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Abstract—User-perceived performance continues to be the most important QoS indicator in cloud-based data centers today. 
Effective allocation of virtual machines (VMs) to handle both CPU intensive and I/O intensive workloads is a crucial performance 
management capability in virtualized clouds. Although a fair amount of researches have dedicated to measuring and scheduling 
jobs among VMs, there still lacks of in-depth understanding of performance factors that impact the efficiency and effectiveness 
of resource multiplexing and scheduling among VMs. In this paper, we present the experimental research on performance 
interference in parallel processing of CPU-intensive and network-intensive workloads on Xen Virtual Machine Monitor (VMM). 
Based on our study, we conclude with five key findings which are critical for effective performance management and tuning in 
virtualized clouds. First, co-locating network-intensive workloads in isolated VMs incurs high overheads of switches and events 
in Dom0 and VMM. Second, co-locating CPU-intensive workloads in isolated VMs incurs high CPU contention due to fast I/O 
processing in I/O channel. Third, running CPU-intensive and network-intensive workloads in conjunction incurs the least 
resource contention, delivering higher aggregate performance. Fourth, performance of network-intensive workload is insensitive 
to CPU assignment among VMs, whereas adaptive CPU assignment among VMs is critical to CPU-intensive workload. The 
more CPUs pinned on Dom0 the worse performance is achieved by CPU-intensive workload. Last, due to fast I/O processing in 
I/O channel, limitation on grant table is a potential bottleneck in Xen. We argue that identifying the factors that impact the total 
demand of exchanged memory pages is important to the in-depth understanding of interference costs in Dom0 and VMM. 

Index Terms—cloud computing, performance measurement, virtualization. 
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1 INTRODUCTION

irtualization technology [19], [21] offers many 
advantages in cloud based data centers, such as 
reducing total costs of ownership, improving energy 

efficiency and resource utilization. By providing physical 
resources sharing, fault isolation and live migration, 
virtualization allows diverse applications to run in 
isolated environments through creating multiple virtual 
machines (VMs) on shared hardware platforms, and 
manage resource sharing across VMs via virtual machine 
monitor (VMM) [2]. Although VMM has the ability to slice 
resources and allocate the shares to different VMs, our 
measurement study shows that the performance of 
applications running in one VM would be  affected by the 
applications running on its neighbor VMs, especially 
when these VMs are running at high rates of network I/O 
workloads. More importantly, our study shows that the 
level of performance interference mainly depends on the 
degree of the competition that the concurrent applications 
running in separate VMs may have in terms of shared 

resources. We argue that the in-depth understanding of 
potential interference factors among VMs running on a 
shared hardware platform is critical for effective 
management in virtualized clouds, and an open challenge 
in current virtualization research and deployment. 

In this paper, we study performance interference 
among multiple VMs running on the same hardware 
platform with the focus on network I/O processing. The 
main motivation for targeting our measurement study on 
performance interference of processing concurrent 
network I/O workloads is simply because network I/O 
applications are becoming dominating workloads in most 
cloud based data centers now. By carefully designing of 
measurement testbed and the set of performance metrics, 
we derive some important factors of I/O performance 
conflicts based on application throughput interference and 
net I/O interference. Our performance measurements and 
analyses also provide some insights into performance 
optimizations for CPU scheduler and I/O channel, and as 
well efficiency management of workloads and VM 
configurations, such as CPU assignment across VMs. 

This paper is structured as follows: Section 2 gives 
related work. Section 3 presents the overview of Xen I/O 
model, testbed setups, I/O workloads and the metrics used 
for performance interference analysis. Section 4 reports our 
experimental results and analysis of the performance 
interferences with respect to throughput and net I/O under 
different co-location of workloads and different allocation 
of CPUs to VMs. Section 5 concludes the paper with five 
important contributions and future works. 
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2 RELATED WORK 
Among mainstream VMM products, a relative efficient 
I/O performance and a safe execution environment are 
provided by the driver domain model, represented by Xen 
[27], [28], KVM [29], and Microsoft’s Hyper-V [30]. A main 
feature of such a drive domain model is to ensure 
execution safety in the driver domain model by sacrificing 
I/O performance. Thus, a fair number of research projects 
have been dedicated to I/O optimization, CPU scheduling, 
measuring tools, and fault isolation. However, there still 
lacks of in-depth understanding of performance 
interference factors that impact the efficiency and 
effectiveness of resource multiplexing and scheduling 
among neighbor VMs. 

Xen VMM was first introduced by Barham et al. [2], [3] 
from the University of Cambridge at 2003. Hypervisor 
layer and privileged driver domain are implemented to 
ensure better fault isolation effects. Earlier version of Xen 
VMM adopts “page-flipping” technique to exchange I/O 
data between driver domain and guest domain. It has 
been proved that the cost of mapping and unmapping 
pages was equivalent to the copy cost for large 1500 byte 
packets, which means page-flipping is less efficient than 
copy for small packet sizes [24], [25]. To address the 
problem of I/O efficiency in the driver domain model, K. 
Mansley et al. [16] proposed “direct I/O” to alleviate the 
pressure in driver domain by allowing guest domains to 
access hardware directly. Though the virtualized system 
can act as the native system in some cases, direct I/O is 
not considered in our work, as it lacks of dedicated driver 
domain to perform fault isolation, which is considered to 
be the most important function for system virtualization. 

Some recent researches contributed to optimize grant 
mechanism. The purpose was to replace page-flipping by 
grant copy without giving up driver domain. J. R. Santos et 
al. discussed grant reuse originally in their work [25]. 
Grant reuse decreases the frequency of mapping/ 
unmapping and communicating obviously. Subsequently, 
an enhanced grant mechanism was designed by K. K. Ram 
et al. in [22] and implemented in [23]. They adopted 
previous grant reuse, and added an I/O Translation Table 
(ITT) between driver domain and hypervisor to facilitate 
guest domains to perform grant invoke and revoke. 

Most existing researches mentioned above focused on 
optimizing I/O efficiency based on physical host running 
one VM, while only few studies are related to 
performance isolation among neighbor VMs. D. Gupta et 
al. implemented XenMon [8] to monitor the detailed 
system-level values of each VM, such as CPU usage, I/O 
count and execution count. Based on the monitoring 
results, ShareGuard and SEDF-DC [9] mechanisms are 
proposed to improve performance isolation. Y. Koh et al. 
[12] studied the effects of performance interference 
between two VMs hosted on the same physical platform 
by collecting the runtime performance characteristics of 
different types of concrete applications. Through 
subsequent analysis of collected characteristics, they 
predicted the performance of some new applications from 
its workload characteristic values successfully within an 
average error of 5%. However, our work reported in this 

paper, to the best of our knowledge, is the first one that 
provided a dedicated performance interference study on 
network I/O workloads running in separate VMs under 
multiple alternative hardware platforms, ranging from a 
dual-core CPU with small L2 cache platform to single core 
CPU with large L2 cache to a multi-core CPU platform. 

3 OVERVIEW 
In this section, we provide a brief background of Xen I/O 
architecture. Then we describe the experimental setup, 
including measurement method, I/O workloads and 
system-level metrics used for performance analysis. 

3.1 Xen I/O Overview 
Xen [2], [3] is a popular open-source x86 virtual machine 
monitor, supporting both full-virtualization and para-
virtualization. Xen uses para-virtualization as a more 
efficient and lower overhead mode of virtualizations. In 
para-virtualization I/O mode, Xen VMM layer uses 
asynchronous hypercall mechanism to deliver virtual 
interrupts and other notifications among domains via 
event channel. A privileged domain called Dom0 is 
treated as driver domain hosting unmodified Linux 
drivers and has the access to hardware devices. Dom0 
performs I/O operations on behalf of unprivileged guest 
domains which are ported to the virtual driver interface 
from Linux operating system (XenoLinux). Figure 1 shows 
the logical components of the latest Xen I/O model [6]. 
The virtual network interface in guest domain is called 
netfront acting as the real hardware drivers. In Dom0, 
netback is a counterpart for netfront. Netfront and netback 
use a bidirection ring of asynchronous requests to 
exchange data in I/O channel by sharing descriptors of 
memory pages pointed in I/O buffer. The bridge in Dom0 
handles the packets from NIC and performs the software-
based routine to destination VM. 

