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ABSTRACT
Information leakage via the networks formed by subjects
(e.g., Facebook, Twitter) and objects (e.g., blogosphere) −
some of whom may be controlled by malicious insiders − of-
ten leads to unpredicted access control risks. While it may
be impossible to precisely quantify information flows be-
tween two entities (e.g., two friends in a social network), this
paper presents a first attempt towards leveraging recent ad-
vances in modeling socio-information networks to develop a
statistical risk estimation paradigm for quantifying such in-
sider threats. In the context of socio-information networks,
our models estimate the following likelihoods: prior flow −
has a subject s acquired covert access to object o via the net-
works? posterior flow − if s is granted access to o, what is its
impact on information flows between subject s′ and object
o′? network evolution − how will a newly created social re-
lationship between s and s′ influence current risk estimates?
Our goal is not to prescribe a one-size-fits-all solution; in-
stead we develop a set of composable network-centric risk
estimation operators, with implementations configurable to
concrete socio-information networks. The efficacy of our so-
lutions is empirically evaluated using real-life datasets col-
lected from the IBM SmallBlue project and Twitter.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing
and Information Systems—Security and Protection

General Terms
Security, Management
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1. INTRODUCTION
The ever-increasing complexity and dynamics of informa-

tion sharing infrastructures have presented grand challenges
for today’s access control mechanisms. One key issue is the
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Figure 1: Networks of subjects and objects.

information leakage via the complex and dynamic networks
formed by subjects and objects (e.g., social network and
blogosphere): subject s who has access to object o may
(un)intentionally leak it to a socially linked subject s′, or
object o′ derived from o may reveal information about o.

Example 1. In [2], a high school teacher had to resign since
she was tagged in a friend’s photo with her holding a wine
glass, which was then visible via her Facebook profile to her
students. As illustrated in Figure 1, this incident is essen-
tially caused by an access channel in the socio-information
network: “student → teacher → teacher’s profile → photo”.

Indeed information leakage via such socio-information net-
works often leads to unpredicted access control risks − more
so in the presence of malicious insiders within such networks.
While it may be impossible to precisely quantify information
flows between two entities (e.g., two friends in a social net-
work), this paper leverages statistical models of information
flows in such networks (such as those proposed in [4, 16,
25, 8]) to develop a risk estimation paradigm for quantify-
ing such insider threats. In the context of socio-information
networks, our models estimate the following likelihoods:

● prior flow estimation: how likely is it for s to have ac-
quired covert access to o (or a fraction of o) via the chan-
nels formed by relevant subjects Ns and objects No?
● posterior flow estimation: how would granting s access

to o (denoted by s→ o) potentially affect the information
flows with respect to Ns and No?

Loosely speaking, the risk of granting access (s → o) is
high if it would significantly increase (= posterior flow −
prior flow) the information flow between certain subject s′ ∈
Ns and object o′ ∈ No. Our goal is to develop risk estimation
operators that capture such network effects, namely, that
one access granting decision (s → o) has on several other
related subjects and objects (s′ → o′) in a socio-information
network. To our best knowledge this work also represents
the first attempt to study the impact of network effects (in
socio-information networks) in Risk-based Access Control,
an emerging security paradigm [10, 20].
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The key contributions of our paper are as follows. First,
we develop a set of composable network-centric risk estima-
tion operators, with implementations configurable to con-
crete socio-information networks. To make the estimation
practical, we further refine our estimates by taking account
of factors including the evolution of networks and the in-
completeness or uncertainty in network information. Sec-
ond, we show that a range of state-of-the-art access control
models can be enhanced by our risk estimation paradigm,
typically by encoding the policy-enforced information flows
as weighted links in the socio-information network. We note
that our approach does not replace classical access control
models; instead it addresses an orthogonal problem and aug-
ments classical access control models with risk assessments
in the context of socio-information networks. Third, we de-
velop a suite of scalable algorithms for implementing the
operators on large networks.

The efficacy of our solution is empirically evaluated us-
ing real socio-informatics network datasets of varied net-
work scale, collected from Twitter1 (200K subjects) and the
IBM SmallBlue project [18] (40K subjects). Specifically, on
Twitter an user si that follows another user sj may re-tweet

(re-post) the messages sent by sj to its (si’s) followers, which
can be considered as one type of leakage (though not neces-
sarily unwanted information flow). We show that our model
is able to effectively capture such leakage behavior. Fur-
ther, using the multiple snapshots (separated by six month
time interval) of socio-information network in the Smallblue
dataset, we show how our solution is able to incorporate
the inherent dynamic aspects of social-information network,
such as evolution, granted/revoked accesses, etc.

The remainder of this paper is organized as follows. Sec-
tion 2 formalizes the mathematical model of our risk estima-
tion paradigm; the library of composable risk estimation op-
erators is introduced in Section 3; Section 4 details scalable
implementation of these operators followed by experimental
evaluation in Section 5; Section 6 concludes the paper.

2. NETWORK-CENTRIC RISK ESTIMATION

2.1 Basic Model
In network-centric risk estimation, a multi-layer network

model is used to capture subject-subject, object-object, and
subject-object relationships, wherein relationships are en-
coded as intra-network or inter-network links (see Figure 1).
Specifically, the interconnected objects form an object net-

work (or information network), GO = (O,LO), with nodes
O and links LO representing the set of objects and their
relationships. Analogously, a subject network (or social net-
work), GS = (S,LS), captures the relationships between sub-
jects, where S and LS denote the set of subjects and their
connections. Further, a collection of inter-network links LI

between the subject and object networks encode their inter-
actions (e.g., access and leakage history).

