and across case studies. This experiraealytic
study of major errors lays a solid foundation for the desifra semi-automated migration validation system that offers
effective configuration management.

4.2 Hadoop Migration Study

In the Hadoop migration case study, we migrate the sourceséfadpplication from the local data center to EC2 platform.
This section discusses the typical configuration errorgndesl in this process.

Dependency Preservation. This is the most common error present in our experimentsh Sugitfall is very easy to
make and very difficult to discover and may lead to disastresslts. According to the degree of severe impacts of thie ty
of error on the deployment and migration, it can be furthessified into four levels of errors.

The first level of errors is the “dependency preservatiombregenerated when the migration administrator fails to tmee
the necessity of dependency preservation checking. Evie ilependency information presents explicitly, lackifig -
forcement to review the component dependency may leadlmddaendency information. For example, in our experiments
if the migration operator forgets to update the dependemi@yrination among the nodes in the Hadoop application, then t
DataNodes (or task tracker) after migration will still iaite the connection with the old NameNode (or job tracketisT
directly renders the system unoperational.

The second level of errors in Hadoop migration is due to irexrformatting and typos in the dependency files. For
example, a typo hidden in the host name or IP address renalaies BataNodes to be unable to locate the NameNodes.

The third level of the dependency preservation error typguis to incomplete updates of dependency constraints. For
example, one operator only updated the configuration filesetk'masters” and “slaves” which record the NameNode and
list of DataNodes respectively. However, Hadoop depend@formation is also located in some other configuratiorsfile
such as “fs.default.name” in “core-site.xml” and “mapjeb.tracker” in mapred-site.xml. Thus Hadoop was still able to
boot with the new NameNode. This is a typical pitfall in migpa, and is also difficult to detect by the operator becabse t
operator may think that the whole dependency is updated aydspend intense efforts in locating faults in other locales

The fourth level of the dependency preservation error tgpéue to inconsistency in updating the number of machines
in the system. Often, an insufficient number of updated nmeshimay lead to unexpected errors that are hard to debug by
operators. For example, although the operator realizendhessity to update the dependency constraints and alsiifiiele
all the locations of constraints on a single node, the operaty fail to update all the machines in the system, which are
involved in the system-wide dependency constraints. Famgptle, in Hadoop migration, if not all the DataNodes update
their dependency constraints, the system cannot run watipaiticipation of all the nodes.

Network Connectivity Bearing the distributed computing nature, Hadoop involvgsnsive communication across
nodes in the sense that the NameNode keeps communicatitoDatiéNodes and job tracker communicates with task tracker
continuously. Thus for such system to work correctly, irgennectivities among nodes become an indispensiblequrisite
condition. In our experiments, operators showed two tygfesetwork connectivity configuration errors after migragin
Hadoop from the local data center to EC2 in the P2V migratoagigm.

The first type of such error is that some operators did notheetetwork to enable all the machines to be able to reach
each other over the network. For example, some operatagstfto update the file “/etc/hosts” and led to IP resolvement
problems. The second type of such error is local DNS resmiuwirror. For example, some operators did not set the local
DNS resolution correctly, which led to the consequencedht the DataNodes residing in the same host as the master nod
were booted after the migration.

Platform Difference The platform difference between EC2 Cloud and local datdecesiso creates some errors in
migrating applications. These errors can be classified imtee levels:security communicationandincorrect instance
operation In our experiment, when the applications are hosted indballdata center, the machines are protected by the
firewalls, and thus even if the operators set simple passytind security is complemented by the firewalls. Howevegmwh
the applications are migrated into the public Cloud, the mivee can experience all kinds of attacks and thus too simple
passwords may render the virtual hosts susceptible to isgthreats. The second level of the platform differenceoerr
type is related to the communication setting differencevieen cloud and local data center. For example, such error may
occur after the applications are migrated into EC2 Clouthéf communication between two virtual instances is stillise
the same way as if the applications were hosted in the lo¢alanter. Concretely, for the operator in one virtual insta
to ssh another virtual instance, the identify file which iamged by Amazon must be provided. Without the identify file,
the communication within virtual instance cannot be setamily. The third level of the platform difference error gyjs
rooted in the difference between virtual instance managéméastructures. In the experiments, there were opesatio
terminated an instance but his actual intention is to stegriktance. In EC2 platform, termination of an instance ls#ld
to the elimination of the virtual instance from Cloud andgfall the applications installed and all the data storediwitie
virtual instance are lost if data is not backed up in persisséorage like Amazon Elastic Block storage. Thus, thisepos
critical risks on the instance operations, because a wnostgmce operation may wipe out all the applications and data

Reliability Error : In order to achieve fault tolerance and performance imgneents, many enterprise applications like
Hadoop and multi-tiered Internet services replicate iteda components. For example, in Hadoop, data is replicated
certain number of DataNodes, while in multi-tiered Intdreervices, there may exist multiple application serverdatabase
servers. Thus after the migation, if the replication dedseeot set correctly, either the migrated application fédlsvork
correctly or the fault tolerance level is compromised. Baraple, in the experiments, there were cases in which theatgre
made errors that set the replication degree more than thertober of DataNodes in the system. The reliability ereoses
sometimes latent errors.

Shutdown and Restart This type of error means that the shutdown or restart ojmerdh the migration process may
cause errors if not operating correctly. For example, a comuata consistency error may occur if Hadoop is incorrectly
shuts down the HDFS. More seriously,a shutdown or restast sometimes may compromise the source system. In our
experiment, when the dependency graph was not updatedstamtyy and the source cluster was not shut down completely,
the destination Hadoop cluster initiated to connect to thece cluster and acted as the client to connect to the soluseer.