When a network packet is received by the NIC (RX), it 
raises an interrupt to the upper layer. Before the interrupt 
reaches Dom0, hypervisor (VMM) handles the interrupt 
first. Hypervisor will determine whether or not Dom0 has 
the access to the real hardware. Upon receiving the 
interrupt, Dom0 starts to process the network packet. It 
first removes the packet from NIC and sends the packet to 
the bridge. Then the bridge de-multiplexes the packet and 
delivers it to the appropriate netback interface. Netback 
raises a hypercall to hypervisor, requesting an unused 
memory page. Hypervisor notifies corresponding guest 
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Fig. 1. Xen I/O Architecture. 
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domain to grant a page to keep the overall memory 
allocation balanced. Netback copies the received data to 
granted page in guest domain. Finally, guest domain 
receives the packet as if it comes directly from NIC. A 
similar but reverse procedure is applied to send a packet 
on the send path (TX), except that no explicit memory 
page exchange is involved. Only the ownership of 
physical page is transferred instead of the real page. 

To provide a safe execution environment among VMs, 
Xen introduces a series of dedicated isolation mechanisms. 
The most outstanding one is grant mechanism, which is 
used to protect the I/O buffer in guest domain’s memory 
and share the I/O buffer with Dom0 properly [22]. At the 
boot time, hypervisor creates a unique grant table for each 
guest domain, which only can be accessed by hypervisor 
and guest domain. Subsequently, guest domain initializes 
an associated memory I/O buffer shared with Dom0. 
When Dom0 requests to exchange the I/O data with guest 
domain, guest domain invokes a grant, and then simply 
write a free entry in grant table with three key information: 
1) valid memory page address; 2) Dom0’s id; 3) operation 
permission (read-only for transmission or read-write for 
reception). After the grant writing operation is finished in 
grant table, guest domain issues a hypercall through 
hypervisor to Dom0 to pass a corresponding grant 
reference, which indexes the correct entry in grant table. 
Then Dom0 can find the grant entry by this grant 
reference, meanwhile, hypervisor validate Dom0 to 
perform the I/O operation in I/O buffer. When I/O 
exchange is accomplished or guest domain wants to 
repurpose the granted page, another hypercall is issued to 
hypervisor. And then, hypervisor synchronizes access 
permission of memory page between Dom0 and guest 
domain. If Dom0 gives up the granted page, guest domain 
revokes the grant by another simple writing operation in 
grant table. Dom0 loses the access permission. 

3.2 Testbed Architechure 
We carefully designed our experiments to exercise net I/O 
traffics and evaluate the performance interference. Figure 
2 gives a sketch of experimental setup used in this paper. 
Two isolated guest domains (i.e., VM1 and VM2) with 
equal resource allocations are hosted on the same physical 
platform. Apache servers provide the HTTP services in 
VM1 and VM2 respectively. Clients using httperf [13] as 
HTTP “load generator” are designed to access virtualized 
servers remotely. They send requests to corresponding 
VM to retrieve a fixed size file: 1 KB, 4 KB, 10 KB, 30 KB, 

50 KB, 70 KB, 100 KB or 1 MB. These I/O workloads are 
carefully selected from SPECweb’99, SPECweb’2005 and 
SPECweb’2009, which are representative log sizes in 
current data center. Additional, to reduce the disk 
readings, I/O workloads are cached in the buffers in 
advance. All tests were performed on three alternative 
platforms presented in Table 1. Platform I and Platform II 
have dissimilar hardware settings, especially the 
capacities of CPU and NIC. As we will show in the next 
section, I/O interference on these two platforms is quite 
obvious. Platform III is a four-core workstation, which is 
used to study the performance impact of different 
strategies of CPU allocation among VMs. Physical 
machines used in these three scenarios are all connected 
by a high speed Ethernet switch. The Linux Kernel 
2.6.18.8-xen is recommended for Xen 3.4.0 and 2.6.32.10-
xen is recommended for Xen 4.0.2 respectively. 

3.3 I/O Workloads 
For each of the three alternative hardware platforms in 
Table 1, we first evaluate the actual performance results 
and characteristics of each I/O workload running in single 
guest domain, which serves as basecase in the rest of this 
paper. We only discuss the experimental details of basecase 
on Platform I, a representative physical host for 
performance interference analysis in next two subsections. 

Table 2 shows the maximum performance results of 
one guest domain running under the selected net I/O 
workloads on Platform I. When server becomes saturated 
at full capacity, 1 KB and 4 KB files reach 0.5 to 15 times 
higher request throughput than others respectively, and 
consume more than 97% CPU resource (approximately, 
remaining 2.5% CPU is charged by idle loop and monitor 
tool), while network bandwidth utilizations are only 
around 20% and 60% respectively. The web mix 
performance of these two workloads is limited by CPU 
resource. Although the achieved request rates are not 
higher than 1200 req/sec, 10-100 KB workloads saturate 
the server by consuming all network bandwidth, which is 
10 KB × 1104 req/sec ≈ 30 KB × 375 req/sec ≈ 50 KB × 225 
req/sec ≈ 70 KB × 160 req/sec ≈ 100 KB × 112 req/sec ≈ 100 
MB/sec. Meanwhile, when VM1 is serving one of these 
five workloads (10-100 KB), the total CPU utilization is 
less than 75%. These reveal that 1 KB and 4 KB workloads 
are CPU bounded and 10-100 KB workloads are network 
bounded, consistent with the observation made from prior 
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Fig. 2. Logical components of virtualized cloud environments. 
(Web servers reside in VM1 and VM2. Driver domain is Dom0). 

TABLE 1 
EXPERIMENTAL ENVIRONMENT 

Capacity Platform I Platform II Platform III 
CPU Type Pentium 4 Xeon™ Xeon™ 
Processors 2 1 2 

Cores 2 1 4 
CPU Freq. (GHz) 3.2 3.0 3.0 
L1 Cache (KB) 16 256 256 
L2 Cache (MB) 2 6 12 
Memory (GB) 2 8 8 

DISK (GB) 250 500 500 
NIC (Mbit/s) 100 1000 1000 
MTU (Byte) 1500 1500 1500 

Kernel 2.6.18.8-xen 2.6.18.8-xen 2.6.32.10-xen 
Xen 3.4.0 3.4.0 4.0.2 
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research [4], namely short file is CPU bounded and long 
file is network bounded. With higher hardware capacities 
on Platform II and III, 1-100 KB workloads are CPU 
bounded and 1 MB workload is network bounded. 

3.4 Initial Interference Analysis and Metrics 
In this section we outline the methodology and metrics 
used for our measurement study. 

Let Dom0, Dom1 … Domn be the VMs running on the 
same host, where Dom0 is Dom0. Suppose that Domi is 
serving workload i, we define the maximum throughput 
of Domi as Ti. We use Bi to denote the maximum 
throughput of Domi in basecase scenario where n equals 1, 
i.e., only Dom0 and one guest domain are hosted. Then, 
the combined normalized throughput is: 

1

n
i

i i

Combined Score
T

B=
= ∑  

Figure 3 presents the set of experiments conducted on 
the setup of two guest domains with each serving one of 
the selected workloads on Platform I. We measure the 
normalized throughput scores of different combinations 
of selected net I/O workloads. The base-case throughput 
used in this experiment is the throughput of workloads in 
the single guest domain basecase on Platform I. To present 
the results clearly, each combination of two workloads 
running in VM1 and VM2 is denoted in a tuple of two 
elements, with the first element x is xKB file retrieving 
from VM1, and the second element y is the yKB file 
retrieving from VM2. For example, the expression (1K, 
30K) says VM1 serves 1 KB file and VM2 serves 30 KB file. 
(1K, Idle) refers to the case where VM1 serves 1 KB 
workload and VM2 is idle. From Figure 3, we observe 
some interesting facts regarding performance interference. 
First, (1K, 100K) achieves the best performance with its 
combined throughput score of 1.58. Given that 1 KB 
workload is CPU bounded and 100 KB workload is 
network bounded, this combination clearly incurs the 
least resource contention compared to other combinations. 
Similarly, (1K, 50K) is the next best pairing for the similar 
reason. (30K, 100K) and (50K, 100K) offer better combined 
throughput than the worst combinations of (1K, 1K) and 
(1K, 10K), which incur highest resource contention. This 
set of experiments indicates that given Xen I/O model and 
inherent resource sharing principle across VMs, net I/O 
performance interference is unavoidable. Although Xen 
uses Dom0 model to provide fault isolation successfully, 
Dom0 may easily become the bottleneck when VMs wish 
to get accesses to underlying hardware or communicate 

with others. Three suspicious points exist here: 1) all 
events have to go through Dom0 and VMM layer. This is 
supposed to cause communication or control interferences 
among VMs; 2) the multiplexing and demultiplexing of 
I/O channel may incur memory management interference, 
such as grant management and fragmentations; 3) the 
default Credit scheduler may affect the overall performance 
of neighbor VMs.  