We apply a generic information flow model to quantify
the qualification of a subject to access an object, wherein
information is viewed as fluid that flows along links in socio-
information networks. The dynamics of fluid flow may be
different (e.g., gossips in subject-subject links, database trig-
gers in object-object links, access history in subject-object
links, etc.). The weight on a (directed) network link is in-

1http://www.twitter.com

dicative of the propensity of information flow along the link.
Our goal is to regulate the flow of information between sub-
jects and objects by controlling subject-object links, namely,
subject-object links (LI) created as a consequence of grant-
ing access requests. More specifically, in our information
flow model, each intra-network or inter-network link is asso-
ciated with two attributes:

● Enforced flow capacity, enf(⋅), that specifies flows permit-
ted by an underlying access control model. It is typically
encoded as either “1” or “0”, with “1” indicating that in-
formation is free to flow (e.g., from low security to high
security, or from high integrity to low integrity), and “0”
indicating that no information flow is permitted. For in-
stance, two subjects s and s′ have enf(ss′) = 1 if the role
of s′ dominates s (e.g., employee ≺ manager); two objects
o and o′ have enf(oo′) = enf(o′o) = 1 if they are not “mu-
tually exclusive” in Chinese-wall policy. In Appendix A
we show that a wide range of conventional access con-
trol models may be emulated by our model by suitable
parameterization (e.g., setting link weights).

● Leakage flow capacity, leak(⋅), that specifies flows intro-
duced by potential information leakage via networked
subjects and objects. It is typically a real number within
the interval [0,1]. For object network, leak(oo′) may
specify the fraction of information object o that is in-
ferable from o′ (called residual information), which can
usually be measured using information-theoretic metrics,
e.g., Kullback-Leibler divergence; while for subject net-
work, leak(ss′) may be interpreted as the likelihood that
s leaks (intentionally or unawarely) information to s′.
In general, such leakage likelihood may be discrimina-
tive with respect to specific objects and subjects under
consideration, i.e., a function of object metadata [23] and
the corresponding social relationship.

Given access request (s → o), our network-centric risk
estimation gauges the overall enforced flow fe(o → s) (de-
tails in Appendix A) and leakage flow fc(o → s) (details
in Section 4) from object o to subject s. More specifically,
fe(o→ s) = 1 if the flow from o to s is allowed by the access
control model, and 0 otherwise; while fc(o → s) comprises
two estimates: ffrac

c , the fraction of information of o leaked
to s, and f like

c , the likelihood of such leakage.

2.2 Access Request Evaluation
In our risk estimation paradigm, the risk of an access re-

quest is no longer solely based on the requesting subject and
the concerned object; rather, within the context of socio-
information network, it depends on (i) relevant subjects and
objects, and (ii) their profound network influence before
(and after) approving this access. Towards this end, we pro-
pose two fundamental operations, prior-flow and posterior-
flow estimation, as the foundation of access risk evaluation.

Prior-Flow Estimation
Given a new request (s → o), we first evaluate the exist-
ing enforced and leakage flows fe(o → s) and fc(o → s).
Conceivably, if fe(o → s) = 1, i.e., the flow is allowed by
the access control policies, this access should be granted.
Meanwhile, when the flow is disabled by the policies (i.e.,
fe(o → s) = 0), but the leakage flow is significant, i.e.,
ffrac

c (o → s) ≥ ǫ and f like
c (o → s) ≥ δ (ǫ and δ are threshold
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parameters)2, it may make limited sense to impose strict
control over s to access o. Intuitively, in addition to eval-
uating the qualification of s with respect to o, prior-flow
estimation provides an important risk-based exception han-
dling mechanism. Formally, request (s → o) is granted only
if the following condition is met (necessary condition):

(i)fe(o→ s) = 1 ∨ fc(o→ s) ≥ ǫ

Example 2. In Figure 1, on evaluating request (student →
photo), one may notice that teacher has possession of pro-

file (as indicated by the inter-network link profile − teacher),
which semantically refers to photo (as indicated by the refer-

ence relationship photo − profile). The leakage flow photo →
profile → teacher → student may carry sufficient information
for student to completely infer photo, which makes simple
comparison of classification level class(photo) and clearance
level clear(student) non-informative.

Posterior-Flow Estimation
While prior-flow captures existing information flows before
an access (s→ o) is granted, posterior-flow estimation eval-
uates how the access once granted would impact the infor-
mation flows for relevant subjects and objects. Essentially,
posterior-flow estimation measures the potential risk of ap-
proving an access request. Let f ′e(⋅) and f ′c(⋅) be the en-
forced and leakage flows3, after an inter-network link so is
created. If the posterior enforced flow invalidates a previ-
ously approved access, or the posterior leakage flow enables
a previously disabled access, a violation is raised. Formally,

(ii) /∃ o
′

∈ O,s
′

∈ S, s.t. fe(o′ → s
′) = 1 ∧ f

′

e(o′ → s
′) = 0

(iii) /∃ o
′

∈ O,s
′

∈ S, s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fe(o′ → s′) = 0
fc(o′ → s′) < ǫ

f ′c(o′ → s′) ≥ ǫ

Here condition (ii) dictates that the requested access should
not invalidate any previously (potentially) approved access(s′ → o′); while condition (iii) states that it should not in-
crease leakage flow capacity beyond the threshold ǫ.

Example 3. Recall the example in Figure 1. The approval of
access (student’s friend→ photo) may significantly change the
leakage flow f ′c(photo → student), given the close relation-

ship student − student′s friend. If fe(photo → student) = 0
and fc(photo → student) < ǫ, this increased leakage may re-
sult in a violation of existing access control policy.

To summarize, conditions (i), (ii), and (iii) together form
the sufficient condition for granting an access request: if sig-
nificant prior leakage flow exists, request (s → o) may be
granted even if the security level of s is inadequate to access
o; meanwhile, if access (s → o) incurs the risk of informa-
tion leakage that violates access control policies, (s → o)
may not be approved even if the security level of s is suffi-
cient to access o. It is worth noting that as more accesses
are granted, the average leakage flow (i.e., risk) in the net-
works tends to increase; after the overall risk reaches certain
“frozen point”, no more accesses would be granted. Fortu-
nately, the value of tactical information typically decays over
2In following, we assume that the leakage likelihood thresh-
old δ is fixed, and use fc(⋅) to denote ffrac

c (⋅) if f like
c (⋅) ≥ δ,

and 0 otherwise.
3For dynamic models (e.g., Chinese-wall, History-based Ac-
cess Control models (HBAC)), granted accesses may change
enforced flows.

