
IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 1

Who is Your Neighbor: Net I/O Performance
Interference in Virtualized Clouds

Xing Pu, Ling Liu, Senior Member, IEEE, Yiduo Mei, Sankaran Sivathanu,
Younggyun Koh, Calton Pu, Senior Member, IEEE, Yuanda Cao

Abstract—User-perceived performance continues to be the most important QoS indicator in cloud-based data centers today.
Effective allocation of virtual machines (VMs) to handle both CPU intensive and I/O intensive workloads is a crucial performance
management capability in virtualized clouds. Although a fair amount of researches have dedicated to measuring and scheduling
jobs among VMs, there still lacks of in-depth understanding of performance factors that impact the efficiency and effectiveness
of resource multiplexing and scheduling among VMs. In this paper, we present the experimental research on performance
interference in parallel processing of CPU-intensive and network-intensive workloads on Xen Virtual Machine Monitor (VMM).
Based on our study, we conclude with five key findings which are critical for effective performance management and tuning in
virtualized clouds. First, co-locating network-intensive workloads in isolated VMs incurs high overheads of switches and events
in Dom0 and VMM. Second, co-locating CPU-intensive workloads in isolated VMs incurs high CPU contention due to fast I/O
processing in I/O channel. Third, running CPU-intensive and network-intensive workloads in conjunction incurs the least
resource contention, delivering higher aggregate performance. Fourth, performance of network-intensive workload is insensitive
to CPU assignment among VMs, whereas adaptive CPU assignment among VMs is critical to CPU-intensive workload. The
more CPUs pinned on Dom0 the worse performance is achieved by CPU-intensive workload. Last, due to fast I/O processing in
I/O channel, limitation on grant table is a potential bottleneck in Xen. We argue that identifying the factors that impact the total
demand of exchanged memory pages is important to the in-depth understanding of interference costs in Dom0 and VMM.

Index Terms—cloud computing, performance measurement, virtualization.

—————————— u ——————————

1 INTRODUCTION

irtualization technology [19], [21] offers many
advantages in cloud based data centers, such as
reducing total costs of ownership, improving energy

efficiency and resource utilization. By providing physical
resources sharing, fault isolation and live migration,
virtualization allows diverse applications to run in
isolated environments through creating multiple virtual
machines (VMs) on shared hardware platforms, and
manage resource sharing across VMs via virtual machine
monitor (VMM) [2]. Although VMM has the ability to slice
resources and allocate the shares to different VMs, our
measurement study shows that the performance of
applications running in one VM would be affected by the
applications running on its neighbor VMs, especially
when these VMs are running at high rates of network I/O
workloads. More importantly, our study shows that the
level of performance interference mainly depends on the
degree of the competition that the concurrent applications
running in separate VMs may have in terms of shared

resources. We argue that the in-depth understanding of
potential interference factors among VMs running on a
shared hardware platform is critical for effective
management in virtualized clouds, and an open challenge
in current virtualization research and deployment.

In this paper, we study performance interference
among multiple VMs running on the same hardware
platform with the focus on network I/O processing. The
main motivation for targeting our measurement study on
performance interference of processing concurrent
network I/O workloads is simply because network I/O
applications are becoming dominating workloads in most
cloud based data centers now. By carefully designing of
measurement testbed and the set of performance metrics,
we derive some important factors of I/O performance
conflicts based on application throughput interference and
net I/O interference. Our performance measurements and
analyses also provide some insights into performance
optimizations for CPU scheduler and I/O channel, and as
well efficiency management of workloads and VM
configurations, such as CPU assignment across VMs.

This paper is structured as follows: Section 2 gives
related work. Section 3 presents the overview of Xen I/O
model, testbed setups, I/O workloads and the metrics used
for performance interference analysis. Section 4 reports our
experimental results and analysis of the performance
interferences with respect to throughput and net I/O under
different co-location of workloads and different allocation
of CPUs to VMs. Section 5 concludes the paper with five
important contributions and future works.