To understand these three suspicious points, we collect 
eight system-level characteristics from I/O workloads: 
VMM events per second (Event). The number of events per 

second among VMs in event channel. This metric reflects 
communication interference among VMs 

VM switches per second (Switch). The number of VMM 
switches controls among VMs per second. This metric 
reflects control interference among VMs. 

I/O count per second (Pages Exchange). During the period 
of one second, the number of exchanged memory pages in 
I/O channel is captured. 

Executions per second (Execution). This metric refers to the 
number of execution periods per second for each VM.  

I/O count per execution (I/O Execution). During the period 
of one execution, the number of exchanged memory pages 
is captured. This metric could help to reflect the efficiency 
of I/O processing in I/O channel. We divide “Pages 
Exchange” by “Execution” to calculate “I/O Execution”. 

CPU utilization (CPU). We measured the average CPU 
utilization of each VM, including CPU usage of Dom0, 
VM1 and VM2 respectively. The total CPU consumption is 
the summation of them all. 

VM state (Waiting, Block). At any point of time, every VM 
must be in one of following three states: execution state, 
runnable state and blocked state. When one VM is currently 
using CPU, it is in the execution state. The metric “Waiting” 
is the percentage of waiting time when a VM is in runnable 
state, or in other words, the VM is in the CPU run queue but 
do not utilize CPU. The metric “Block” is the percentage of 
blocked time when a VM is in blocked state, which means a 
VM is blocked on I/O events and not in the run queue. 
The metrics of Event, Switch and I/O Execution 

directly reflect the interference of communication, control 
and I/O processing costs respectively. The remaining 
metrics can analyze the details of CPU utilization. These 
eight metrics are critical means for us to measure and 
understand the communication interference, VMM control 
interference and I/O processing costs, which are 

TABLE 2 
MAXIMUM PERFORMANCE OF WORKLOADS IN BASECASE ON 

REPRESENTATIVE PLATFORM I 

Workload 
Major 

Resource 
Used 

Throughput 
(Req/sec) 

Net I/O 
(KB/sec) 

Response 
Time 
(ms) 

CPU 
(%) 

1 KB CPU 1900 2018 1.52 97.50 
4 KB CPU 1750 7021 5.46 97.46 
10 KB Network 1104 11048 2.36 70.44 
30 KB Network 375 11271 2.52 54.87 
50 KB Network 225 11262 2.7 49.62 
70 KB Network 160 11255 2.84 47.10 
100 KB Network 112 11208 2.08 44.40 
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Fig. 3. Normalized throughput on Platform I.  
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important for our performance interference analysis. First, 
we use these eight metrics to illustrate underlying details 
of previous Platform I basecase study. Then the in-depth 
factors of performance interference are studied. 

Table 3 shows the basecase results of seven selected net 
I/O workloads for the most interesting metrics outlined 
on Platform I. The values of each workload characteristics 
are presented at 100% load for the given workload type.  
Comparing with network-intensive workloads of 30 KB, 
50 KB, 70 KB, and 100 KB files, CPU-intensive 1 KB and 4 
KB workloads have at least 30% and 60% lower event and 
switch costs respectively for the network I/O processing 
is more efficient in these cases. Concretely, for 1 KB and 4 
KB workloads, by comparing waiting and block time, 
Dom0 has to wait about 2.5 times longer on the CPU run 
queue for being scheduled into the execution state and the 
guest domain  has 30 times longer waiting time. However, 
they are blocked infrequently for acquiring more CPU 
resource, especially in guest domain the block time is less 
than 6%. We notice that the borderline network-intensive 
10 KB file owns the most efficient I/O processing ability 
(7.28 pages/exe), while the event and switch numbers are 
15% larger than CPU-intensive workloads. Interesting to 
note is that initially, I/O execution is getting more and 
more efficient as file size increases from 1 KB to 10 KB. 
However, with file size of the workload grows larger and 
larger (30-100 KB), more and more packets need to be 
delivered for each request. The event and switch number 
are increasing gradually as observed in Table 3. Note that 
the events per second are also related to request rate of the 
workload. Though it drops slightly for the workload of 
file size 30-100 KB, the overall event number of network-
intensive workloads is still higher than CPU-intensive 
ones. With increased file size of shorter workloads (1 KB 
to 10 KB), VMs are blocked more and more frequently 
from 4.76% to 23.48%. Finally, I/O execution starts to 
decline from 7.28 to about 3, when file size is larger than 
10 KB. Network I/O workloads that exhibit CPU bound 
are now transformed to network bounded as file size of 
workloads exceeding 10 KB and the contention for NIC is 
growing higher as workload size increasing. 

Similar measurements and analyses can also be applied 
to basecase on Platform II and III, whose observations are 
consistent with Platform I. Understanding these basic 
system-level characteristics in basecase scenario helps us to 
better understand factors that cause different levels of 
performance interference with respect to throughput, net 
I/O and multi-core on Platform I, II and III. 

4 PERFORMANCE INTERFERENCE ANALYSIS 
In this section, first, performance interference on Platform 
I and II are presented with workload load rates varying 
from 10% to 100%, running selected net I/O workloads. 
These sets of measurements are used to analyze 
throughput and net I/O interference due to resource 
contentions displayed by various workload combinations. 
Then, we analyze multi-core performance interference on 
Platform III by varying CPU assignments among VMs. 

4.1 Throughput Performance Interference 
This subsection focuses on studying interference of 
running multiple net I/O workloads in isolated VMs. We 
first show the performance interference on Platform I and 
II, and then provide analysis of performance interference 
in each of the two setups respectively, focusing on 
understanding the impacts of running different workloads 
in conjunction on the aggregate throughput. 

4.1.1 Interference in Resource-competiting Workloads 
In this group of experiments, the most CPU intensive 
workload and the most network intensive workload are 
chosen to study different co-location combinations for 
each platform. 1 KB file is a representative CPU bounded 
workload for both two platforms. The representative 
network bounded workload on Platform I is 100 KB file 
while on Platform II is 1 MB file. 1 MB workload on 
Platform II demands the same request rate as 1 KB file on 
Platform I, making comparison easily. 

Figure 4 and Figure 5 show the set of experimental 
results of throughput interference on Platform I and II 
with three combinations of workloads running 
concurrently in two VMs, which are presented as (1K, 1K), 
(1K, 100K) and (100K, 100K) on Platform I in Figure 4 and 
(1K, 1K), (1K, 1M) and (1M, 1M) on Platform II in Figure5.  
In all figures, we use the sequence of tuple expression to 
denote the workloads running in VMs respectively. Take 
the tuple (1K, 100K) for example, it means the workload of 
1 KB running in VM1 and the workload of 100 KB running 
in VM2. Also we use the notation of (1K, 100K)_1K to 
denote the measurement of 1 KB workload in VM1.  To 
get a clear overview of curves on the same scale in x-axis, 
the load rates of different workloads in both figures were 
converted into the percentage of maximal achieved 
throughput in basecase. For example, 100% load rate of 1 
KB workload on Platform I (Figure 4) refers to the 
maximal request rate of 1900 req/sec in Table 2. Similarly, 

TABLE 3 
SYSTEM-LEVEL CHARACTERISTICS OF I/O WORKLOADS WITH WEB SERVER RUNNING IN VM1 ON PLATFORM I.  