As aresult, all the operations issued by the destinatiostefactually manipulated the data in the source clustettargithe
source cluster data was contaminated. Such errors mayedatesastrous impacts on the source cluster and are dangérous
the configuration errors are not detected in time.

Software and Hardware Compatibility : This type of error is less common in Hadoop migration thaRWBiS migration
partly because Hadoop is built on top of Java and thus haexrltitroperability and also Hadoop involves a relativehatier
number of different components than RUBIS. Sometimes, iffereince in software versions may lead to errors. For imstg
the initial Hadoop version selected by one operator was Ba@ol9, which showed bugs in the physical machine. After the
operator turned to the latest 0.20.2 version, the issugpesared.

Access Control and Security It is noted that a single node Hadoop cluster can be set agchtad without root access.
However, because a multi-node Hadoop cluster needs to ehwegnetwork inter-connectivity and solve the local DNS
resolution issue, the root access privilege is necessamg dperator assumed that the root privilege was not negeksar
multi-node Hadoop installation and was blocked due to theordk connectivity problem for about one hour and then sdugh
help for access to the root privilege.

4.3 RUBIS Migration Study

In the RUBIS migration experiments, we migrate a RUBIS systéth one web server and two application servers and
two database servers from the local data center to EC2 Clovel.below discuss the configuration errors present in the
experiments in terms of the seven types of error categories.

Dependency Preservation Similar to Hadoop migration, the dependency preservatioor type is also the most com-
mon error in RUBIS migration. Because RUBIS has more intendependency among different components than Hadoop,
operators made more configuration errors in the migratiar. different tiers of a RUBIS system to run cooperatively; de
pendency constraints need to be specified explicitly invegleconfiguration locales. For example, for each Tomcateser
its relevant information needs to be recorded in the condityom file named “ workers.properties” in Apache HTTPD serve
The MYSQL database server needs to be recorded in the RUBi&acation file named “mysqgl.properties”. Thus an error

in any of these dependency configuration files will lead todperation error. In our experiments, operators made differ
kinds of dependency errors. For example, some operatorateigithe application but forgot to update the Tomcat server
name in workers.properties. As a consequence, althoughghehe HTTPD server was running correctly, RUBIS was not
operating correctly because the Tomcat server could nobhaerted. One operator could not find the configuration file
location to update the MYSQL database server informatioRUBIS residing in the same host as Tomcat and this led to
errors and the operator therefore gave up the installation.

Network Connectivity: Relative to Hadoop migration, there is less node interaipiity in a multi-tiered system like
RUBIS, and different tiers present less needs on networkectivity, thus the network connectivity configuration@s are
less frequently seen in RUBIS migration. One typical erraisveeen when the operator was connecting the Cloud virtual
instance, he forgot to provide the identity file to enable tivtual instances to connect via ssh.

Platform Difference : This error type turns out to be a serious fundamental cangeRUBIS migration. Because
sometimes the instance rebooting operation may changeothaid name, public IP and internal IP, even if the multigibr
service is migrated successfully, a rebooting operatioy neader the application to service interruption. One ofmgra
finished the migration and after fixed a few configuration esréhe application was working correctly in EC2. After we
turned off the system on EC2 for one day and then rebootecetivécs, we found that because the domain name had totally
changed, all of the IP addresses or host name informatioorifiguration files needed to be updated.

Reliability Error : Due to the widely used replication in enterprise systernss typical that the system may have
more than one application server and/or more than one dsgad®mver. One operator spelt the name wrong for the second
Tomcat server, but because there remained a working Toraoagrgdue to replication, the service was still going on with
interruption. However, a hidden error as such was hiddeidénthe system and it may cause unexpected errors that could
lead to detrimental damage and yet is hard to debug and tofifieis further validates our argument that configuratiooer
detection and correction tools are critical for cloud mtigra validation.

Shutdown and Restart This type of error shows that incorrect server start or dbwin operation in multi-tiered services
may render the whole service unavailable. For example, thantd virtual instance selected for the MYSQL tier has a dif-
ferent version of MYSQL database installed by default. Operator forgot to shut down and remove the default insialat
first before installing the new version of MYSQL and thus ealisrrors. The operator spent about half an hour to find the
issuses and fixed them. Also we observed a couple of incidemése the operator forgot to boot the Tomcat server first
before the shutdown operation, thus causing errors thatraeeconsuming to debug.

Software and Hardware Compatability: this type of error also happens frequently in RUBIS migmati The physical
machine is 64 bits, while one operator selected the 32 bitsiore of modjk (the component used to forward the HTTP
request from Apache HTTPD server to Tomcat server) and tiempatibility issues occured. The operator was stuck for
about two hours, and finally identified the version error. eifthe software version was changed into 64 bits, the operato
successfully fixed the error. A similar error was observedkghan operator selected an arbitrary MYSQL version which
took about one hour for the failed installation and then slaét to a newer version before finally successfully instatles
MYSQL database server.

Access Control and Security This type of error also occurs frequently in RUBIS migratio~or example, the virtual
instance in EC2 Cloud bears the default feature of all pdoserl. To enable the SSH operation possible, the secuntypgr
where the virtual instance resides must open the correspgpmibrt 22. Also one operator configured the Apache HTTPD
server successfully but the Web server was unable to corthemigh port 80 and it took abod0 mins to identify the
restrictions from EC2 documentation. Similar errors alspened for port 8080 which was for accessing Tomcat server.
Another interesting error is that one operator set up thechpaHTTPD server, but forgot to set the root directory to be
accessible and thus the index.html was not accessible. jfémtor reinstalled the HTTPD server but still did not dismo
the error. With the help of our configuration assistant, therator finally identified the error and changed the access
permission and fixed the error. We also found that operatecsraade errors in granting privileges to different userd ane
case was solved by seeking help in the MYSQL documentation.