op. input output

D object o objects depending on o

U object o objects depended by o

J object o, objects No overall information of o at No

S subject s, threshold δ subjects with leakage to s

of likelihood above δ

T subject s, threshold δ subjects with leakage from
s of likelihood above δ

A subjects s subjects connected with s

X subjects Ns objects No accessed by Ns

Table 1: List of atom operators.
operation algebra

estimate prior flow J(o,X ⋅ S(s, κ))
estimate posterior flow ▷s′ ∈ T(s, κ),▷o′ ∈ U(o) ∶ J(o′,X ⋅ S(s′, κ))
add new object ▷o′ ∈ U(o) ∶ J(o′, {o})
update existing object ▷o′ ∈ U(o),▷o′′ ∈ D(o) ∶ J(o′, {o′′})
add new subject link ▷s′ ∈ A(s),▷o ∈ X ⋅ A(s) ∶ J(o,X ⋅ S(s′, κ))

Table 2: Risk estimation algebra.

time [22]; it is thus possible to incorporate such time sensi-
tivity to maintain the system operability, which we consider
as one ongoing research direction.

3. RISK ESTIMATION ALGEBRA
In this section we describe the realization of our risk esti-

mation paradigm. Conceptually, we construct an expressive
algebra framework (e.g., estimating leakage flow, updating
existing network, and predicting network evolution) by com-
posing a library of fundamental atom operators. Following
we briefly introduce the set of atom operators. The sum-
maries of atom operators and risk estimation algebra are
listed in Table 1 and 2.

● Downstream - D. It returns the set of objects that refer
to (or are derived from) a source object o (directly or
indirectly), i.e., they contain the information of o.

● Upstream - U. It is the reverse operator of D. It returns a
set of objects referred by a target object o.

● Join - J. It measures the overall fraction of information
of a source object o in a set of target objects No.

The next two operators are designed for subject network.

● Source - S. It takes as input a subject s and returns the
set of subjects that have high leakage likelihood (above
threshold δ) to s.

● Target - T. It is the reverse operator of S. For a given
subject s, it finds the set of subjects that feature high
leakage likelihood from s.

● All - A. This operator identifies all subjects Ns connected
(transitively) to a given subject s.

The final operator extracts subject−object relationships.

● Cross - X. For a given set of subjects Ns, it identifies the
set of objects No that have been accessed by Ns.

Further, we use ⋅ to denote the composition of two oper-
ators, and ▷ to denote an iterator which iterates over the
set of elements (for each). Next we describe how these atom
operators may be combined to estimate prior and posterior
leakage flow capacities between subjects and objects.

Operation 1: Prior Leakage Flow Estimation

J(o, X ⋅ S(s, δ))
For given access request (s → o), the operation of prior-

flow estimation determines the leakage flow fc(o → s) from
object o to subject s in the current network before the re-
quest is granted. It may be implemented by composing J-,
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X- and S-operator: (i) We first use S to determine the set of
source subjects Ns featuring high leakage likelihood (above
δ) from s. (ii) We then apply X over Ns to find the set of
objects No accessible to Ns. (iii) Taking No and o as input,
we use J-operator to estimate the residual information of o

at No. If the residual information is above certain threshold
ǫ, the leakage flow is considered as informative enough for s

to learn o via the socio-information networks.

Operation 2: Posterior Leakage Flow Estimation

▷s
′

∈ T(s, δ),▷o
′

∈ U(o) ∶ J(o′, X ⋅ S(s′, δ))
For given request (s → o), the operation of posterior-flow

estimation identifies subject-object pairs whose flows change
significantly because of granting (s → o). It may be imple-
mented in the following steps. (i) We first apply T-operator
on s to identify the set of subjects Ns featuring high leakage
likelihood from s. (ii) We then identify the set of objects No

referred by o. (iii) For each subject s′ of Ns, and object o′ of
No, we follow the procedure of prior-flow estimation (with
and without link so) to measure the flows from o′ to s′. (iv)
A pair (s′, o′) is identified if its flow changes significantly
(i.e., fc(o′ → s′) < ǫ ∧ f ′c(o′ → s) ≥ ǫ) due to (s→ o).

Further, since we intend to evaluate if granting an access
may result in violations to access control policies, the search
space can be reduced by focusing on subject-object pairs(s′, o′) that carries zero enforced flow, i.e., fe(o′ → s′) = 0.

The next set of operations are designed to support changes
to security policy and personnel, i.e., administrative model.
A bulk of work is available on administrating enforced flow
(conventional access control models) (e.g., [11]). We there-
fore focus on the leakage flow part; particularly, we are in-
terested in incremental update, e.g., new subjects or objects
are added, new links are created, etc., and similar discussion
applies to decremental update.

Operation 3: Adding A New Object

▷o
′

∈ U(o) ∶ J(o′,{o})
It is noted that each object may depend on (refer to) mul-

tiple other objects, e.g., one blog refers to multiple blogs;
hence, on inserting a new object, we need to consider all
these referring objects. We assume that the objects are in-
serted according to their orders of dependency (or creation
time); that is, an object can be inserted only after all its
dependent objects have been inserted.

Let o be the object to insert. (i) We first apply U-operator
over o to identify all objects Ko directly or indirectly de-
pended by o (closure). (ii) For each object o′ ∈ Ko, we ap-
ply J-operator to estimate the residual information of o′ at
o. Note that this operation affects the existing information
flow between objects and subjects only through new access
of o, which is implemented mainly by Operation 2.

Operation 4: Updating An Existing Object

▷o
′

∈ U(o),▷o
′′

∈ D(o) ∶ J(o′,{o′′})
This operation updates the content of an existing object o.

We assume that the acyclic directed structure of the object
network is preserved after the update. Clearly, the update
will affect the residual information of objects referred by o.
Following the dependency relationships, we incrementally
apply J-operator to update the estimation of residual infor-
mation at affected objects. Note that the update influences

leakage information flow only after new accesses have been
executed upon o. We place a “red” flag on o to indicate that
existing access privileges on o need to be re-evaluated.

Operation 5: Adding A Link in Subject Network

▷s
′

∈ A(s),▷o ∈ X ⋅ A(s) ∶ J(o, X ⋅ S(s′, κ))
This operation evaluates the risk of adding a new link

(let s be either one of the involved subject) to the existing
subject network. Essentially, it could influence all the covert
information flows for all subjects Ks relevant to s.