(VM2 IS NOT CREATED, I.E. BASECASE) 
Driver Domain (Dom0) Guest Domain (VM1) Workload CPU (%) Event 

(events/sec) 
Switch 

(switches/sec) 
I/O Execution 

(pages/exe) CPU (%) Waiting (%) Block (%) CPU (%) Waiting (%) Block (%) 
1 KB 97.50 224104 9098 4.93 46.83 4.81 10.54 50.67 38.97 4.76 
4 KB 97.46 242216 10525 6.38 46.82 4.77 10.68 50.65 37.72 5.65 
10 KB 70.44 279663 15569 7.28 39.7 3.13 13.73 30.74 2.29 23.48 
30 KB 54.87 345496 26118 3.87 36.78 1.92 17.78 18.09 1.31 34.32 
50 KB 49.62 342584 26981 3.54 34.57 1.22 19.33 15.05 1.14 36.76 
70 KB 47.10 341898 27436 3.36 33.41 0.90 19.46 13.70 1.07 37.62 
100 KB 44.40 332951 27720 3.17 32.19 0.77 21.04 12.21 1.01 39.08 
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for 100 KB workload on Platform I, the 100% load rate 
means the maximum request rate 112 req/sec. The 
maximal basecase throughput of 1 KB and 1 MB workloads 
on Platform II are 2730 req/sec and 110 req/sec 
respectively, shown as 100% load in Figure 5. 

Figure 4 shows the throughput of three combinations 
on Platform I: (1K, 1K), (1K, 100K), (100K, 100K). We 
observe that (1K, 100K)_1K reaches around 1560 req/sec, 
which is twice of  the maximal throughput of (1K, 1K)_1K, 
even though it is still 18% lower than the maximal 
throughput 1900 req/sec in basecase. For (1K, 100K) 
combination, (1K, 100K)_100K achieves 85 req/sec at 100% 
load, which is 76% of maximal throughput in basecase and 
52% higher than the throughput of (100K, 100K)_100K. 
Note that (100K, 100K) combination causes high network 
contention and saturates the host at 50% load (embedded 
chart in Figure 4). Figure 5 shows the throughput 
measurements of the workload combinations of (1K, 1K), 
(1K, 1M) and (1M, 1M) on Platform II. In the combinations 
of (1K, 1M) and (1K, 1K), 1 KB workloads achieve 
maximum rate both at 100% load, 2608 req/sec and 1962 
req/sec respectively. The maximum throughput of (1K, 
1M)_1K is only 4% lower than 2718 req/sec of 1 KB 
workload request rate in basecase and 33% higher than the 
maximum throughput of (1K, 1K)_1K. For network-
intensive 1 MB workload, the achieved maximum rate is 
97 req/sec at 100% load in (1K, 1M), which is 88% of the 
maximum throughput of 110 req/sec in basecase and 76% 
higher than the maximum rate of 55 req/sec for 1 MB 
workload in (1M, 1M). It is also observed that (1M, 1M) 
saturates the host at 50% load in the enhanced chart. 

Recall Figure 3, workload combinations competing for 
the same resource, either CPU or NIC, stand a good 
chance of performance degradation compared to basecase. 
Furthermore, in Figure 5, two workloads that exhibit 
distinct resource demands, such as one CPU bound and 
another network bound, running together also gets better 
performance than same workloads running concurrently 
on Platform II. Compare with 1 KB workload on Platform 
I, with increased L2 cache size, throughput degradations 
of CPU intensive 1 KB file are decreased on Platform II: 
from 18% to 4% in the combination of one CPU bound and 
one network bound; from 58% to 28% in the combination 
of both CPU bound workloads. Because of lower L2 cache 
misses [14], even with limited processor numbers and 
relative poor CPU frequency, Platform II achieves better 
performance for CPU intensive workload. However, L2 
cache shows fewer effects on network intensive workload, 
they both saturate the hosts around 50% load rate. 

4.1.2 Platform I: Throughput Interference Analysis 
In this and next section, we provide some in-depth 
analysis of key factors that lead to different performance 
interference. This section gives the measurements and 
analysis on Platform I (Figure 6 to Figure 14). The details 
on Platform II are plotted and analyzed in the next section 
(Figure 15 to Figure 23). 

From Figure 6 to Figure 14, we vary the load rate in x-
axis and plot measured different performance metrics on 
y-axis. First, let us examine at the combination of two 
network-bound workloads of (100K, 100K) on Platform I. 
Figure 6 and Figure 7 show switch numbers and event 
numbers when varying load rates from 10% to 100%. Note 
that the number of events follows exactly same trend as 
switches, though the concrete values are different in scale. 
At 50% load, (100K, 100K) reaches the highest switch and 
event numbers, and starts to drop until load rate increases 
to 70%, then remains almost flat when load rate increases 
from 70% to 100%. Comparing with other two 
combinations, (100K, 100K) has at least 25% higher switch 
and event costs under the peak costs. This implies that 
main sources of overhead and throughput interference for 
the combination of (100K, 100K) may come from the high 
switch and event overheads in Dom0 and VMM. 

Figure 8 shows the I/O Execution. As request rate 
getting higher, (100K, 100K) exchanges less than four 
pages per execution duration. It experiences the worst 
efficiency in I/O channel. Practically, heavy event and 
switch costs lead to a lot more interrupts that need to be 
processed, resulting in few pages exchange during each 
execution cycle. Figure 10 and Figure 13 present the block 
time of Dom0 and two guest domains respectively. For 
(100K, 100K), block time of Dom0 is around 30% after 50% 
load. In addition, the block time of guest domains are 
around 48% and both are relatively high compared to 
other two combinations. This indicates that VMs are 
frequently blocked for I/O events and waiting for the next 
CPU scheduling. Figure 11 and Figure 14 measure the 
waiting time of Dom0 and guest domains. We observe 
that (100K, 100K) has the lowest waiting time in both 
Dom0 and guest domains. This is mainly due to the high 
blocking time, as it reveals that CPU run queues are not 
crowd and could serve the VMs much faster.  

In summary, we conclude that due to heavy event and 
switch costs in (100K, 100K) on Platform I, Dom0 and 
VMM are quite busy to do notifications in event channel, 
resulting in the fact that Dom0 needs more CPU while 
guest domains are waiting for I/O events, demanding 
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Fig. 4. Throughput performance on Platform I. 
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Fig. 5. Throughput performance on Platform II. 
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fewer CPU (Figure 12). 
For (1K, 1K) combination on Platform I, we observe 

that it has the lowest event and switch numbers in Figure 
6 and Figure 7. Because (1K, 1K) incurs severe CPU 
contention, the poor throughput performance shown in 
Figure 4 should come from other factors. In Figure 8, (1K, 
1K) combination processes the I/O communication more 
efficiently than (100K, 100K), which has almost three times 
I/O Execution under heavy load. Moreover, before 80% 
load, (1K, 1K) has the highest I/O Execution compared to 
other combinations. Thus, we infer that the throughput 
interference of (1K, 1K) may be caused by fast I/O 
processing between guest domains and Dom0. This 
conclusion can be further validated using experimental 
results shown in Figure 11 and Figure 14. We observe that 
waiting time of Dom0 and guest domains are both the 
longest in comparison with other curves, approximately 
achieving 17% and 34% respectively, i.e., CPU run queues 
are crowded with more vCPUs waiting for being put into 
execution state. All VMs in the combination of (1K, 1K), 
including Dom0, are eager to use CPU resource. The Credit 
scheduler used in our tests is configured with equal weight 
for all VMs, i.e., each VM is dispatched with same CPU. In 
Figure 9 and Figure 12, CPU usage of Dom0 and guest 
domains have similar trend and sharing (100%/3 ≈ 33%) 
when they are all demanding for CPU resource. 

Briefly, to achieve high throughput, all VMs in (1K, 1K) 
need to perform fast I/O processing, which results in 
higher interference in CPU scheduling and lower 
throughput performance shown in Figure 4. 