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• X. Pu and Y. Mei were visiting PhD students at the Distributed Data

intensive System Lab (DiSL) of Georgia Institute of Technology from 2008-
2010. X. Pu is with the school of Computer Science in Beijing Institute of
Technology, Beijing, P. R. China, 100081. Y. Mei is with the department of
Computer Science in Xi’An Jiaotong University, Xi’An, Shanxi, P. R.
China, 710049. E-mail: {abenpu, meiyiduo} @gmail.com.

• L. Liu, S. Sivathanu, Y. Koh, and C. Pu are with the College of Computing,
Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30332.
E-mail: {lingliu, sankaran, young, calton} @cc.gatech.edu.

• Y. Cao is with the school of Computer Science in Beijing Institute of
Technology, Beijing, P. R. China, 100081. E-mail: ydcao@bit.edu.cn.

Manuscript received 24 May 2011.

V

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

2 RELATED WORK
Among mainstream VMM products, a relative efficient
I/O performance and a safe execution environment are
provided by the driver domain model, represented by Xen
[27], [28], KVM [29], and Microsoft’s Hyper-V [30]. A main
feature of such a drive domain model is to ensure
execution safety in the driver domain model by sacrificing
I/O performance. Thus, a fair number of research projects
have been dedicated to I/O optimization, CPU scheduling,
measuring tools, and fault isolation. However, there still
lacks of in-depth understanding of performance
interference factors that impact the efficiency and
effectiveness of resource multiplexing and scheduling
among neighbor VMs.

Xen VMM was first introduced by Barham et al. [2], [3]
from the University of Cambridge at 2003. Hypervisor
layer and privileged driver domain are implemented to
ensure better fault isolation effects. Earlier version of Xen
VMM adopts “page-flipping” technique to exchange I/O
data between driver domain and guest domain. It has
been proved that the cost of mapping and unmapping
pages was equivalent to the copy cost for large 1500 byte
packets, which means page-flipping is less efficient than
copy for small packet sizes [24], [25]. To address the
problem of I/O efficiency in the driver domain model, K.
Mansley et al. [16] proposed “direct I/O” to alleviate the
pressure in driver domain by allowing guest domains to
access hardware directly. Though the virtualized system
can act as the native system in some cases, direct I/O is
not considered in our work, as it lacks of dedicated driver
domain to perform fault isolation, which is considered to
be the most important function for system virtualization.

Some recent researches contributed to optimize grant
mechanism. The purpose was to replace page-flipping by
grant copy without giving up driver domain. J. R. Santos et
al. discussed grant reuse originally in their work [25].
Grant reuse decreases the frequency of mapping/
unmapping and communicating obviously. Subsequently,
an enhanced grant mechanism was designed by K. K. Ram
et al. in [22] and implemented in [23]. They adopted
previous grant reuse, and added an I/O Translation Table
(ITT) between driver domain and hypervisor to facilitate
guest domains to perform grant invoke and revoke.

Most existing researches mentioned above focused on
optimizing I/O efficiency based on physical host running
one VM, while only few studies are related to
performance isolation among neighbor VMs. D. Gupta et
al. implemented XenMon [8] to monitor the detailed
system-level values of each VM, such as CPU usage, I/O
count and execution count. Based on the monitoring
results, ShareGuard and SEDF-DC [9] mechanisms are
proposed to improve performance isolation. Y. Koh et al.
[12] studied the effects of performance interference
between two VMs hosted on the same physical platform
by collecting the runtime performance characteristics of
different types of concrete applications. Through
subsequent analysis of collected characteristics, they
predicted the performance of some new applications from
its workload characteristic values successfully within an
average error of 5%. However, our work reported in this

paper, to the best of our knowledge, is the first one that
provided a dedicated performance interference study on
network I/O workloads running in separate VMs under
multiple alternative hardware platforms, ranging from a
dual-core CPU with small L2 cache platform to single core
CPU with large L2 cache to a multi-core CPU platform.

3 OVERVIEW
In this section, we provide a brief background of Xen I/O
architecture. Then we describe the experimental setup,
including measurement method, I/O workloads and
system-level metrics used for performance analysis.