4.4 Installation Errors

In our experiments-based case studies, we observe thatogemay make all kinds of errors in installation or redgplo
ment of the applications in Cloud. More importantly, thesers seem to be common across all types of applicationsisn t
section we classify these errors into the following categgor Context information error : This is a very common installa-
tion error type. A typical example is that operators fordet tontext information they have used in the past instatiatror
example, the operators remembered the wrong path to irk&itl applications and have to reinstall the applicatiowsnf

scratch. Also if there are no automatic installation serutan incorrect or incomplete installation script is usedan be a
very frustrating experience with the same procedures tegesgain and again. If the scale of the computing systemge,la
then the repeated installation process turns out to be aylimaden for system operators. Thus a template based etsball
approach is highly recommended.

Environment compatibility error : In this migration case study, before any application cambtalled, the computing
environment compatibility needs to be ensured at both théwere and software level. For example, there were mignatio
failures created due to the small available disk space twualiinstance in migrating RUBIS. A similar errors is thaeth
operator created a virtual instance with 32 bits operatiysfesn, while the application was a 64 bits version. Thus, it
is necessary to check the environment compatibility betbeeapplication installation starts. An automatic enviramt
checking process helps to reduce the errors caused by éat@mvironment settings.

Prerequisite resource checking error: This type of error is originated from the fact that every bgation depends on
a certain set of prerequisite facilities. For example, tiedllations of Hadoop and Tomcat server presume the liatstel of
Java. In the experiments, we observed that the migratiomstaliation process were prone to be interrupted by theragree
of installing prerequisite standard facilities. For exdepghe compilation process needs to restart again due tkeofa
“gcce” installation in the system. Thus, a complete cheekdif the prerequisite resources or facilities can help dsee the
interruptions of the migration process.

Application installation error : this error is the most common error type experienced by {herators. The concrete
application installation process usually consists of ipldtprocedures. We found that the operator made many regeat
errors even when the installation process for the same@gifgin was almost the same. For example, operators forgot th
building location of the applications. Thus a template beeggplication installation process will help facilitatestimstallation
process.

4.5 Migration Error Distribution Analysis

In this section, we analyze the error distributions for eggbcific application and the error distribution across thglia
cations.

Figure[1 and Figure 2 show
the number of errors and per-
centage of error distribution 12
in the Hadoop migration case
study. In both figures, the X-
axis indicates the error types 10
as we analyzed in the previous
sections. The Y-axis in Figurée 1
shows the number of errors for
each particular error type. The
Y-axis in Figurel 2 shows the
share of each error type in terms
of the percentage over the to-
tal number of errors. In this set 4 —
of experiments, there were a to-
tal of 24 errors and some errors

Hadoop Migration Error

Number of errors
(o))
|

cause violation in multiple error 2 1

categories. In comparison, the

dependency preservation error 0

happened mOSt frequentm% dependency network platform reliability shutdown/restart software and access control

preservation difference hardward and security

of the errors belong to this error
type with 10 occurrences. Op-
erators typically made all four
levels of dependency preserva- Figure 1. Hadoop migration error

tion errors as we discussed in

Section 4.2. These kinds of errors took a long time for oppesatb detect. For example, an incomplete dependency eamistr
checking error took one operator two and a half hours to ifletite cause of the error and fix it. Network connectivityaerr

Error category

Hadoop Migration Error Distribution

mdependency
preservation

= network
platform difference
reliability

= shutdown/restart

m software and

hardward
= access control and

security

Figure 2. Hadoop migration error distribu-
tion. The legend lists the error types in the
decreasing frequency order.

RUBIS Migration Error Distribution

3.8%

mdependency
preservation

maccess control and
security
shutdown/restart

platform difference
= reliability
m software and

hardward
= network

Figure 3. RUBIS error distribution. The leg-
end lists the error types in the decreasing fre-
guency order.

RUBIS Migration Error

[=]

(4]

S

Number of errors

w

2
0 T T T T T

Dependency network platform reliability shutdown sotware and access control
preservation difference restart hardware and security

Error category

Figure 4. RUBIS migration error

and platform difference error were the next most frequertrdypes, each taking7% of the total errors. Network connec-
tivity errors included local DNS resolution and IP addrepdate errors. One typical platform difference error wag the
termination of an instance led to the data loss. Interestimpte is that these three types of errors tak# of the total errors
and are the dominating types of the error occurrences obdémthe experiments we conducted.