By analyzing throughput interference in combinations 
of (100K, 100K) and (1K, 1K) on Platform I, we understand 
that frequent memory page exchange in I/O channel  
leads to severe CPU contention among VMs in (1K, 1K), 
while (100K, 100K) combination incurs higher event and 
switch costs in VMM and Dom0, leading to high level of 
network contention. In comparison, the combination of 
(1K, 100K) founds a balance to achieve higher throughput 
with load rate increasing. Concretely, comparing with (1K, 
1K)_1K, Dom0 and VM1 (i.e., (1K, 100K)_1K) experience 
blocked state infrequently and shorter waiting time, finally 
allocated over 10% additional CPU resource (Figure 10 
and Figure 13). Comparing with (100K, 100K)_100K, for 
(1K, 100K)_100K, VM2 is blocked frequently and waiting 
longer to reduce event and switch costs (Figure 11 and 
Figure 14). Finally, page exchanges become more efficient 
under high load rate (Figure 8) and Dom0 is better utilized. 

From this group of experiments on Platform I hardware 
capacity, we draw four concluding remarks: 

1. Due to larger number of packets to be routed per 
HTTP request, the combination of both network-
intensive workloads leads to at least twice higher 
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Fig. 8. Pages per execution on Platform I. 
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Fig. 7. Events per second on Platform I. 
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Fig. 14. Guests Waiting Time on Platform I. 
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Fig. 12. Guests CPU usage on Platform I. 
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Fig. 9. Dom0 CPU utilization on Platform I. 
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Fig. 6. Switches per second on Platform I. 
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Fig. 13. Guests Block Time on Platform I. 
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Fig. 11. Dom0 Waiting Time on Platform I. 
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Fig. 10. Dom0 Block Time on Platform I. 
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event and switch costs in event channel, making 
driver domain  busy for processing I/O interrupts, 
while leaving guest domains spending longer time 
on waiting for corresponding I/O events. 

2. To achieve high throughput, the combination of 
both CPU-intensive workloads results in guest 
domains competing with driver domain for CPU 
resource to perform fast I/O processing, while the 
switch cost is the lowest, leading to certain level of 
performance interference due to CPU contention, 
though the degree of interference is relatively less 
severe when compared to (100K, 100K). 

3. The workload combination with least resource 
competition is (1K, 100K). This is mainly due to the 
fact that it alleviates stresses in driver domain by 
scheduling extra CPU to Dom0 and guest domain 
(VM1) serving CPU-intensive workload, 
meanwhile, it increases the block time and waiting 
time of guest domain (VM2) serving network-
intensive workload to reduce switch overhead. 

4. Interference is highly sensitive to the effectiveness 
of driver domain due to multiple VMs are 
competing for communication efficiency and fast 
I/O processing in driver domain. 

4.1.3 Platform II: Throughput Interference Analysis 
From Figure 15 to Figure 23, we present the measured 
metrics details on Platform II, to which the previous 
similar analysis approaches on Platform I could also be 
applied. Most previous conclusions still work under 
Platform II, only except the instance of two CPU-intensive 
workloads combination (i.e., (1K, 1K)). Let us focus on 
some interesting phenomena of (1K, 1K) on Platform II. 

Figure 15 illustrates switch costs per second from load 
10% to 100%. After 50% load, (1M, 1M) combination 
achieves the highest and relative stable switch cost. The 
other two combinations achieve the peak in the range 20% 
to 50% and start to drop with load increasing from 60% to 
100%. Figure 16 gives measured event number per second 
in event channel. Comparing with cases on Platform I: 1) 
during the range 10% to 50%, (1M, 1M) does not exhibit 
highest event cost, while (1K, 1K) and (1K, 1M) spend at 
least more than 17% higher cost, and then (1M, 1M) gains 
the highest event cost after 70% load rate (the test is 
extended to 150% load); 2) with increased CPU capacities, 
messages in event channel get raised for CPU-intensive 
workload, while the trends of VMM switch controls 
among VMs remain relatively unchanged. In general, 
Figure 15 and Figure 16 are consistent compared with the 
corresponding cases on Platform I (Figure 6 and Figure 7). 
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Fig. 20. Dom0 Waiting Time on Platform II. 
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Fig. 22. Guests Block Time on Platform II. 
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Fig. 21. Guests CPU usage on Platform II. 
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Fig. 15. Switches per second on Platform II. 
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Fig. 19. Dom0 Block Time on Platform II. 

0.0E+0

2.0E+5

4.0E+5

6.0E+5

8.0E+5

1.0E+6

0 20 40 60 80 100 

Ev
en

t (
ev

en
ts

/s
ec

)

Load (%)

(1K, 1K)
(1K, 1M)
(1M, 1M)

 
Fig. 16. Events per second on Platform II. 
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Fig. 23. Guests Waiting Time on Platform II. 
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Fig. 18. Dom0 CPU utilization on Platform II. 
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Fig. 17. Pages per execution on Platform II. 
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The interference for co-locating network-intensive 
workloads comes from high event and switch costs. 

Figure 17 shows the I/O Execution on Platform II. It is 
quite interesting that (1K, 1K) experiences the worst 
memory pages exchange efficiency in I/O channel. It has 
no more than 2 pages per CPU execution. Comparing with 
the details on Platform I (Figure 8), which indicates co-
locating CPU-bound workloads leads to CPU contention 
for fast I/O processing, Figure 17 shows that there is 
another factor for performance interference: during each 
CPU execution time, the most burdensome job is not 
limited to memory pages exchange among VMs. 

The details of vCPUs should tell us further information 
about this phenomenon. In Figure 18, the measured Dom0 
CPU trends for three diverse combinations are plotted. 
(1M, 1M) combination maintains a flat CPU usage around 
60% under heavy load. However, other two combinations 
go up straight to 70% CPU usage with load increasing 
from 10% to 100%. Especially, (1K, 1K) reaches almost 80% 
CPU usage. Comparing with the cases on Platform I in 
Figure 9, the highest CPU utilization is less than 40%, 
which is a half of Platform II. Dom0 has some kinds of 
jobs to do and demands more CPU on Platform II, because 
of quite few pages processed during each CPU execution. 
Figure 19 gives the block time of Dom0 and Figure 20 
shows waiting time of Dom0. For (1K, 1K) combination, 
the block time of Dom0 is around 15% at 50%load and 
higher, which is the lowest block time curve, and the 
waiting time of Dom0 is around 30% after 50% load, 
which is the highest waiting time curve. This indicates 
that Dom0 is busy: Dom0’s vCPUs are scheduled into 
CPU run queues frequently, and CPU run queues are 
crowded with Dom0’s vCPUs.  

At this point, it can be concluded that for (1K, 1K) 
combination on Platform II, the fast I/O processing is not 
the primary interference factor causing CPU contention, 
while other potential factors are in the leading position 
here. We notice that (1K, 1K) exhibits some specific 
numbers of the total CPU utilization on Platform II: with 
load rate increasing, the maximum CPU usage is 94.57% at 
100% load. Eliminating the system idle and monitor tool 
costs, which are round 2.5% in totally, about 3% CPU 
resource are remaining. It seems that CPU resource is not 
the bottleneck here. Actually, grant mechanism incurs 
poor I/O efficiency and rises to be a main interference 
factor for the combination of two CPU-bound workloads 
on Platform II. We will illustrate more details and analysis 
with “zoom in” results in section 4.3. 

From Figure 21 to Figure 23, these three figures present 
CPU utilization, block time and waiting time of guest 
domains for each representative combination respectively. 
The overall trends of these three figures hide some useful 
information. For CPU-intensive workloads combination 
(1K, 1K), guest domains experience relative higher block 
time percentage above 55% and the longest waiting time 
percentage around 60% under heavy load. In comparison 
with the Dom0, which has 15% block time and 30% 
waiting time after 50% load rate, guest domains do not 
have too much works to do, as Dom0 needs to get into 
CPU run queue so frequently. And since CPU run queue 

is full of Dom0, guest domains get such high waiting time 
percentages. For (1M, 1M), it exhibits the highest block 
time percentage, higher than 80% CPU time during the 
whole process, and lowest waiting time percentage in 
CPU run queue, stabilized around 10% waiting time after 
70% load rate and higher. The CPU run queue of (1M, 1M) 
is not crowed. Virtualized system is busy to do the VM 
switch and event processing, which also proves our 
previous conclusions for network-intensive workloads 
combination. In summary, the overall block times of three 
workload combinations are all above 50% in Figure 22, 
which are higher than the cases on Platform I, this is 
because platform II has only one physical CPU and thus is 
easier to incur congestion in CPU run queue. 