3.1 Xen I/O Overview
Xen [2], [3] is a popular open-source x86 virtual machine
monitor, supporting both full-virtualization and para-
virtualization. Xen uses para-virtualization as a more
efficient and lower overhead mode of virtualizations. In
para-virtualization I/O mode, Xen VMM layer uses
asynchronous hypercall mechanism to deliver virtual
interrupts and other notifications among domains via
event channel. A privileged domain called Dom0 is
treated as driver domain hosting unmodified Linux
drivers and has the access to hardware devices. Dom0
performs I/O operations on behalf of unprivileged guest
domains which are ported to the virtual driver interface
from Linux operating system (XenoLinux). Figure 1 shows
the logical components of the latest Xen I/O model [6].
The virtual network interface in guest domain is called
netfront acting as the real hardware drivers. In Dom0,
netback is a counterpart for netfront. Netfront and netback
use a bidirection ring of asynchronous requests to
exchange data in I/O channel by sharing descriptors of
memory pages pointed in I/O buffer. The bridge in Dom0
handles the packets from NIC and performs the software-
based routine to destination VM.

When a network packet is received by the NIC (RX), it
raises an interrupt to the upper layer. Before the interrupt
reaches Dom0, hypervisor (VMM) handles the interrupt
first. Hypervisor will determine whether or not Dom0 has
the access to the real hardware. Upon receiving the
interrupt, Dom0 starts to process the network packet. It
first removes the packet from NIC and sends the packet to
the bridge. Then the bridge de-multiplexes the packet and
delivers it to the appropriate netback interface. Netback
raises a hypercall to hypervisor, requesting an unused
memory page. Hypervisor notifies corresponding guest

Driver Domain
(Dom0)

Pyhsical

Bridge

N
etback

Hypervisor (VMM)
NIC

Guest Domain

N
etfront

Guest
I/O

Grant
Write Grant

Table

I/O
Tran.
Table
(ITT) Event Channel

I/O Channel
TX

RX

Fig. 1. Xen I/O Architecture.

XING PU ET AL.: WHO'S YOUR NEIGHBOR: NET I/O WORKLOADS INTERFERENCE IN VIRTUALIZED CLOUD 3

domain to grant a page to keep the overall memory
allocation balanced. Netback copies the received data to
granted page in guest domain. Finally, guest domain
receives the packet as if it comes directly from NIC. A
similar but reverse procedure is applied to send a packet
on the send path (TX), except that no explicit memory
page exchange is involved. Only the ownership of
physical page is transferred instead of the real page.

To provide a safe execution environment among VMs,
Xen introduces a series of dedicated isolation mechanisms.
The most outstanding one is grant mechanism, which is
used to protect the I/O buffer in guest domain’s memory
and share the I/O buffer with Dom0 properly [22]. At the
boot time, hypervisor creates a unique grant table for each
guest domain, which only can be accessed by hypervisor
and guest domain. Subsequently, guest domain initializes
an associated memory I/O buffer shared with Dom0.
When Dom0 requests to exchange the I/O data with guest
domain, guest domain invokes a grant, and then simply
write a free entry in grant table with three key information:
1) valid memory page address; 2) Dom0’s id; 3) operation
permission (read-only for transmission or read-write for
reception). After the grant writing operation is finished in
grant table, guest domain issues a hypercall through
hypervisor to Dom0 to pass a corresponding grant
reference, which indexes the correct entry in grant table.
Then Dom0 can find the grant entry by this grant
reference, meanwhile, hypervisor validate Dom0 to
perform the I/O operation in I/O buffer. When I/O
exchange is accomplished or guest domain wants to
repurpose the granted page, another hypercall is issued to
hypervisor. And then, hypervisor synchronizes access
permission of memory page between Dom0 and guest
domain. If Dom0 gives up the granted page, guest domain
revokes the grant by another simple writing operation in
grant table. Dom0 loses the access permission.