The implementation is as follows. (i) We first find the set
of subjects Ks relevant to s using A-operator. (ii) We further
apply X-operator to collect all objects Ko accessed by Ks.
(iii) For each pair (s′, o) (s′ ∈ Ks, o ∈ Ko), if it carries zero
enforced flow, i.e., fe(o → s′) = 0, we evaluate the leakage
flow fe(o → s′). The asymptotic complexity of this opera-
tion is O(∣Ks∣× ∣Ko∣); while in our scenarios, we focus on the
subject-object pairs with zero enforced flow, which signifi-
cantly reduces the search space. Further, scalable evaluation
methods exist for a range of leakage measures [21].

If the inserted link results in any violation of access control
policies, further actions may be taken, e.g., revoking existing
access privileges.

Operation 6: Adding A New Subject
This operation inserts a new subject into the network. For
a new subject whose leakage behavior is not clear (with un-
known leakage flows), one may simply apply the enforced
flow estimation only. As new observations are collected, one
can creates its links with relevant subjects, following the
procedure of Operation 5. Details are omitted here.

4. ATOM OPERATORS
We have thus far described an expressive algebra for sup-

porting network-centric risk estimation. In this section we
present one possible implementation of the atom operators.
We note that while this algebra is general-purpose (applica-
ble across a wide range of information and social networks),
the concrete realizations of these operators (and their space-
time complexity) are inherently tied to the complexity of in-
formation flow models in these networks. In this section we
first highlight the complexity of information flow models by
comparing it against the classical network flow problem [13]
and then delve into concrete realizations of risk operators
under specific assumptions on information flow models in
the networks.

In contrast to a classical network flow problem, studying
information flow in social and information networks features
unique challenges. (i) Information flows violate flow conser-

vation: outbound flow may exceed inbound flow at a net-
work node (e.g., when one creates an identical (or partial)
copy of an object). (ii) Information flows are non-additive:
a set of information flows may merge into a new flow; how-
ever, this merge may be non-additive (e.g., merge of flows
f1 and f2 results in f1 if f2 is derived from f1, even though
the residual information in f2 is non-zero). (iii) Information
flows in social networks are stochastic; it may be possible
to derive statistical properties of such flows (e.g., using con-
tact time distribution between subjects − email frequency).
(iv) Network evolution must be taken account in order to
refine information flow estimation over a period of time. (v)
The solution should be able to support large-scale networks
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(up to hundreds of thousands of nodes), and handle stream-
manner updates. To the best of our knowledge, our work
presents a first of a kind solution to address this informa-
tion flow problem.

4.1 Operators for Information Network
We assume a class of information networks wherein in-

formation flows are restricted to a directed acyclic graph
(DAG) [9], i.e., links in the network capture directed depen-
dency among objects. Such dependency prevails in real life,
in the form of reference, derivation, and inheritance (e.g.,
links between blogs, tweets, etc.). Assuming that the infor-
mation network is a DAG, the implementations of upstream

(U) and downstream (D) operators are fairly straightforward.
Our following discussion focuses on join (J) operator.

For given source oi, J-operator estimates the (fractional)
residual information of oi existing in a set of (target) objects{oj}. We start with the case of a single target object oj .

If oi and oj are adjacent, e.g., oj

v  

v  v 

v  

0

2

1

3

Figure 2: Diffu-
sion and fusion in
network.

directly refers to (or inherits) certain
parts of oi, it is typically feasible to
quantify the residual information rij ,
using information theoretic metrics [4,
19]. We thus specify the leakage flow
capacity wij of direct link oioj as wij =

rij . The difficulty lies in estimating
the residual information rj

4 where oi

and oj are not neighbors, particu-
larly, when there exist multiple di-
rected paths from oi to oj .

Example 4. Figure 2 illustrates this scenario: the informa-
tion of v0 flows through several overlapping paths to v3.
Before discussing in detail our method, we first introduce a
set of fundamental concepts.

For given object oi, the flow of a directed link okoj , fkj ,
is the residual information of oi passed through it. It is
estimated by fkj = rk ⋅wkj . Another key concept is the union

of residual information (regarding oi) over a set of flows
F = {fk1j1 , . . ., fknjn}, denoted by ⊕F = fk1j1 ⊕ . . . ⊕ fknjn .

The problem of estimating the residual information rj can
then be formulated in an iterative manner:

{ rj =⊕ok∈Pj
fkj

fkj = rk ⋅ wkj
(1)

where Pj represents the set of parents (direct ancestors) of
oj in the network.

Clearly, the union operation ⊕ is the key to estimating rj .
Following, we detail its implementation. Consider a set of
flows F . We can establish the following bounds.

max
F

f ≤ ⊕F ≤min{∑
F

f,1} (2)

We focus on establishing a tighter upper bound, based
on the following observation. It is observed that for two
flows fkj1 and fkj2 going out of ok, the residual information
of their union cannot exceed that of ok, i.e., fkj1 ⊕ fkj2 ≤

min{rk, fkj1 + fkj2}. Next we first introduce the concept of
cut. Let all the flows of F (no inheritance relationship) inject
into a virtual sink osink. A set of links are called a cut of F

if they separate oi and osink. Intuitively, all the flows of F

must go through every cut of F .
For given flow f, we attempt to bound its effective part

responsible for generating F (called effective flow, denoted
4Following, without ambiguity, we omit the referred source
object oi in the notations.

c1 c2 c1 c2

p1 p2 p1 p2 p1 p2

k

ǩ ǩ

k̂k̂ k

k

c1 c2

ˆ

ˇ

original detach merge split

Figure 3: Primitives of constructing effective-flow
graph. The effective flows in blue are materialized,
and those in red are being updated.
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Figure 4: Construction of effective-flow graph.

by f ) using the observation above. Estimating the upper
bound of ⊕F is equivalent to finding a cut that carries the
minimum (upperbound) effective flow with respect to F . We
now show how to estimate the upper bound of effective flow
for involved links.