Although Platform I and Platform II are heterogeneous, 
we observe performance interference between workloads 
with high resource contentions due to running in a shared 
physical host through running in separate VMs. Moreover, 
we would like to draw two additional concluding remarks: 

1. With lower L2 cache misses rate due to increased 
L2 cache size, even with poor CPU frequency, CPU 
contention will be alleviated and interference 
performance will be improved for both the 
combination of two CPU-bound workloads (i.e., 
(1K, 1K)) and the combination of one CPU-bound 
and one network-bound workload (i.e., (1K, 1M)). 

2. With higher hardware capacities, especially larger 
L2 cache size, interference is still sensitive to the 
I/O efficiency in the privileged driver domain for 
the combination of two CPU-bound workloads. 
The grant table size is another potential bottleneck 
in addition to CPU resource. 

4.2 Net I/O Performance Interference 
From our throughput performance interference analysis in 
previous section, we know that the combination of both 
CPU-bound workloads (i.e., (1K, 1K) for Platform I and II) 
causes throughput interference mainly due to Dom0 
demanding for fast I/O processing and grant mechanism 
management, while the combination of both network-
intensive workloads (i.e., (100K, 100K) for Platform I and 
(1M, 1M) for Platform II) incurs the highest VMM switch 
overhead. Moreover, diverse workloads combinations (i.e., 
(1K, 100K) for Platform I and (1K, 1M) for Platform II) 
reach better performance by alleviating the stresses in 
driver domain. In this section we study the net I/O 
interference based on these three types of combinations. 

Figure 24 presents the net I/O measurements for (1K, 
1K), (1K, 100K) and (100K, 100K) on Platform I.  These 
curves are highly correlated with trends of request 
throughput in Figure 4, based on the fact that (workload 
size) × (request rate) ≈ Net I/O. Both 1 KB and 100 KB 
workloads in (1K, 100K) achieve higher maximal net I/O 
than others under high workload rates, i.e., 1 KB × 1560 
req/sec ≈ 1634 KB/sec and 100 KB × 85 req/sec ≈ 8550 
KB/sec respectively. It is interesting to note that when the 
load rate is approximately less than 70%, (100K, 100K) 
gains better net I/O performance compared to (1K, 100K) 
combination, while from 30% to 70% load (i.e., the range II 
in Figure 24) the net I/O of 100 KB workload in (1K, 100K) 
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combination (i.e., (1K, 100K)_100K) remains flat, around 
3600 KB/sec, which is close to the current window size (i.e., 
4 KB) in XenoLinux. It seems that 100 KB workload is 
“paused” during range II. We can understand this 
phenomenon better by examining the guest domain 
details of 100 KB curves presented in Figure 12, Figure 13 
and Figure 14. Within the load range 30% to 70%, (1K, 
100K)_100K has  average 5% higher block time than (100K, 
100K)_100K. Meanwhile, the waiting time of (1K, 
100K)_100K in Figure 14 (enhanced graph) is keeping 
around 2%. Thought, the waiting time of (100K, 
100K)_100K increases three times from 0.5% to 1.7%, it is 
still the lowest one. These result in (1K, 100K)_100K 
utilizes CPU around 4%, while (100K, 100K)_100K 
consumes CPU continuously until saturating the NIC. 

Despite achieving better request throughput and net 
I/O in the combination of (1K, 100K), we notice that 1 KB 
workload in this combination gets “priority” treatment 
while leaving 100 KB workload blocked more often and 
waiting longer. To understand this phenomenon, it is 
worthwhile to discuss the details of CPU run queues 
under Credit scheduler. Under normal circumstances, all 
vCPUs in the CPU queues are served in the FIFO manner. 
However, when a VM receives an interrupt while it is idle, 
the VM enters the particular Boost state which has a higher 
priority to be inserted into the head of the run queue for 
the first CPU execution. This mechanism prevents long 
waiting time for the latest active VM by preempting the 
current running VM. However, the even priority shares of 
CPU usage remains a problem for network-intensive 
workloads here. Considering (1K, 100K) combination, 
because of 1 KB file is the shortest size, it could finish each 
request and enters the idle state faster (most infrequently 
blocked in Figure 13). Finally, VMM makes the decision to 
put VM1 in the head of run queue frequently. This makes 
1 KB file have higher priority. Thus, the effects of Credit 
scheduler should be considered in virtualized cloud 
environments as it is making positive contributions to 
CPU-intensive workload while treating network-intensive 
workload unfairly with higher processing latency, 
bringing poor I/O performance. 

In the experimental setups, we configured Platform II 
with one CPU run queue with Credit scheduler turned on. 
Figure 25 shows the net I/O performance results of three 
combinations on Platform II, i.e., (1K, 1K), (1K, 1M) and 
(1M, 1M). Herein 1 MB file is the representative network-
intensive workload. It is observed that (1K, 1M) achieves 
maximum net I/O 1 MB × 97 req/sec ≈ 96900 KB/sec at 

100% load and (1M, 1M) achieves maximum net I/O at 
50% load with 1 MB × 55 req/sec ≈ 56100 KB/sec. In 
contrast to the network-intensive workload for Platform I 
in Figure 24, 1 MB file goes smoothly in both (1K, 1M) and 
(1M, 1M) during the entire tested range of workload rates. 
The “paused” net I/O phenomenon in Platform I for 
network-intensive workload does not occur for Platform II 
in Figure 25. According to the latest Xen documents, the 
Credit scheduler is designed for multi-core processors. With 
single CPU run queue, the scheduling policy of Credit 
scheduler is limited and CPU run queue is easy to get 
saturation. Under such situation, Credit scheduler works as 
the former CPU scheduler BVT [5], leading to a relatively 
fair CPU execution treatment. 

4.3 Multi-core Performance Interference 
We dedicate this section to analyze the impact of multi-
core and larger L2 cache size on performance interference 
of co-locating CPU-bound or network-bound workloads 
in a virtualized cloud environment. First, the experimental 
setup is introduced. Then we study the performance 
impact of increasing the number of cores on Platform III in 
Section 4.3.1 and analyze different strategies for allocating 
cores to driver domain and guest domains in Section 4.3.2. 

Table 4 displays the CPU configurations we used for 
multi-core interference studies. The left three groups are 
the total number of CPUs shared by all VMs without 
dedicated allocation of certain cores to specific VMs. We 
use these three configurations to further understand the 
performance interference of (1K, 1K) combination under 
increasing shared number of cores. The right groups of 
CPU configurations represent six specific configuration of 
assigning individual CPUs to each domain. Herein, we 
use the notation of (Dom0, [VM1, VM2]) to denote CPUs 
pinned on VMs in a specified order of Dom0, VM1 and 
VM2, with [VM1, VM2] indicating that VM1 and VM2 are 
sharing same number of CPUs during the measurements. 
For example, the expression (1, [2, 2]) means that Dom0 is 
allocated one exclusive CPU, while VM1 and VM2 are 
configured to share two CPUs. The expression (1, 1, 1) 
means each domain owns one CPU exclusively. 

The basecase measurement for CPU-bound 1 KB 
workload on Platform III is 10000 req/sec. In fact, for all 
measurements, only when Dom0 is configured with one 
dedicated individual core, the basecase performance of 1 
KB workload is limited by CPU resource at 10000 req/sec, 
because the achievable maximal request throughput of 1 
KB workload for diverse CPU configurations depend on 
concrete allocations of CPUs to VMs (especially, in driver 
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Fig. 24. Net I/O performance on Platform I. (Within range II, (1K, 
100K)_100K gets poor performance than (100K, 100K)_100K). 
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Fig. 25. Net I/O performance on Platform II (1 MB workloads goes 
more smoothly during the whole test). 
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domain). Also guest domains may run into the risk of 
insufficient TCP/IP ports with higher request rate than 
10000 req/sec1. We believe that using the request rate of 
10000 req/sec is sufficient enough to understand multi-
core related performance interference in Table 4. Similarly, 
the basecase throughput of network-bound 1 MB workload 
is 110 req/ses, limited by NIC used in the experiments. 