3.2 Testbed Architechure
We carefully designed our experiments to exercise net I/O
traffics and evaluate the performance interference. Figure
2 gives a sketch of experimental setup used in this paper.
Two isolated guest domains (i.e., VM1 and VM2) with
equal resource allocations are hosted on the same physical
platform. Apache servers provide the HTTP services in
VM1 and VM2 respectively. Clients using httperf [13] as
HTTP “load generator” are designed to access virtualized
servers remotely. They send requests to corresponding
VM to retrieve a fixed size file: 1 KB, 4 KB, 10 KB, 30 KB,

50 KB, 70 KB, 100 KB or 1 MB. These I/O workloads are
carefully selected from SPECweb’99, SPECweb’2005 and
SPECweb’2009, which are representative log sizes in
current data center. Additional, to reduce the disk
readings, I/O workloads are cached in the buffers in
advance. All tests were performed on three alternative
platforms presented in Table 1. Platform I and Platform II
have dissimilar hardware settings, especially the
capacities of CPU and NIC. As we will show in the next
section, I/O interference on these two platforms is quite
obvious. Platform III is a four-core workstation, which is
used to study the performance impact of different
strategies of CPU allocation among VMs. Physical
machines used in these three scenarios are all connected
by a high speed Ethernet switch. The Linux Kernel
2.6.18.8-xen is recommended for Xen 3.4.0 and 2.6.32.10-
xen is recommended for Xen 4.0.2 respectively.

3.3 I/O Workloads
For each of the three alternative hardware platforms in
Table 1, we first evaluate the actual performance results
and characteristics of each I/O workload running in single
guest domain, which serves as basecase in the rest of this
paper. We only discuss the experimental details of basecase
on Platform I, a representative physical host for
performance interference analysis in next two subsections.

Table 2 shows the maximum performance results of
one guest domain running under the selected net I/O
workloads on Platform I. When server becomes saturated
at full capacity, 1 KB and 4 KB files reach 0.5 to 15 times
higher request throughput than others respectively, and
consume more than 97% CPU resource (approximately,
remaining 2.5% CPU is charged by idle loop and monitor
tool), while network bandwidth utilizations are only
around 20% and 60% respectively. The web mix
performance of these two workloads is limited by CPU
resource. Although the achieved request rates are not
higher than 1200 req/sec, 10-100 KB workloads saturate
the server by consuming all network bandwidth, which is
10 KB × 1104 req/sec ≈ 30 KB × 375 req/sec ≈ 50 KB × 225
req/sec ≈ 70 KB × 160 req/sec ≈ 100 KB × 112 req/sec ≈ 100
MB/sec. Meanwhile, when VM1 is serving one of these
five workloads (10-100 KB), the total CPU utilization is
less than 75%. These reveal that 1 KB and 4 KB workloads
are CPU bounded and 10-100 KB workloads are network
bounded, consistent with the observation made from prior

Xen
NIC Disk

Driver Domain

N/W Disk

VM 1
(Server 1)

Client Client...

VM 2
(Server 2)

Client Client...

Fig. 2. Logical components of virtualized cloud environments.
(Web servers reside in VM1 and VM2. Driver domain is Dom0).

TABLE 1
EXPERIMENTAL ENVIRONMENT

Capacity Platform I Platform II Platform III
CPU Type Pentium 4 Xeon™ Xeon™
Processors 2 1 2

Cores 2 1 4
CPU Freq. (GHz) 3.2 3.0 3.0
L1 Cache (KB) 16 256 256
L2 Cache (MB) 2 6 12
Memory (GB) 2 8 8

DISK (GB) 250 500 500
NIC (Mbit/s) 100 1000 1000
MTU (Byte) 1500 1500 1500

Kernel 2.6.18.8-xen 2.6.18.8-xen 2.6.32.10-xen
Xen 3.4.0 3.4.0 4.0.2

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

research [4], namely short file is CPU bounded and long
file is network bounded. With higher hardware capacities
on Platform II and III, 1-100 KB workloads are CPU
bounded and 1 MB workload is network bounded.

3.4 Initial Interference Analysis and Metrics
In this section we outline the methodology and metrics
used for our measurement study.