We achieve this in a bottom-up manner: starting from
F , following the reverse topological order, we trace back
to the root oi. At each step, we apply the following three
primitives, as illustrated in Figure 3:

● detach. For each object ok encountered in the process, we
detach ok into two nodes ok̂ and oǩ, and connect them
with a link ok̂oǩ; ok̂ is connected to the parent flows of
ok, while oǩ is connected to the child flows of ok. The
flow on ok̂oǩ, fk̂ǩ, is set as rk.
● merge. For the set of outbound flows of ok (now oǩ),{fkc1 , . . . , fkcn}, whose effective parts have been estimated,

we update the effective flow of ok̂oǩ as follows (i.e., the
effective flow on ok̂oǩ cannot exceed the sum of the effec-
tive parts in all its child flows):

fk̂ǩ =min{fk̂ǩ,
n

∑
l=1

fkcl
}

● split. Given the set of inbound flows of ok (now ok̂),{fp1k, . . . , fpmk}, we update the estimation regarding their
maximum effective flows using the rule:

fplk
=min{fplk, fk̂ǩ} (1 ≤ l ≤m)

Intuitively, the effective flow on each incoming link can
not exceed that of ok̂oǩ.

If the effective flows on all the links have been estimated,
finding the upper bound of ⊕F is equivalent to finding a
minimum cut of this effective-flow graph, where the capacity
of each link is defined as its effective flow. Now, J-operator
can be implemented as follows. For each target object oj , we
create a link ojosink to a virtual sink osink with wj,sink = 1,
F = {fj,sink}, then construct the effective-flow graph using
the three primitives above, and find the minimum cut of the
graph, with detailed algorithm in Algorithm 1.

Example 5. This operation over the network in Figure 3 is
illustrated in Figure 4. In (a) the maximum residual infor-
mation of objects v1 and v2 (regarding v0) has been esti-
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Input: object network GO = (O, LO), a set of flows F

Output: upper bound of ⊕F

create a virtual object oj in GO collecting all flows in F ;
S ← sources of F ;
// topological sorting

sort S in decreasing order;
while S ≠ ∅ do

ok ← pop the head of S;
// detach + merge + split operation
detach ok;
O ← O ∖ {ok} ∪ {ok̂

, oǩ};

// CFk: child flows of ok

merge CFk ∩F ;
// PFk: parent flows of ok

split PFk;
// update S and F

F ← F ∖CFk ∪ PFk;
S ← S ∪ sources of PFk;

end

// remove irrelevant objects

remove from GO all unvisited objects;
// min-cut process

find the minimum oi − oj cut w;
output w as the upper bound of ⊕F ;

Algorithm 1: Sketch of J-operator.

mated (shown in parenthesis); in (b) and (c), we apply the
primitives over objects v2 and v1, respectively. The maxi-
mum residual information of v3 is estimated using the cut
of the effective-flow graph in (c).

In addition to the upper and lower bounds of the union of
a flow set F , we show that computing the expected value,
E(⊕F ) is equivalent to a maximization problem over a graph
(which is NP-hard) and present a Monte Carlo sampling
approach to estimate E(⊕F ) (details can be found in [1]).

4.2 Operators for Social Network
In contrast with object network, subject network demon-

strates dynamic aspects: the leakage behavior of each sub-
ject may only stochastically follow certain pre-defined for-
mation. Hence, we are particularly interested in estimating
the likelihood that one subject leaks (or shares) its informa-
tion to another subject in the network (leakage likelihood).

We assume complete information regarding the social net-
work. Later we will lift this assumption and take account
of possible information incompleteness/uncertainty. We as-
sume that each link sisj (from subject si to sj) in the social
network is associated with a leakage flow capacity (or leak-

age likelihood) wij , indicating the likelihood that si leaks
(shares) received information to sj . This quantity has a
variety of instantiations in realistic networks [12]. For in-
stance, in online social networks, it can be estimated as the
amount of information in the blogs re-posted by si, relative
to the total information of the blogs viewed by si; in enter-
prise social networks, it can be estimated as the quantity of
information in outbound emails from si to sj relative to the
overall information in si’s incoming emails.

We capture the behavior of network-wise information leak-
ing using random walk with restart (RWR) model [3, 24]:
the leaked information is modeled as a random particle that
originates at the source subject si. It iteratively transmits
to a neighboring subject with probability proportional to the
corresponding leakage flow capacity. Further, at each step,
it has certain probability of stopping propagation (i.e., it is
kept confidential). The likelihood that si leaks information
to sj , denoted by rij , can be measured by the steady-state
probability that the particle is observed at sj . This model
features several desirable properties for our purpose: (i) it

embeds all the likelihoods of leaking information or keeping
confidentiality; (ii) it considers the multi-facet relationships
between two subjects; (iii) it captures the global structure
of the subject network. Next, we formalize this model, and
construct Source (S) and Target (T) operators based on it.

Consider a subject si as the source subject. Let Ni denote
the set of outgoing neighbors of si. For each subject sj ∈ Ni,
we specify the probability that the information (particle)
transmits through oioj as: pij = wij/∑j′∈Ni

wij′ . At each
step, the probability ci that the information stops propaga-
tion is specified as: ci = wii/(wii + ∑j∈Ni

wij). If we stack
the steady-state probability that the information (particle)
is observed at each subject of the network into a column
vector ri, the definition of RWR gives us:

ri = (1 − ci) ⋅ A ⋅ ri + ci ⋅ ei (3)

where A is the column normalized adjacent matrix of the
subject network, such that Aji = pij if oj ∈ Ni and 0 other-
wise, and ei is the starting vector for si with the i-th entry
set as 1 and 0 otherwise. Furthermore, we have the following
matrix formation: R = A ⋅ R ⋅ (I − C) + C. Here R denotes the
stack of the leakage probabilities with respect to all subjects,
R = [r1, r2, . . .], I is an identity matrix, and C represents the
diagonal matrix with the i-th diagonal element as ci. Scal-
able algorithms are available to compute R (e.g., [15]).