Figure 4 and Figure 3 show the number of error occurrencesrangercentage of error distribution for RUBIS migration
case study respectively. There were a tota®error occurrences observed in this process and some ealbistd several

error categories. The dependency preservation error atgsacontrol and security errors were the two most frequeot e
types, each witl® occurrences, taking1% of the total erorrs. Together, both error types covese? of all the errors and
dominated the error occurrences. It is interesting to rfwdéthe distribution of errors in the RUBIS migration caasdgtwas
very different from the distribution in the Hadoop migraticase study. For example, the number of access and seauoity e
in RUBIS was4 times the number of errors of this type in Hadoop migratiohisTs because RUBIS migration demanded the
correct access control settings for many more entities Haatoop. Not surprisingly, the majority of the access cdrermrs
were file access permission errors. This is because chatiggnfije access permission is a common operation in setting up
web services and sometimes operators forgot to validatéhghthe access permissions were set correctly or not. Ahsnw
there were errors and the system could not run correcthgpieeators often ignored the possibility of this type of siegrrors
and thus led to longer time spent on error identification. &@mple, one error of this type took more thanour to identify.
Also there were more ports to open in RUBIS migration than adbbp migration, which also led to the high frequency
of access control errors in RUBIS migration. RUBIS migratimresented more software and hardware compatibility rror
than Hadoop migration because the number of different corapis that were involved in RUBIS application is, relatyel
speaking, much more than in the typical Hadoop migratiommil8ily, there were more “shutdown/restart” errors in the
RUBIS migration. On the other hand, Hadoop migration presgmore network connectivity errors and platform diffexen
errors than RUBIS migration, because Hadoop nodes require tightly coupled connectivity than the nodes in RUBIS. Fo
example, the master node needs to have direct access withesword control to all of its slave nodes.

Figure[5 and Figure|6 sum-
marize across Hadoop migra-
tion and RUBIS migration case
studies by showing the num-
ber of error occurrences and 18
the percentage of error distri-
bution, respectively.The depen-
dency preservation errors are 14
the most frequent error occur-
rences and accounted f86%
of the total errors. In practice,
this was also the type of error
that on average took the longest

Migration Error Category

L

Number of errors
© ©°

time to identify and fix. This 6
is primarily because depen-
dency constraints are widely 4

distributed among system con-
figurations, it is very prone to
be broken by Changes to the ° Dependency network platform reliability shutdown restart sotware and | access control
common configuration param- preservation difference hardware and security

eters. The second biggest er- Error category

ror source was the “access con-

trol and security” errors, which Figure 5. Overall migration error

accounted foR0% of the total

number of error occurences. It was very easy for operatochmge the file permissions to incorrect settings or some
other habits which were fitting in local data center mightdemnthe application susceptible to security threats in tloai€
environment. The operational or environmental differenbetween Cloud and local data centers formed the thirddarge
source of error, accounting faR% of all the errors. Many common operations in local data aemtight lead to errors in
Cloud if no adjustments to Cloud environment were made. &ieee types of errors dominated the error distributioml an
accumulatively accounted f68% of the total errors. In addition to these three types of efrnetwork connectivity was also
an important source of errors, accounting 0% of the total errors, because of the heavy inter-nodes apesain many
enterprise applications today. The rest of errors accalfte32% of the total errors. These error distributions provide a
good reference model for us to build a solid testbed to testitsign of our CloudMig migration validation approach to be
presented in the subsequent sections of this paper. We thrgiueecloud migration validation system should be equippial

an effective configuration management component that fgtwavides a mechanism to reduce the configuration errais, b
also equips the system with active configuration error diete@nd debugging as well as semi-automated error coorecti

and repairs.

5 Migration Validation with CloudMig

The case studies showed that
the installation mistakes and
configuration errors were the Migration Error Distribution
two major sources of errors
in migrating applications from

local data centers to Cloud. 6%

Thus a migration management 8% m dependency
framework is highly recom- g(r:eczesrsvigg?ml and
mended to provide the installa- security

tion automation and configura- 8%
tion validation. We present the

platform difference

design of CloudMig, a semi- network
automated configuration man- 10% reliability
agement system, which utilizes

shutdown/restart

a “template” to simplify the

large scale enterprise system in-

stallation process and utilizes a 12%
“policy” as an effective means

to capture configuration depen- 20%
dency constraints, validate the

configuration correctness, and

monitor and respond to the con-

figuration changes. Figure 6. Overall migration error distribution. The legend lists the

The architecture design of error types in the decreasing frequency order.
the CloudMig system aims at

coordinating the migration pro-

cess across different data centers by utilizing templaktet installation procedures to simplify the migrationgess and
utilizing policy-based configuration management to captamd enforce configuration related dependency constrainds
improve migration assurance.

The first prototype of CloudMig configuration management ealilation system consists of four main components: the
centralized configuration management engine, the cliaset) local configuration management engine, the configurati
template management tool and the configuration policy memagt tool. The template model and the configuration policy
model form the core of CloudMig for semi-automated instadla and configuration validation system. In the subsequent
sections we will briefly describe the functionality of eadttliese four components.

software and
hardward

5.1 Configuration Template Model

CloudMig uses a template as an effective mechanism to dirplé installation process. Template is a pre-formatted
script-based example file containing place holders for dyinaand application-specific information to be substituged
application migration time for concrete use.

In CloudMig, the installation and configuration managemisniperating in the unit of the application. That is, each
application corresponds to a template set and a validatboypset. The central management server is responsiblatage
the collection of templates and configurations on a per agfidin basis and provides migration planning for the migrat
process.