Let Dom0, Dom1 … Domn be the VMs running on the
same host, where Dom0 is Dom0. Suppose that Domi is
serving workload i, we define the maximum throughput
of Domi as Ti. We use Bi to denote the maximum
throughput of Domi in basecase scenario where n equals 1,
i.e., only Dom0 and one guest domain are hosted. Then,
the combined normalized throughput is:

1

n
i

i i

Combined Score
T

B=
= ∑

Figure 3 presents the set of experiments conducted on
the setup of two guest domains with each serving one of
the selected workloads on Platform I. We measure the
normalized throughput scores of different combinations
of selected net I/O workloads. The base-case throughput
used in this experiment is the throughput of workloads in
the single guest domain basecase on Platform I. To present
the results clearly, each combination of two workloads
running in VM1 and VM2 is denoted in a tuple of two
elements, with the first element x is xKB file retrieving
from VM1, and the second element y is the yKB file
retrieving from VM2. For example, the expression (1K,
30K) says VM1 serves 1 KB file and VM2 serves 30 KB file.
(1K, Idle) refers to the case where VM1 serves 1 KB
workload and VM2 is idle. From Figure 3, we observe
some interesting facts regarding performance interference.
First, (1K, 100K) achieves the best performance with its
combined throughput score of 1.58. Given that 1 KB
workload is CPU bounded and 100 KB workload is
network bounded, this combination clearly incurs the
least resource contention compared to other combinations.
Similarly, (1K, 50K) is the next best pairing for the similar
reason. (30K, 100K) and (50K, 100K) offer better combined
throughput than the worst combinations of (1K, 1K) and
(1K, 10K), which incur highest resource contention. This
set of experiments indicates that given Xen I/O model and
inherent resource sharing principle across VMs, net I/O
performance interference is unavoidable. Although Xen
uses Dom0 model to provide fault isolation successfully,
Dom0 may easily become the bottleneck when VMs wish
to get accesses to underlying hardware or communicate

with others. Three suspicious points exist here: 1) all
events have to go through Dom0 and VMM layer. This is
supposed to cause communication or control interferences
among VMs; 2) the multiplexing and demultiplexing of
I/O channel may incur memory management interference,
such as grant management and fragmentations; 3) the
default Credit scheduler may affect the overall performance
of neighbor VMs.

To understand these three suspicious points, we collect
eight system-level characteristics from I/O workloads:
VMM events per second (Event). The number of events per

second among VMs in event channel. This metric reflects
communication interference among VMs

VM switches per second (Switch). The number of VMM
switches controls among VMs per second. This metric
reflects control interference among VMs.

I/O count per second (Pages Exchange). During the period
of one second, the number of exchanged memory pages in
I/O channel is captured.

Executions per second (Execution). This metric refers to the
number of execution periods per second for each VM.

I/O count per execution (I/O Execution). During the period
of one execution, the number of exchanged memory pages
is captured. This metric could help to reflect the efficiency
of I/O processing in I/O channel. We divide “Pages
Exchange” by “Execution” to calculate “I/O Execution”.

CPU utilization (CPU). We measured the average CPU
utilization of each VM, including CPU usage of Dom0,
VM1 and VM2 respectively. The total CPU consumption is
the summation of them all.

VM state (Waiting, Block). At any point of time, every VM
must be in one of following three states: execution state,
runnable state and blocked state. When one VM is currently
using CPU, it is in the execution state. The metric “Waiting”
is the percentage of waiting time when a VM is in runnable
state, or in other words, the VM is in the CPU run queue but
do not utilize CPU. The metric “Block” is the percentage of
blocked time when a VM is in blocked state, which means a
VM is blocked on I/O events and not in the run queue.
The metrics of Event, Switch and I/O Execution

directly reflect the interference of communication, control
and I/O processing costs respectively. The remaining
metrics can analyze the details of CPU utilization. These
eight metrics are critical means for us to measure and
understand the communication interference, VMM control
interference and I/O processing costs, which are