4.3.1 Performance Impact of Varing Shared Cores 
This subsection shows performance interference of left 
three CPU configurations in Table 4, where 1, 3 and 4 
cores are shared by all VMs respectively. Obviously, the 
peak performance points are key entries to understand 
performance impacts of co-locating workloads in neighbor 
VMs. We concentrate on analyzing these peak points. 

Figure 26 displays the achieved maximal load. To get 
an overview of performance on all three configurations, 
the maximal throughputs are converted into the same 
scales in term of the percentage of maximal load rates in 
basecase. For (1K, 1K)_1K, 1 KB workload achieves 100% 
load with 1 shared core, while dropping to maximal loads 
of 40% and 45% for the cases of 3 cores and 4 cores 
respectively. In (1K, 1M)_1K, 1 KB workload is also 
observed 40% decrement for 3 cores and 35% decrement 
for 4 cores. In contrast, 1 MB workload maintains quit 
stable request rates in all measured combinations when 
we vary the number of shared CPUs, which are 100% in 
(1K, 1M)_1M and 50% in (1M, 1M)_1M. 

Figure 27 measures the total CPU utilization under 
varying CPUs for three combinations of workloads. We 
observe that only (1K, 1K) and (1K, 1M) sharing 1 core 
consume more than 94% CPU resource and CPUs are 
under utilized in all the other cases. More cores do not 
improve the overall throughput. It is easy to understand 
that (1M, 1M) demands NIC capacity and thus network 
I/O becomes the primary resource bottleneck, thus it 
leads to low CPU utilization. However, with 1 KB 
workload reaching at least 10000 req/sec in the basecase, 
one would expect that (1K, 1K)_1K should achieve more 
than 50% load and (1K, 1M)_1K is supposed to utilize 
CPU adequately to achieve 100% load. Thus, an 
immediate question following the observations in Figure 
26 and Figure 27 is what the key factors are, which lead to 
potential bottleneck and interference for CPU-intensive 1 
KB workload running concurrently among multiple VMs. 
Recall the performance interference study on Platform II 
in the previous sections, comparing with other workload 
 

1We extended TCP ports to 65536. The lower 1024 ports are reserved for 
Linux OS, so about 64000 ports are remaining. Httperf timeout is 3 sec [13]. 

co-location combinations, (1K, 1K) exhibits the lowest I/O 
efficiency on Platform II and it only has about 3% CPU not 
utilized. With Platform III offering 3 cores or 4 cores 
shared across VMs, the combination of (1K, 1K) still 
exhibits the lowest I/O efficiency and, furthermore, total 
CPU usages are no more than 57%. This result shows that 
enhancing CPU capacity by adding more number of cores 
or increasing on-chip L2 cache size do not necessarily 
guarantee better performance for running CPU-intensive 
workloads concurrently among multiple VMs. To be more 
specific, CPU resource is not the bottleneck for CPU 
bound 1 KB workload. Furthermore, even though TCP/IP 
request rate is high with 1KB workloads running in 
neighboring VMs on the same host, the monitored NIC 
usages and memory are far from the configured maximal 
values for neither driver domain nor guest domains. Thus 
to answer the question of where the potential bottleneck 
and interference factors are for CPU-intensive 1 KB 
workload running in multiple VMs concurrently, we next 
examine closely on the switches (or events) per second as 
well as CPU utilization and block time of each VM. 

Figure 28 and Figure 29 illustrate switches per second 
in hypervisor and events per second in event channel 
respectively. These two numbers are normalized, using 
switches (or events) per second of one shared core as the 
baseline reference value for each combination. For the 
combination of (1M, 1M), the switch and event numbers 
are quit similar for three CPU configurations with less 
than 10% discrepancy. Intuitively, the small increments of 
switches/sec and events/sec are incurred by additional 
scheduling costs for managing more CPUs. Recall our 
performance interference analysis on Platform II, the 
leading interference factor for co-locating network-
intensive workloads comes from switch and event costs 
residing in VMM and driver domain, and the resource 
bottleneck is the NIC capacity. Important to note is that 
these observations remain the same for shared multi-core 
environments. Unfortunately, for the combinations of (1K, 
1K) and (1K, 1M), we observe a significant increase of the 
switch overhead and moderately higher event cost 
compared to one core case:  switch costs are more than 3.7 
times; event values are 2.4 times larger. These overhead 
increments are way beyond the overheads incurred by 
additional scheduling costs due to managing more cores. 

Figure 30 to Figure 33 report CPU utilization and block 
time in driver domain and guest domains. Figure 30 
shows the descending trends of CPU utilization in Dom0 
as the number of shared cores increases. This is consistent 
with the increasing switch and event overheads shown in 
Figure 28 and Figure 29. Figure 31 shows the increasing 
block time of Dom0 as the number of cores increases for 
each workload combination. These figures indicate that, 
with increasing cores, Dom0 consumes less and less CPU 
and is less and less frequently getting into CPU run 
queues. In contrast, Figure 32 and Figure 33 show some 
opposite trends of CPU usage and block time in guest 
domains. For (1K, 1K)_1K and (1K, 1M)_1K, as the 
number of cores increases, CPU usage are increasing 
gradually and block time are dropping gradually in guest 
domains. However, for (1K, 1M)_1M and (1M, 1M)_1M, as 

TABLE 4 
CPU CONFIGURATIONS FOR MULTI-CORE INTERFERENCE 

Total 
CPUs 

CPU Sharing 
(Shared by all VMs) 

Total 
CPUs 

Configuration 
(Dom0, VM1, VM2) 

1 1 3 ( 1, 1, 1 ) 
3 3 3 (1, [2, 2]) 
4 4 4 (1, [3, 3]) 

N/A N/A 4 (2, [2, 2]) 
N/A N/A 3 (2, [1, 1]) 
N/A N/A 

 

4 (3, [1, 1]) 
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the number of cores increases, CPU utilizations of guest 
domains are decreasing sharply and the block time of 
guest domains are dropped by more than 30%. But the 
difference in CPU utilization and block time of guest 
domains are very small when the number of cores changes 
from 3 to 4. Combined with Figure 30 and Figure 31, we 
can conclude that guest domains are getting much busier 
than Dom0 when serving CPU-intensive 1 KB workload 
under multi-core settings. Furthermore, for network-
intensive 1MB workload, when the number of cores 
changes from single to multi cores, CPU utilization also 
decreases in both Dom0 and guest domains but the block 
time decreases only in guest domains and increases in 
Dom0. This implies that there are some other cost factors 
in addition to multi-core management in guest domains. 

To understand other potential interference factors for 
CPU-intensive workload running on multi-core system, 
we take the combination of (1K, 1K) running with 3 
shared cores as a representative instance below. We 
investigate some other system-level metrics in these two 
guest domains, such as memory usage, disk I/O, network 
details, fragmentations, etc [31], when they are serving 1 
KB workload at 40% load rate (i.e., maximal achievable 
load in Figure 26). During the entire experimental time 
suggested by httperf, most metrics are varying within an 
acceptable range, no more than 5% discrepancy. The only 
exception is the number of SLAB allocators: for each guest 
domain, allocated SLAB number goes up from 21 to and 
sticks around 148, almost a factor of five. SLAB allocation 
[32] is a dedicated memory management mechanism 
adopted by Linux system to eliminate fragmentations. The 
number of SLAB allocator indicates cached data objects in 
guest domains. In practice, this number is associated with 
grant mechanism in virtualized Xen system. 