Recall that in the observations obtained from our migraéi®periments in Section 4, one big obstacle and source afserro
in application migration is the installation and configimatprocess which is also a recurring process in system gia@at
and application migration. We propose to use the templgpeoach to reduce the complexities of the installation pssce
and reduce the chances of errors. An installation tempéadefined by an installation script with place holders foraiyic
and application specific information. Templates simplifie trecurring installation practice of particular applioas by

10

substituting the dynamic information with new values. Frample, in an enterprise system with0 nodes, there will

be multiple applications ranging from MYSQL database nodesncat application server nodes, to Hadoop distributed
system nodes and so forth. Distributed applications may spa extend to more nodes on demand to scale out. For each
application, its installation templates are stored in thsdllation template repository. These templates areeddiy the
application type and an application identifier. The inugtidea of template is that through information abstragtide
template can be used and refined for many similar nodes thrpatgameter substitution to simplify the installation pFss

for large scale systems. For example, if a Hadoop systematerd 100 DataNodes, then only a single installation template
is stored in the installation template repository and eaataNode will receive the same copy of the installation textepl
with only parameter substitution efforts needed beforenitgp the installation scripts to set up the DataNode compbime
each individual node. The configuration dependency conssrare defined in the policy repository to be described & th
next subsection. CloudMig classifies the templates intddhewing four types:

1. Context dictionary: This is the template specifying tlomtext information about the application installation. r Fo
example, the installation path, the preassumed Java paekagjon, etc. A context dictionary template can be as Empl
as a collection of the key-value pairs. Users specify thecria values before a particular application installation
Dynamic place holders for certain key context informati@hiave the installation flexibility and increase the afilit
to find out the relevant installation information in the mese of system failures.

2. Standard facility checklist template: This is the sctanplate to check the prerequisites to install the apptinat
Usually these are some standard facilities, such as Javapen®5H. Typical checklists include those for verifying
the Java path setting, checking installation packageendst and so on. These checklists are common to many
applications and are prerequisites for the success ofllingtéhe applications and thus performing a template check
before the actual installation can effectively reduce thers caused by ignorance of the checklist items. For exampl
both Hadoop and Tomcat server rely on the correct Java p#tihgsand thus the correct setting of Java path is the
prerequisite of successfully installing these two appites. In CloudMig, we collect and maintain such templates
in a template library, which is shared by multiple applioas. Running the checklist validation check can effecyivel
speed up the installation process by reducing the amount@iecaused by carelessness on prerequisites.

3. Local resource checklist template: This is the scriptpgiate to check the hidden conditions for an application to be
installed. A typical example is to perform the check of wiesgtbr not there is enough available disk space quota for a
given application. Similarly, such resource checklist pdaes are also organized by application type and appbicati
identifier in the template library and utilized by the configiion management client to reduce the local installation
errors and installation delay.

4. Application installation template: This is the scriptjglate used to install a particular application. The contex
dictionary is included as a component of the template. Qregag installation templates simplifies the installation
process and thus reduces the overhead in recurring irtgtakeand migration deployments.

5.2 Configuration Policy Model

In this section, we first introduce the basic concept of caméition policy, which plays the key role in capturing and
specifying configuration dependency constraints and rodng and detecting configuration anomalies in large emniszp
application migration. Then we introduce the concept ofticwral query (CQ) and the design of a CQ enabled configuration
policy enforcement model.

5.2.1 Modeling Dependency Constraints with Configuration Blicies

A configuration policy defines an application-specific comfagion dependency constraint. Here is an example of such
constraints for RUBIS: for each Tomcat server, its relevafarmation needs to be specified explicitly in the configioma

file named “workers.properties” in Apache HTTPD server. fiuration files are usually application-specific and usuall
specify the settings of the system parameters, the depeiedesimong the system components and thus directly impact th
way of how the system is running. As enterprise applicatgwrade out, the number of components may increase rapidly and
the correlations among the system components evolve withchdomplexity. In term of complexity, configuration files o
large system may cover many aspects of the system configayasinging from host system information, to network settin

to security protocol and so on. Any typo or error may disable operational behavior of the whole application system

11

as we showed and analyzed in the previous experiments. Qaatfign setting and management are usually a long term
practice, starting from the time when the application istgetintil the time when the application is ceased its use. iuri
this long application life cycle, different operators mag ibvolved in the configuration management practices andatgpe
on the configuration settings based on their understangings it further increases the probability of errors in cguofation
management. In order to fully utilize resources, entegximay bundle multiple applications to run on top of a singlesical
node, and the addition of new applications may necesshat@d¢ed to change the configurations of existing application
Security threats such as viruses, also pose demands ttiefeonfiguration monitoring and management.

In CloudMig, we propose to use policy
as an effective means of ensuring the con-
straints of configurations to be captured cor- =
rectly an_d enforced cons_|syently. A policy // \\ (/
can be viewed as a specialized tool to spec- policy phidy
ify the constraints on the configuration of advisor
a specific application. It specifies the con-
straints to which the application configura-

operator

policy
receiver

tion must conform in order to assure that action
manager

the whole application is migrated correctly valicator

to run in the new environment. For exam-
ple, in the Hadoop system, the configuration
constraint that “the replication degree can-
not exceed the number of DataNodes” can
be represented as a Hadoop specific config- !
uration policy. The basic idea of introduc- e

ing the policy-based configuration manage-

ment model is that if operators are equipped template

with a migration configuration tool to define operator

the constraints that configuration must fol-
low in the form of policies, then running the \\
policy enforcement checks at a certain fre-
quency will help to detect and eliminate cer- server client
tain types of errors, even although errors are
unavoidable. Here are a few configuration
policy examples that operators may have in
migrating a Hadoop system.