TABLE 2
MAXIMUM PERFORMANCE OF WORKLOADS IN BASECASE ON

REPRESENTATIVE PLATFORM I

Workload
Major

Resource
Used

Throughput
(Req/sec)

Net I/O
(KB/sec)

Response
Time
(ms)

CPU
(%)

1 KB CPU 1900 2018 1.52 97.50
4 KB CPU 1750 7021 5.46 97.46
10 KB Network 1104 11048 2.36 70.44
30 KB Network 375 11271 2.52 54.87
50 KB Network 225 11262 2.7 49.62
70 KB Network 160 11255 2.84 47.10
100 KB Network 112 11208 2.08 44.40

0

0.5

1

1.5

2

(1, Idle) (1, 1) (1, 10) (1, 30) (1, 50) (1, 100) (30, 100) (50, 100) (100, 100)

C
om

bi
ne

d
Th

ro
ug

hp
ut

Combinations

Normalized Throughput

1.58

0.99

VM1 VM2

Fig. 3. Normalized throughput on Platform I.

XING PU ET AL.: WHO'S YOUR NEIGHBOR: NET I/O WORKLOADS INTERFERENCE IN VIRTUALIZED CLOUD 5

important for our performance interference analysis. First,
we use these eight metrics to illustrate underlying details
of previous Platform I basecase study. Then the in-depth
factors of performance interference are studied.

Table 3 shows the basecase results of seven selected net
I/O workloads for the most interesting metrics outlined
on Platform I. The values of each workload characteristics
are presented at 100% load for the given workload type.
Comparing with network-intensive workloads of 30 KB,
50 KB, 70 KB, and 100 KB files, CPU-intensive 1 KB and 4
KB workloads have at least 30% and 60% lower event and
switch costs respectively for the network I/O processing
is more efficient in these cases. Concretely, for 1 KB and 4
KB workloads, by comparing waiting and block time,
Dom0 has to wait about 2.5 times longer on the CPU run
queue for being scheduled into the execution state and the
guest domain has 30 times longer waiting time. However,
they are blocked infrequently for acquiring more CPU
resource, especially in guest domain the block time is less
than 6%. We notice that the borderline network-intensive
10 KB file owns the most efficient I/O processing ability
(7.28 pages/exe), while the event and switch numbers are
15% larger than CPU-intensive workloads. Interesting to
note is that initially, I/O execution is getting more and
more efficient as file size increases from 1 KB to 10 KB.
However, with file size of the workload grows larger and
larger (30-100 KB), more and more packets need to be
delivered for each request. The event and switch number
are increasing gradually as observed in Table 3. Note that
the events per second are also related to request rate of the
workload. Though it drops slightly for the workload of
file size 30-100 KB, the overall event number of network-
intensive workloads is still higher than CPU-intensive
ones. With increased file size of shorter workloads (1 KB
to 10 KB), VMs are blocked more and more frequently
from 4.76% to 23.48%. Finally, I/O execution starts to
decline from 7.28 to about 3, when file size is larger than
10 KB. Network I/O workloads that exhibit CPU bound
are now transformed to network bounded as file size of
workloads exceeding 10 KB and the contention for NIC is
growing higher as workload size increasing.

Similar measurements and analyses can also be applied
to basecase on Platform II and III, whose observations are
consistent with Platform I. Understanding these basic
system-level characteristics in basecase scenario helps us to
better understand factors that cause different levels of
performance interference with respect to throughput, net
I/O and multi-core on Platform I, II and III.

4 PERFORMANCE INTERFERENCE ANALYSIS
In this section, first, performance interference on Platform
I and II are presented with workload load rates varying
from 10% to 100%, running selected net I/O workloads.
These sets of measurements are used to analyze
throughput and net I/O interference due to resource
contentions displayed by various workload combinations.
Then, we analyze multi-core performance interference on
Platform III by varying CPU assignments among VMs.

4.1 Throughput Performance Interference
This subsection focuses on studying interference of
running multiple net I/O workloads in isolated VMs. We
first show the performance interference on Platform I and
II, and then provide analysis of performance interference
in each of the two setups respectively, focusing on
understanding the impacts of running different workloads
in conjunction on the aggregate throughput.