Recall section 3.1, when a memory page in I/O buffer is 
granted to driver domain, one free grant entry in grant 
table is occupied and one new SLAB allocator is created. 
The increased absolute number of SLAB allocator equals 
to the number of occupied grant entries in grant table. In 
(1K, 1K) for 3 shared cores, SLAB allocator gains an 
increment of 148 - 21 ≈ 128, which means that each guest 
domain is holding approximate 128 table entries during 
the experimental period. In the current Xen version, the 
maximum number of grant entries is co-defined by 

parameters of MAX_MAPTRACK_TO_GRANTS_RATIO 
and gnttab_max_nr_frames, which limit the maximum 
entries to 128. The purpose of this limitation is to provide 
a meaningful number of data copies without occupying 
too much kernel memory. When guest domains are 
performing high rate I/O processing on shared multi-core 
host, applications co-locating with their neighbors 
interfere with each other causing hypervisor to be busy 
with scheduling and communication. The increased 
switch and event overheads lead to the delay of the 
operations of grant invoke and revoke. As a consequence, 
the grant table easily becomes a bottleneck causing lower 
I/O count per execution. In our experiments, for all 
virtual instances serving 1 KB workload (i.e., (1K, 1K)_1K 
and (1K, 1M)_1K) with all CPU configurations in Table 4, 
we consistently observed the grant table bottleneck at the 
peak of throughput. Although tuning the parameters of 
MAX_MAPTRACK_TO_GRANTS_RATIO and gnttab_ 
max_nr_frames may alleviate the size limit of the grant 
table at the cost of occupying more kernel memory of 
guest domains. A balance is worth of study in the future. 

In short, the experiments in this section reveal that 
increasing number of shared cores among VMs does not 
guarantee performance improvement for workloads 
running in separate VMs on the same physical host: 

1. The performance of CPU-intensive workload (i.e., 1 
KB) is highly sensitive to the number of cores 
shared by all VMs. In general, throughput 
descends gradually when the number of shared 
cores increasing 

2. The performance of network-intensive workload 
(i.e., 1 MB) is relatively insensitive to the number of 
cores shared by all VMs. 

3. As a result of lower I/O execution, the limitation of 
grant table entries can be a potential bottleneck for 
guest domains serving CPU-intensive workload. 

4.3.2 Specific CPU Configuration Studies 
This section is dedicated to understand the performance 
impact of specific CPU assignments to each VM, especially, 
can we decrease potential communication and scheduling 
overheads in VMM and Dom0 through smart assignment 
of cores to VMs. We use the right six configurations given 
in Table 4 to study the effects of varying pinned CPUs on 
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Fig. 27. Total CPU utilization. 
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Fig. 26. Achieved maximum load. 
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Fig. 28. Normalized switch cost. 
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Fig. 31. Block time of Dom0. 
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Fig. 33. Block time of guests. 
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Fig. 29. Normalized event cost. 
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Fig. 32. CPU utilization of guests. 
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Fig. 30. CPU utilization of Dom0. 
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each VM by measuring the peak performance in terms of 
normalized throughput, switch and event respectively for 
the three representative combinations of workloads. 

Figure 34 shows achieved maximal request throughput 
of each combination under the six CPU configurations. 
Throughput results are normalized basing on the values 
of basecase, namely 10000 req/sec for 1 KB workload and 
110 req/sec for 1 MB workload. First, the impacts on CPU-
bound 1 KB workload are studied.  In the group of (1K, 
1K)_1K, 1 KB workload gains highest score around 5181 
req/sec under (1, 1, 1). With pinned CPUs increasing, 
throughput of 1 KB workload starts to drop gradually. 
The worst assignment setting is (3, [1, 1]), which reaches 
maximal performance around 4351 req/sec. Comparing 
with (1, 1, 1), it is 16% throughput degradation. In the 
group of (1K, 1M)_1K, throughput drop is also observed. 
The best assignment setting is (1, 1, 1) around 7425 
req/sec, while the worst is (3, [1, 1]) around 6434 req/sec. 
Dom0 is a critical place related to interference factors 
when neighbors interact with each other on the same host. 
Every I/O data and most messages go through or involve 
Dom0. If configured with CPUs exclusively, Dom0 serves 
other VMs more efficiently. In Figure 35 and Figure 36, for 
1 KB workload, switch and event numbers grows 
gradually with throughput drops gradually.  

We conclude that for 1 KB workload: 1) less CPUs 
pinned to Dom0, better performance obtained; 2) given 
the same CPUs pinned on Dom0, more CPUs assigned to 
guest domains poorer throughput achieved. Incidentally, 
grant table bottleneck is also observed in guest domain 
serving 1 KB workload. SLAB’s increment is around 128 
as previous case in 4.3.1. 

No matter in which workload combination, network-
intensive 1 MB workload utilizes NIC adequately and 
exhibits relative stable performance under all specific CPU 
assignments: In terms of throughput, we have roughly 110 
req/sec in (1K, 1M) and 55 req/sec in (1M, 1M). In terms 
of response time, (1M, 1M)_1M keeps around 2 ms and 
(1K, 1M)_1M keeps around 10~15 ms. Switch and event 
overheads of (1M, 1M) in Figure 35 show tiny difference 
among different combinations. These results are consistent 
with the 1 MB workload observed in Section 4.3.1. 

We summarize the results from Section 4.3.1 and 
Section 4.3.2 as follows: 

1. Performance of guest domain serving CPU-bound 
workload (i.e., 1 KB) is highly sensitive to CPU 
assignment among neighbor VMs on the same host, 
especially driver domain for three reasons: i) As 
more CPUs are assigned to the driver domain 

exclusively, throughput performance suffers more; 
ii) With the same CPUs pinned on the driver 
domain, less CPUs will be shared by guest 
domains, which improves the performance by 
alleviating switch/event costs; iii) Limited size of 
grant entries exists as a potential bottleneck for 
high request rate services. 

2. For lower request rate and larger data transfer, the 
performance of guest domains serving network-
bound workload (i.e., 1 MB) is insensitive to the 
CPU assignments among neighbor VMs on the 
same host. 

In summary, the basis of our measurement interference 
analysis can be summarized as a three-step process. First, 
we propose to use eight system-level metrics as outlined 
in Section 3 to perform the analysis of performance 
interference and we argue that they are suitable for 
understanding the communication interference, VMM 
control interference and I/O processing costs. Second, we 
choose to use a basecase on Platform I as a reference and at 
the same time to illustrate the usage of some VM-specific 
basic metrics, such as block time and waiting time. Finally, 
we present a detailed measurement study and analytical 
discussion on the most important results and observations.  

5 CONCLUSIONS 
We have presented an extensive experimental study of 
performance interference in running CPU-bound and 
network-bound workloads on separate VMs hosted by the 
same physical infrastructure, enabled by Xen Virtual 
Machine Monitor (VMM).  Eight metrics are used to 
analyze the performance interference among VMs serving 
net I/O workloads that are either CPU bound or network 
bound. Based on measurements and observations, we 
conclude with five key findings which are critical to 
effective management of virtualized cloud for both cloud 
service providers and consumers. First, running network-
bound workloads in isolated VMs on a shared hardware 
platform leads to high overheads due to extensive context 
switches and events in driver domain and VMM.  Second, 
co-locating CPU-bound workloads in isolated VMs on a 
shared hardware platform incurs high CPU contention 
due to the demand for fast memory page exchanges in 
I/O channel. Third, running CPU-bound and network-
bound workloads in conjunction incurs the least resource 
contention, delivering higher aggregate performance. 
However, default Credit scheduler treats network-bound 
workload unfairly under SMP system. Fourth, the 
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Fig. 36. Event number per second for specific 
CPU configurations in Dom0 on Platform III. 
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Fig. 34. Normalized throughput for specific 
CPU configurations in Dom0 on Platform III. 
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Fig. 35. Switch number per second for specific 
CPU configurations in Dom0 on Platform III. 
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performance of network-bound workload is not sensitive 
to CPU core assignment among VMs. In contrast, more 
cores pinned on driver domain delivers worse 
performance for CPU-bound workload. Finally, due to 
fast I/O processing in I/O channel, the limited size on 
grant table can be a potential bottleneck in current Xen 
system. Identifying factors that impact total demand of 
exchanged memory pages is critical to in-depth 
understanding of interference overheads in driver domain 
and VMM layer. 
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