Figure 7. CloudMig Architecture Design

1. The replication degree can not be larger than the numheatz#Nodes
2. There is only one master node

3. The master node of Hadoop cluster should be named “dummy1”
4.

The task tracker node should be named “dummy?2”

As the system evolves and the configuration repository groedorming such checking manually will become a heavy
and error-prone process. For example, in enterprise lateservice systems, there may be hundreds of nodes, and the
configuration of each node needs to follow certain condisaifor load balancing purpose, different Apache HTTPDessrv
correspond to different sets of Tomcat servers. Incorretting of relevant configuration entries will directly le&al an
unbalanced system and even cause the system to crash wHéoagdyurst happens. With thousands of configuration entrie
hundreds of nodes, and many applications, it is impracifaabt impossible to perform manual configuration corresthe
checking and error correction. We argue that a semi-autednednfiguration constraint checking framework can greatly
simplify the migration configuration and validation managgnt of large scale enterprise systems. In CloudMig, we eabeo
the use of continual query as the basic mechanism for aubogntite configuration validation process of operator-define
configuration policies. In the next section we will descritmv CQ-enabled configuration policy management engine can
improve the error detection and debugging efficiency, tlagkicing the complexity of migrating applications from adbc
data center to Cloud.

12

5.2.2 Continual Query Based Policy Model

In CloudMig, we propose a continual query based policy gfmadion and enforcement model. A continual query (CQ) [6]
is defined as a triple in the form of (Query, Trigger, Stop).@atnual query (CQ) can be seen as a standing query, in which
the trigger component specifies the monitoring conditiod igrbeing evaluated periodically upon the installationhef €Q
and whenever the trigger condition is true, the query corapbwill be executed. The Stop component defines the conditio
to terminate the execution of the CQ. Trigger condition camrlher time-based or content-based, such as “checkirfgethe
disk space every hour or trigger a configuration action wiherfitee disk space is less tha@GB”.

In CloudMig, we define a policy in the format of continual quemnd refer to the configuration policy as the Contiual
Query Policy (CQP), denoted by : CQP(policylD, appNameyyuggger, action, stopCondition). Each element of theRCQ
is defined as follows:

1. policylD is the unique numeric identifier of the policy.
2. appNamas the name of the application that is installed or migratethe host machine.

3. queryrefers to the search of matching policies and the executigrolicy checking. The query can be a Boolean
expression over a simple key-value repository or SQL-likerg or XQuery on a relational database of policies.

4. trigger is the condition upon which the policy query will be executfdiggers can be classified into time-based or
content-based.

5. actionindicates the action to be taken upon the query results.nlbesa warning flag in the configuration table or an
warning message sent by email or displayed on the commamdfian operator’s terminal.

6. stopConditioris the condition upon which the CQP will stop to execute.

An example CQ-based policy is to check whether the repticadiegree is larger than the number of DataNodes in Hadoop
prior to migration or changing the replica factor (replicat degree) or reducing the number of DataNodes. Whenever
the check returns a true value, send an alert to re-confidi@resystem. Clearly, the query component is responsible for
checking if the replication degree is larger than the nundfebataNodes in Hadoop. The trigger condition is Hadoop
migration or changing the replica factor (replication dsgror reducing the number of DataNodes. The action is defised
re-configuration of the Hadoop system upon the true valu@@pblicy checking. In CloudMig, we introduce default stop
condition of one month for all CQ-enabled configuration pels.

5.3 CloudMig Server side Template Management and Policy Management

CloudMig aims at managing the installation templates amdigaration policies to simplify the migration for large $ea
enterprise systems which may be comprised of thousandsdefsneith multi-tier applications. Each application hasits
configuration policy set and installation template set dwedthole system needs to manage a large collection of coafigar
policies and installation templates. The CloudMig senige £onfiguration management system helps to manage tree larg
collection of templates and configuration policies effesli by providing system administrators (operators) witieenient
tools to operate on the templates and policies. Typicalaifmers include policy or template search, indexing, ajpiin
specific packaging and shipping, to name a few. Detachintgthplate and policy management from individual appligatio
and utilizing a centralized server also improves the rdiigof CloudMig in the presence of individual node failgre

In CloudMig, the configuration management server operatéseaunit of a single application. Each application corre-
sponds to an installation template set and a configuratitidatgn policy set. The central management server is nesibde
for managing the large collection of configurations on a gyaliaation basis and providing migration planning to spapd
the migration process and increase the assurance of a@pmticaigration. Concretely, the configuration managementer
mainly coordinate the tasks of the installation templat@aggment engine and the configuration policy managemeirteng
Installation Template Management Engine.

As shown in Figuré 7, the installation template managemegine is the system component which is responsible for
creating template, update template, advise the templatmdtallation. It consists of a central template repositand a
template advisor. The template repository stores and miamthe template collections of all the applications. Tdraplate
advisor provides the operators with the template manipratapabilities such as creating, updating, deletingcbéag and

13

Table 1. Migration Error Detection Rate
Migration Type Error Detection Rate
Hadoop migration| 83%
RUBIS migration | 55%
all migrations 70%

indexing templates over the template repository. On a pplicgiion basis, operators may create an application tatapl
set, add new templates to the set, update templates froregh delete templates. The template advisor assumeskhe jo
to search and dispatch templates for new installations ampbgate template updates to corresponding applicatietirtgp
nodes. For example, during the process of RUBIS instafiatior a specific node, the template advisor dispatches the
appropriate template depending on the server type (welesexpplication server or database server) and transnhiigs)s

the new installation set to the particular node.

Concretely, for each application, the central installatiemplate management engine builds the context libranchvhi
stores all the source information in the key-value pairs, selects a collection of standard facility checklist teatgs which
apply to the particular application, and pick a set of loedaurce checklist templates as the checklist collectiorte
application, and finally builds the specific applicationt@iation template. The central management engine thedlesithe
collections of templates and policies for the particulgplegation and transmits the bundle to the client instatiatiemplate
manager to start the installation instance.

Configuration Policy Management Engine.