4.1.1 Interference in Resource-competiting Workloads
In this group of experiments, the most CPU intensive
workload and the most network intensive workload are
chosen to study different co-location combinations for
each platform. 1 KB file is a representative CPU bounded
workload for both two platforms. The representative
network bounded workload on Platform I is 100 KB file
while on Platform II is 1 MB file. 1 MB workload on
Platform II demands the same request rate as 1 KB file on
Platform I, making comparison easily.

Figure 4 and Figure 5 show the set of experimental
results of throughput interference on Platform I and II
with three combinations of workloads running
concurrently in two VMs, which are presented as (1K, 1K),
(1K, 100K) and (100K, 100K) on Platform I in Figure 4 and
(1K, 1K), (1K, 1M) and (1M, 1M) on Platform II in Figure5.
In all figures, we use the sequence of tuple expression to
denote the workloads running in VMs respectively. Take
the tuple (1K, 100K) for example, it means the workload of
1 KB running in VM1 and the workload of 100 KB running
in VM2. Also we use the notation of (1K, 100K)_1K to
denote the measurement of 1 KB workload in VM1. To
get a clear overview of curves on the same scale in x-axis,
the load rates of different workloads in both figures were
converted into the percentage of maximal achieved
throughput in basecase. For example, 100% load rate of 1
KB workload on Platform I (Figure 4) refers to the
maximal request rate of 1900 req/sec in Table 2. Similarly,

TABLE 3
SYSTEM-LEVEL CHARACTERISTICS OF I/O WORKLOADS WITH WEB SERVER RUNNING IN VM1 ON PLATFORM I.

(VM2 IS NOT CREATED, I.E. BASECASE)
Driver Domain (Dom0) Guest Domain (VM1) Workload CPU (%) Event

(events/sec)
Switch

(switches/sec)
I/O Execution

(pages/exe) CPU (%) Waiting (%) Block (%) CPU (%) Waiting (%) Block (%)
1 KB 97.50 224104 9098 4.93 46.83 4.81 10.54 50.67 38.97 4.76
4 KB 97.46 242216 10525 6.38 46.82 4.77 10.68 50.65 37.72 5.65
10 KB 70.44 279663 15569 7.28 39.7 3.13 13.73 30.74 2.29 23.48
30 KB 54.87 345496 26118 3.87 36.78 1.92 17.78 18.09 1.31 34.32
50 KB 49.62 342584 26981 3.54 34.57 1.22 19.33 15.05 1.14 36.76
70 KB 47.10 341898 27436 3.36 33.41 0.90 19.46 13.70 1.07 37.62
100 KB 44.40 332951 27720 3.17 32.19 0.77 21.04 12.21 1.01 39.08

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

for 100 KB workload on Platform I, the 100% load rate
means the maximum request rate 112 req/sec. The
maximal basecase throughput of 1 KB and 1 MB workloads
on Platform II are 2730 req/sec and 110 req/sec
respectively, shown as 100% load in Figure 5.

Figure 4 shows the throughput of three combinations
on Platform I: (1K, 1K), (1K, 100K), (100K, 100K). We
observe that (1K, 100K)_1K reaches around 1560 req/sec,
which is twice of the maximal throughput of (1K, 1K)_1K,
even though it is still 18% lower than the maximal
throughput 1900 req/sec in basecase. For (1K, 100K)
combination, (1K, 100K)_100K achieves 85 req/sec at 100%
load, which is 76% of maximal throughput in basecase and
52% higher than the throughput of (100K, 100K)_100K.
Note that (100K, 100K) combination causes high network
contention and saturates the host at 50% load (embedded
chart in Figure 4). Figure 5 shows the throughput
measurements of the workload combinations of (1K, 1K),
(1K, 1M) and (1M, 1M) on Platform II. In the combinations
of (1K, 1M) and (1K, 1K), 1 KB workloads achieve
maximum rate both at 100% load, 2608 req/sec and 1962
req/sec respectively. The maximum throughput of (1K,
1M)_1K is only 4% lower than 2718 req/sec of 1 KB
workload request rate in basecase and 33% higher than the
maximum throughput of (1K, 1K)_1K. For network-
intensive 1 MB workload, the achieved maximum rate is
97 req/sec at 100% load in (1K, 1M), which is 88% of the
maximum throughput of 110 req/sec in basecase and 76%
higher than the maximum rate of 55 req/sec for 1 MB
workload in (1M, 1M). It is also observed that (1M, 1M)
saturates the host at 50% load in the enhanced chart.