Based on this formulation, the implementations of S and
T operators are as follows. For given target sj , S operator
identifies the set of subjects that feature high leakage likeli-
hood (above a threshold δi) to sj , which correspond to the
elements si in the j-th row of R with Rji ≥ δi

5, denoted by
S(sj) = {si∣Rij ≥ κi}. Meanwhile, for given source subject
si, T operator returns the set of subjects that feature high
leakage likelihood from si, i.e., T(si) = {sj ∣Rji ≥ δi}.
5. EMPIRICAL EVALUATION

This section presents an empirical study of our network-
centric access control paradigm. The experiments are specif-
ically designed to center around the following metrics: (i) its
validity in terms of capturing leakage flow, (ii) its efficacy in
quantifying unpredicted risk incurred by ignoring the net-
work effects among subjects and objects, (iii) its effective-
ness in incorporating the impact of network evolution over
risk estimation, and (iv) its execution efficiency. We start
with describing the setup of the experiments.

5.1 Experimental Setting
Our experiments used three datasets collected from real-

life social and information networks (attributes of interest
to us are listed in Table 3).

The Twitter dataset contains 18,617,827 tweet messages,
involving 203,222 users, over three weeks of 2009. The social
network is constructed according to the following/followed
relationships among users: one user si follows another user
sj if si wishes to receives tweets from sj ; also, si can re-tweet

(re-post) the viewed tweets to its followers.
The SmallBlue dataset describes the social network of

IBM employees who participated in the SmallBlue project.
It consists of two snapshots of as of January 2009 and July
2009, involving 41,702 and 43,041 individuals, respectively,

5The parameter δ for each subject needs to be normalized
to accommodate the difference of subjects’ influence in the
network. In implementation, we set δi = δ/(∑j≠i 1Rji>0

).
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Attribute Description

Twitter dataset
createdat timestamp of message post
tweetid unique message id
text plain message content
userid id of the message author
rtstatus re-tweeted message id (by this one)
rtuser id of the re-tweeted message author

Smallblue dataset
location working location
position managerial position
division working department
tie strength volume of exchanged emails

Dogear dataset
email email address of user s (identifier of subject)
url url o bookmarked by s (identifier of object)
tags bookmark tags made by s regarding o
time time-stamp that s accesses o

Table 3: Attributes of datasets.
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Figure 5: Estimated leakage likelihood with respect
to actually observed leakage severity (number of re-
tweets per user-pair).

We construct the social network according to the social con-
nections among individuals.

The Dogear dataset consists of 20,870 bookmark records,
relevant to 7,819 urls. The email and url attributes uniquely
identify a user (subject) and a webpage (object), respec-
tively, and tags encodes the semantics of the object. We
construct the object network as follows. Let ti be the col-
lection of tags suggested by users regarding object oi. We
consider both potential temporal and semantic dependency
among objects. For object oj , we assume that it is directly
dependent on the minimum set of (temporally) most recent
objects Oj with the union of tags maximally possibly cov-
ering tj , i.e., max∪oi∈Oj

ti⋂ tj . The weight of link oioj is
defined as wij = ∣ti ∩ tj ∣/∣ti∣.

All the core algorithms (the library of operators) are im-
plemented in Java. The experiments are conducted on a
workstation with 3.20GHz Intel Celeron CPU and 2GB RAM,
running Windows XP.

5.2 Experimental Results
In the first set of experiments, we use the Twitter dataset

and Enron archive to validate the leakage flow model on real
social and information network platform.

Validity of Leakage Model
We set up the experiments as follows. On Twitter, the social
network is constructed according to the following/followed
relationships: one user (subject) sj opts to follow another
user si if sj wishes to receive messages (tweets) from si;
also, sj can “leak” (re-tweet) the tweets from si, which may
be further leaked by followers of sj . Clearly, such leakage
can happen between two remotely connected users due to
the network effects.

We intend to apply the leakage flow model to quantify
the likelihood that the information (tweets) possessed by one
subject leaks to another subject in the network, and compare
the estimated leakage flow with actually measured leakage
(number of re-tweets). We use the data corresponding to

0.0

0.5

1.0
(User 50838183)

0

1

2

0.0

0.5

1.0
(User 69765279)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

User id space

measured leakage

estimated likelihood

estimated likelihood

measured leakage
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Figure 7: Average covert information flow measured
at different time-stamps.

October 2009 to collect the overall statistics regarding each
user, particularly the number of received tweets and among
them the number of re-tweets, which we use to set up the
parameters {w} and {c} as in Appendix 4.2. We apply the
model to predict the leakage likelihood for the period of
November 2009.

For a specific pair of users si and sj , we consider the
severity of leakage as the number of re-tweets sj posts with
original tweets from si during the considered time period.
For each specific level of observed leakage severity, Figure 5
shows the corresponding estimated leakage flow (leakage like-
lihood) averaged over pairs of users demonstrating such sever-
ity. One can notice the high correlation between the esti-
mated flow and the actual leakage severity, indicating that
the leakage flow model captures the essence of leakage pat-
terns. We further perform individual level comparison of
estimated leakage flow and observed leakage severity. We
randomly pick two (sources) users, measure their leakage
severity to the rest users, and compare the results with the
estimated likelihood by our model. As shown in Figure 6,
it is noticed that the predicted “peaks” match well with the
actually measured results.

Impact of Leakage Flow
Next we intend to evaluate the impact of leakage flow ex-
isting in the social and information networks over the risks
associated with access control decisions, specifically, the risk
of information leakage that would be under-estimated if ig-
noring the network effects among subjects and objects.

We use the SmallBlue and Dogear datasets to construct
the socio-information network. We consider an bookmarking
action as an access; hence, each access request q is associated
with a time-stamp tq. At each specific time-stamp t∗, we
assume that the set of requests before t∗, {q∣tq ≤ t∗}, have
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Figure 9: Estimation error with respect to the accu-
racy of 2-hop link prediction model, where no pre-
diction is employed in the baseline approach.

been granted; we then randomly generate a set of access
requests, and evaluate their corresponding leakage flows.

More concretely, we consider the history from 12/01/2005
to 07/20/2009, 20,870 access requests in total. At a step
of 1,000 requests, we evaluate the leakage flows for 5K ran-
domly generated requests. The average leakage flow with
respect to time-stamp and leakage likelihood is plotted in
Figure 7. It is noticed that as more requests are granted,
the average flux increases significantly. This is explained
by that the newly-created inter-network links between so-
cial and information networks generally increase the leakage
flow capacity between the two networks, which also implies
the non-negligible impact of the network effects among sub-
jects and objects over access control risks.