As the central management unit for the policies, the poliegiee consists of four components: policy repository, apnfi
uration repository, policy advisor, and action managergether they cooperate to provide the service to create,taiajn
dispatch and monitor policies and execute the correspgratitions based on the policy execution results. Concretaly
below describe the different components of the policy eagin

1. The policy repository is the central store where all théigms for all the applications are maintained. It is also
organized on a per application basis. Each applicatioresponds to a specific policy set. This policy set is open to
addition, update, or delete operations. Each policy cpoeds to a constraint set on the application.

2. The policy advisor works on the policies in the policy reppory directly and provides the functionalities for agatiion
operators to express the constraints in the form of CQ-bpskdy. Application operators creates policies through th
interface.

3. The configuration repository stores all the configurafiles on a per application basis. It ships the configurationmf
the CloudMig configuration server to the local configuratiepository on the individual node (cient) of the system.

4. The action manager handles the validation results frarptilicy validator running on client and triggers the corre-
sponding action based on certain policy query result, irfahm of an alert through message posting or email or other
notification methods.

5.4 CloudMig Configuration Management Client

The CloudMig configuration management client is runningaathenode of a distributed or multi-tier system, which is
responsible for managing the configuration policies relatethe node locally. Corresponding to the CloudMig confégian
management engine at the server side, CloudMig client wasks thin local manager for the templates and policies which
only apply to a particular node. A client engine mainly catsbf two components: client template manager and cliditypo
manager.

Client Template Manager.

Client template manager manages the templates for all thiicapons installed in the host node on per applicatiorishds
consists of three components: template receiver, templateator and local template repository. The template vecee-
ceives the templates from the remote CloudMig configuratiamagement server and delivers the templates to local &eenpl
manager. The local template manager installs the apmitétased on the template with necessary substitution opesat
The local template manager is also responsible for manabetpcal template repository which stores all the temgléde
the applications that reside at this node.

14

The concrete process of tem-
plate based installation works
as follows: after the client
template manager receives
the collection of installation
templates from the server side
installation template man-
agement engine, it will run
the local resource checklist
templates first to detect if there
are any prerequisite checklist
items which are not met. For
example, it checks if the avail-
able disk space is less than the
amount needed to install the
application, or if the user has
the access permissions to the
installation path, etc. Next,
the standard facility checklist
template will run to detect
if all the standard facilities
are installed or not. Finally,
the dynamic information in
application specific templates

12

10

Number of errors
o

Error Detection in Hadoop Migration

Error
Error detected

dependency network platform reliability shutdown/restart software and
preservation difference hardward

Error category

Figure 8. Hadoop error detection

are substituted and the context dictionary is integratednahis normal installation process.

Client Policy Manager.

There is a client policy man-
ager residing together with the
host node to manage the poli-
cies for the local node. It
mainly consists of policy re-
ceiver, policy validator, lo-
cal policy repository and lo-
cal config repository. The pol-
icy receiver receives the poli-
cies transmitted from the pol-
icy advisor in the central policy
server, and stores the policies
in the local policy repository.
The local config repository re-
ceives the configuration data di-
rectly from the central config
repository. The local policy
validator runs each policy. It
retrieves the policy from local
policy repository and searches
the related configuration data to
run the policy upon the config-
uration data. The policy valida-
tor transmits the validation re-
sults to the action manager in

» N

Number of errors

N W B~ O

Error Detection in RUBIS Migration

Error
Error detected

dependency network platform reliability shutdown/restart software and
preservation difference hardward

Error category

Figure 9. RUBIS error detection

15

access control
and security

access control
and security

the central server to take the alert actions.

6 Case Studies with CloudMig

We run CloudMig with the
same set of operators on the
same set of case studies af- Migration Error Detection
ter the manual migration pro-
cess is done (recall Section 4). 18
We count the number of er-
rors that are detected by Cloud- Error
Mig configuration management 14 Error detected
and installation automation sys-
tem. We show through a set of
experimental results below that
CloudMig overall achieves high
error detection rate.

Figure 8 shows the error de-
tection results for Hadoop mi-
gration case study. As one can
see, the configuration checking
system can detect all the depen- —

. dependency network platform reliability shutdown/restart software and access control
dency pl’esel’vatlon errors, net- preservation difference hardward and security
work connectivity errors, shut-
down restart errors, and all the Error category
access control errors. This con-
firms the effectiveness of the Figure 10. Overall migration error detection
proposed system, in that it can
detect the majority of the con-
figuration errors. The two types of error that can not be fdétected are platform difference error and software/hardw
compatibility errors. For platform difference errors, 8hs because the special property of the platform differesrcer
requires the operators to fully understand the uniquenésiseoparticular Cloud platform first. As long as the operator
understands the platform sufficiently, for example, by desslearned from others or policies shared by others, weli
that such errors can be reduced significantly as well. Theoredhat current implementation of CloudMig cannot de-
tect software/hardware compatibility errors notably issdo the quality of the default configuration data which lacks
application-specific software/hardware compatibilitioimation. Although in the first phase of implementation, wainly
focus on the configuration checking triggered by the origommfiguration data, we believe that as operators weave more
compatibility policies into CloudMig policy engine, sugjpe of errors can also be reduced significantly. As Table Wsho
totally CloudMig could detec&3% of the errors in Hadoop migration.

Figure[9 shows the error detection result for RUBIS migmatiase study. In this study, we can see that CloudMig can
detect all the dependency preservation errors and retiabilrors.