We further look into the distribution of leakage flows of
subject-object pairs. For the time-stamp of 07/20/2009, we
measure the leakage flows for 5K randomly generated re-
quests. Figure 8 shows the result. The distribution demon-
strates a long tail, which is mainly attributed to the het-
erogeneity of social and information networks; that is, there
exist “hot” spots in both networks, which feature large leak-
age flows; the existence of “hot” spots necessitates careful
risk estimation before making access control decisions.

Incorporation of Network Evolution
One critical feature that makes our paradigm useful is its
capability of incorporating predicted network evolution in
current risk estimation procedure. In our experiments, we
focus on on the impact of social network evolution. We
consider the two snapshots of the social network, and focus
on the set of individuals appearing in both snapshots, which
contains 32,028 users. From January to July 2009, 81,592
new relationships were created among these subjects. We
assume the prediction model [17] that predicts new links
that spans two hops.

We intend to study the robustness of our estimation model
against the prediction error incurred by the prediction model.
For 0.5K randomly generated access requests, we measure
the leakage flow over the network snapshot as of July 2009
(measured flow), and compare the result with that estimated
based on the snapshot as of January 2009, in conjunction of
the prediction model (estimated flow). We evaluate the rela-
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Figure 10: Average execution time of J-operator and
S-operator as a function of network scale.

tive estimation error as a function of the accuracy of predic-
tion model, with default recall and precision set as 0.5. The
result is shown in Figure 9. In both cases, the estimation
made by the baseline approach (without prediction) con-
siderably deviates from the actually measured result, with
relative error around 0.9. Employing the prediction model
significantly improves the estimation accuracy; even with
recall fixed as 0.2, the average error is reduced around 0.2.
However, as the precision (or recall) increase, the further
accuracy improvement is flat; this is explained by that the
model only considers 2-hop links, while other types of links
account for 49% of new relationships.

Scalability of Risk Estimation
In this set of experiments, we investigate the overhead of
risk estimation over the access control infrastructure. Each
risk estimation operation (Section 3) is constructed by com-
posing a set of atom operators, whose complex interactions
make it fairly difficult to directly characterize their impact
over the scalability of risk estimation. We therefore focus our
discussion at the level of atom operators. Due to the space
limitation, we particularly study J-operator and S-operator,
given their high frequency of usage.

We evaluate their execution time with respect to the scale
of social and information networks. To do so, we create a set
of network copies of different scales by randomly removing
certain number of nodes (and their associated links) from
the original network; a p-scale network indicates that 100 ∗(1−p)% nodes are removed. Figure 10 shows the result. It is
clear that both operators scale approximately linearly with
the size of the networks, which empirically substantiates the
analysis in Section 4.

6. DISCUSSION AND CONCLUSION
This work advances the state-of-the-art in risk-based ac-

cess control by presenting a novel network-centric access con-
trol paradigm that explicitly accounts for the network effects
in information flows. We show that a broad range of tradi-
tional node-centric models can be enhanced in terms of risk
estimation using this general framework. While our frame-
work is rich and flexible, several key challenges need to be ad-
dressed before it can be readily adopted. First, our approach
relies on measures of information flow in socio-information
networks. We believe that recent advances in network sci-
ence research make it feasible (in part) to estimate such
information flows. Second, we believe that applications in
the future will be risk-based, i.e., they will exploit risk es-
timates to guide their decision-making (e.g., using budget
based policies or exception handling mechanisms). Third,
we believe that incorporating the time dimension (e.g., due
to network evolution or due to decay in sensitivity of in-
formation) into risk estimation is essential to make sound
decisions; while our approach handles network evolution, it

8



does not explicitly address information items whose sensitiv-
ity decays over time. Despite these limitations, we believe
that our proposed approach offers a new approach to mod-
eling data flows in socio-information networks.
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APPENDIX

A. RECASTING CONVENTIONAL MODELS
Access control policies encode the rules used to regulate

the qualification of s ∈ S to access o ∈ O. In composing such
policies, traditional models typically adopt a node-centric

paradigm; they either treat each subject and object in isola-
tion, or only partially account for the relationships between
subjects, between objects and between subjects and objects.

Next we use three representative access control models as
concrete examples to show the compatibility of our network-
centric paradigm; how to extend to more complicated mod-
els (e.g., FuzzyMLS [10]) is also discussed; further we address
how the dynamic aspects of access control models including
administrative update of security setting and exception han-
dling (e.g., the upgrade/downgrade of subjects’ security lev-
els in MLS model, the periodic role enabling and disabling
in temporal RBAC model [6]) are implemented.

A.1 Multi-Level Security (MLS) Model
We use Bell-LaPadula (BLP) model, a classic MLS access

control model, as the first concrete example. In its simplest
form, the policies in BLP are described by two terms, the
security attributes of the objects/subjects concerned and the
rules for access. BLP attaches security labels to both objects
(classification levels) and subjects (clearance levels) (more
precisely, the combination of classification/clearance and a
set of compartments); the classification/clearance scheme is
described in terms of a lattice. Further, BLP has a simple-

security and a ∗-property rule, which can be characterized
as “no read up, no write down”:
● Simple security. Read access is allowed only if the sub-

ject’s clearance is above the object’s classification.
● ∗-property. Write access is granted only if the subject’s

clearance is below the object’s classification.

Under the network-centric framework, the implementa-
tion of BLP is fairly straightforward:
● The subject and object networks consist of the set of sub-

jects S and objects O.
● The inter-network links encode the clearance/classification

comparison of subjects and objects. Specifically, for sub-
ject s and object o, enf(os) = 1 if clear(s) ≻ class(o),
enf(so) = 1 if class(o) ≻ clear(s), and 0 otherwise.
● An access request (s → o) is granted only when the en-

forced flow fe(s→ o) = 1 for a read access, or fe(o → s) = 1
for a write access.

Variations in MLS can be accommodated by modifying this
basic construction in different ways.