However, because multi-tiered Internet service systemlves a higher number of different applications, it leadsare
complicated software/hardware compatibility issues carag to the case of Hadoop migration. In the experimentstego
in this paper we are focusing on the configuration driven kg diefault configuration policies, which lacks of adequate
software/hardware compatibility policies for RUBIS, thDkudMig system did not detect the software/hardware srron
the other hand, this result also indicates that in the RUBi§ration process, the operators are suggested to pay specia
attention to the software/hardware compatibility issuesdnse such errors are difficult to detect with automatel$.tdo
is interesting to note that the CloudMig was able to detett balf of the access control errors in RUBIS. This is because
these errors include MYSQL privilege grant operations whice embedded in the application itself and the CloudMig
configuration validation tool cannot intervene with thesimial operations of MYSQL. Overall, CloudMig detect&ifs of
the errors in RUBIS migration as shown in Table 1.

-

Number of errors

16

Migration Error Detection Ratio

dependency network
preservation

206 -
505
S
504
03
0.2
0. l
0 | ‘

platform
difference

I

reliability shutdown/restart software and access control

hardward and security

Error category

Figure 11. Overall migration error detection ratio

Figure [10 and Figure 11
show the number of detected er-
rors and the error detection ra-
tio of each error type summa-
rized across the Hadoop migra-
tion case study and RUBIS mi-
gration case study respectively.
Overall, CloudMig can detect
all the dependency preservation
and reliability errors and0%
of the network errors and0%
of the access control and se-
curity errors. In total, these
four types of errors accounted
for 74% of the total error oc-
currences. For shutdown/restart
errors, CloudMig detectes%
of such errors and did not detect
the software/hardware compat-
ibility errors. This is be-
cause the application config-
uration data usually contains
less information related with
shutdown/restart operations or
software/hardware compatibil-
ity constraints and this fact

Migration Error Detection Distribution
2.8%_0%

m dependency preservation
= access control and

security
network

11.4% reliability
= shutdown/restart

m platform difference

software and hardward

Figure 12. Overall migration error detection percentage. The legend
lists the error types in the decreasing percentage order.

makes the configuration checking on these types of errofieuifwithout adding additional configuration policies. gFi
urel 12 shows the percentage of error types in the total nuofttected errors. One can see thll of the detected errors
are dependency preservation errors, afith of the detected errors are network errors. Table 1 showgadtalty across all
the migrations, the error detection rate of CloudMig systef%.

Overall these experimental results show the efficacy of @ldig in reducing the migration configuration errors, simpli

17

fying the migration process and increasing the level of esste of migration correctness.
7 Conclusion

We have discussed the system migration challenge facedtbypeises in migrating local data center applications t th
Cloud platform. We analyze why such migration is a compéidadnd error-prone process and pointed out the limitatiébns o
the existing approaches to address this problem. Then wadinte the operator-based experimental study conducted ov
two representative systems (Hadoop and RUBIS) to invdstity@ error sources. From these experiments, we build the er
classification model and analyze the demands for an semivetéed configuration management and migration validation
system. Based on the operator study, we design the Cloudydigre with two unique characteristics. First, we develop
a continual query based configuration policy checking sgstghich facilitate operators to weave important configiorat
constraints into continual query policies and periodicalin these policies to monitor the configuration changescdatdct
and alert the possible configuration constraints violatidn addition, CloudMig combines the continual query basality
checking system with the template based installation aatimm system, offering effective ways to help operatorsicedthe
installation errors and increase the correctness asseiErapplication migration. Our experiments show that CMigican
effectively detect a majority of the configuration errorgfie migration process.

8 Aknowlegement

This work is partly sponsored by grants from NSF CISE NetSigmm, CyberTrust program, Cross-cutting program and
an IBM faculty award, an IBM SUR grant and a grant from IntesBarch Council.

References

[1] Hadoop project. http://hadoop.apache.org/.

[2] RUBIS benchmark. http://rubis.ow2.org/.

[3] Amazon EC2. http://aws.amazon.com/ec2/, April 2011.

[4] Cloud Migration. http://www.opencrowd.com/servidasgration.php, April 2011.

[5] Office Cloud. http://www.officetocloud.com, April 2011

[6] L. Liu, C. Pu, and W. Tang. Continual queries for interseale event-driven information delivelgnowledge and Data
Engineering, IEEE Transactions ph1(4):610 —628, jul/aug 1999.

[7] R. A. Maxion and R. W. Reeder. Improving user-interfaapendability through mitigation of human erroint. J.
Hum.-Comput. Stud63:25-50, July 2005.

[8] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, ahdD. Nguyen. Understanding and dealing with operator riiesa
in internet services. Iin Proceedings of the USENIX Symposium on Operating Sy€design and Implementation
(OSDI 04 2004.

[9] M. Vieira and H. Madeira. Recovery and performance bedaof a cots dbms in the presence of operator faults. In
Proceedings of the 2002 International Conference on DeabledSystems and NetworK3SN '02, pages 615626,
Washington, DC, USA, 2002. IEEE Computer Society.

18

	Introduction
	Why Migration to Cloud is Complicated and Error-prone
	Related Work
	 Migration Operations and Error Model
	Experiment Setup
	Hadoop Migration Study
	RUBiS Migration Study
	 Installation Errors
	Migration Error Distribution Analysis

	Migration Validation with CloudMig
	 Configuration Template Model
	 Configuration Policy Model
	Modeling Dependency Constraints with Configuration Policies
	 Continual Query Based Policy Model

	 CloudMig Server side Template Management and Policy Management
	 CloudMig Configuration Management Client

	Case Studies with CloudMig
	Conclusion
	Aknowlegement