A.2 Fuzzy MLS
Unlike the simple dichotomic comparison of the classifica-

tion class(o) of object o and clearance clear(s) of subject s
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in conventional MLS [5], Fuzzy MLS computes a quantified
risk for an access request (s→ o) based on the gap between
clear(s) and class(o), and specifies a region on the risk
scale (which can be further divided into bands). It allows
access with risk below the lower-bound of the region (soft
boundary), denies access with risk above the upper-bound
of the region (hard boundary), and charges access with risk
laying between soft and hard boundaries by its difference to
the soft boundary against subject’s risk credit. Each subject
is periodically (say, monthly) allotted a risk budget.

We can implement Fuzzy MLS using the network-centric
paradigm as follows. Let risk(s, o) represent the risk as-
sociated with the access (s → o), L and U denote the soft
and hard boundaries, and budget(s) be the budget allot-
ted to s initially (all in the unit of risk credit). For given
subject s, we create a link os if risk(s, o) < U, and spec-
ify its enforced flow capacity initially as enf(os) = ∞ if
risk(s, o) ≤ L, or enf(os) = budget(s) if risk(s, o) > L. An ac-
cess (s→ o) is granted only if enf(os) > 0. After the access,
all links of s update their enforced flow capacities by de-
creasing (risk(s, o)−L). After the periodic allocation of risk
budget, the flow capacities of links os with L < risk(s, o) < U
are restored to budget(s).
A.3 Role-based Access Control (RBAC) Model

RBAC models explicitly capture the relationships among
subjects by organizing them according to their functional
roles. A typical RBAC [14] model uses the following con-
ventional notations: S, the set of subjects, R, the set of
roles, which describe authorization levels, and P , the set of
permissions, which represent the approval of access to con-
cerned objects. Access control policy can be described by
the following three mappings:
● Subject assignment, SA ⊆ S×R, which is a many to many

subject to role assignment relation;
● Permission assignment, PA ⊆ P ×R, which is a many to

many permission to role assignment relation;
● Role hierarchy, RH ⊆ R ×R, which is a partially ordered

role hierarchy. Two roles r ⪰ r′ means r inherits the per-
missions of r′.

Under the network-centric paradigm, we intend to encode
these three mappings via the subject and object networks
and the inter-network relationships. One possible imple-
mentation could be as follows:
● In the subject network GS, in addition to the set of sub-

jects S, for each role r ∈ R, we create a corresponding
node r. For each s ∈ S, a link rs (enf(rs) = 1) is created
to indicate that s is assigned role r, i.e., SA mapping. The
sub-network GR over the set {r ∈ R} encodes the role hi-
erarchy RH : two nodes r and r′ are adjacent over the link
rr′ (enf(rr′) = 1) if they are adjacent in RH and r ⪰ r′.
● Due to role inheritance, if subject s is associated with any

two roles r and r′ with r ⪰ r′, only the link rs is necessary,
which implies the link r′s.
● The object network GO is a set of nodes, each correspond-

ing to one object o ∈ O.
● The inter-network relationships between GO and the sub-

network GR encode the permission assignment PA. Each
link or between object o and role r indicates that r has
access to o, and the access mode is contained in the type
information of or.
● An access request is granted only if the enforced flow

fe(o → s) = 1 (the type of inter-network link must be
equivalent to the requested access mode) in this network.

The basic model can be further enriched to support fea-
tures such as session-based role activation, constraints on
subjects/objects/roles, and multiple security domains.

A.4 Chinese-wall Model
Beyond other conventional access control models, Chinese-

wall model [7] and its variations further take into considera-
tion the conflict of interest in objects. It also has a dynamic
aspect that accounts for the the access history of subjects re-
garding the objects concerned. In a simplified Chinese-wall
model, each object o is associated with two label xo indicat-
ing the commercial database holding o, and yo indicating its
conflict of interest class. The basic Chinese-wall policy can
be described as:

● Simple security. An access (s→ o) is granted only if o has
the same label xo as an object o′ already accessed by s,
i.e., within the wall, or has an entirely different label yo

to all the objects already accessed by s.
● ∗-property. Write access is granted only if the simple se-

curity rule is honored, and no accessible object o′ contains
unsanitized information and has a different label xo′ to the
requested one o.

Under the network-centric framework, one implementation
of Chinese-wall model could be as follows:
● The subject network is a set of nodes, each corresponding

to a subject s ∈ S.
● In the object network, a pair of objects o and o′ are bi-

directionally adjacent if (i) xo = xo′ or (ii) yo ≠ yo′ (both
enf(oo′) = 1 and enf(o′o) = 1). Further, each object is
labeled by either sanitized or unsanitized.
● Once subject s has accessed object o, an inter-network

link os (enf(os) = 1) is added to the network.
● If subject s has not yet accessed any object, i.e., no inter-

network link exists for s, an access request (s → o) is
granted by default. Otherwise, the request is granted only
if the enforced flow estimation fe(o → s) = 1 for a read
access; and (i) fe(o → s) = 1, (ii) /∃ o′, fe(o′ → s) = 1, xo ≠

x′o, o′ is unsanitized for a write access.

A.5 Dynamic Aspects
To accommodate changing application environments, many

access control models introduce dynamic aspects: e.g., down-
grade/upgrade of subjects’ sensitivity labels in MLS [5], dy-
namic role dependencies in temporal RBAC [6]. Here, we
use the periodic role enabling/disabling in TRBAC as an
example to show how to implement such dynamic aspects in
network-centric paradigm.

We still follow the generic information flow model intro-
duced in Section 2. In addition to labeling network links,
we also assigns labels to network nodes. Now, nodes act
like switches, which can block or unblock enforced flows.
Particularly, in periodic role enabling/disabling, each role is
associated with a periodic expression that indicates the ac-
tivation period of the role, e.g., all ⋅Y ear+{1,4} ⋅Months▷
2 represents the set of intervals starting at the first and
fourth month of every year, and having a duration of two
months [6]. We can attach such expression to the corre-
sponding role node (see Appendix A.3), and activate the
node only when the expression is true. This way, all permis-
sions associated with a disabled role are detached from the
subjects associated with the role (zero enforced flows).
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