Recall Figure 3, workload combinations competing for
the same resource, either CPU or NIC, stand a good
chance of performance degradation compared to basecase.
Furthermore, in Figure 5, two workloads that exhibit
distinct resource demands, such as one CPU bound and
another network bound, running together also gets better
performance than same workloads running concurrently
on Platform II. Compare with 1 KB workload on Platform
I, with increased L2 cache size, throughput degradations
of CPU intensive 1 KB file are decreased on Platform II:
from 18% to 4% in the combination of one CPU bound and
one network bound; from 58% to 28% in the combination
of both CPU bound workloads. Because of lower L2 cache
misses [14], even with limited processor numbers and
relative poor CPU frequency, Platform II achieves better
performance for CPU intensive workload. However, L2
cache shows fewer effects on network intensive workload,
they both saturate the hosts around 50% load rate.

4.1.2 Platform I: Throughput Interference Analysis
In this and next section, we provide some in-depth
analysis of key factors that lead to different performance
interference. This section gives the measurements and
analysis on Platform I (Figure 6 to Figure 14). The details
on Platform II are plotted and analyzed in the next section
(Figure 15 to Figure 23).

From Figure 6 to Figure 14, we vary the load rate in x-
axis and plot measured different performance metrics on
y-axis. First, let us examine at the combination of two
network-bound workloads of (100K, 100K) on Platform I.
Figure 6 and Figure 7 show switch numbers and event
numbers when varying load rates from 10% to 100%. Note
that the number of events follows exactly same trend as
switches, though the concrete values are different in scale.
At 50% load, (100K, 100K) reaches the highest switch and
event numbers, and starts to drop until load rate increases
to 70%, then remains almost flat when load rate increases
from 70% to 100%. Comparing with other two
combinations, (100K, 100K) has at least 25% higher switch
and event costs under the peak costs. This implies that
main sources of overhead and throughput interference for
the combination of (100K, 100K) may come from the high
switch and event overheads in Dom0 and VMM.

Figure 8 shows the I/O Execution. As request rate
getting higher, (100K, 100K) exchanges less than four
pages per execution duration. It experiences the worst
efficiency in I/O channel. Practically, heavy event and
switch costs lead to a lot more interrupts that need to be
processed, resulting in few pages exchange during each
execution cycle. Figure 10 and Figure 13 present the block
time of Dom0 and two guest domains respectively. For
(100K, 100K), block time of Dom0 is around 30% after 50%
load. In addition, the block time of guest domains are
around 48% and both are relatively high compared to
other two combinations. This indicates that VMs are
frequently blocked for I/O events and waiting for the next
CPU scheduling. Figure 11 and Figure 14 measure the
waiting time of Dom0 and guest domains. We observe
that (100K, 100K) has the lowest waiting time in both
Dom0 and guest domains. This is mainly due to the high
blocking time, as it reveals that CPU run queues are not
crowd and could serve the VMs much faster.

In summary, we conclude that due to heavy event and
switch costs in (100K, 100K) on Platform I, Dom0 and
VMM are quite busy to do notifications in event channel,
resulting in the fact that Dom0 needs more CPU while
guest domains are waiting for I/O events, demanding

0

400

800

1200

1600

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

R
eq

/s
ec

)

Load (%)

(1K, 1K)_1K (1K, 100K)_1K
(1K, 100K)_100K (100K, 100K)_100K

30

50

70

30 50 70

II

Fig. 4. Throughput performance on Platform I.

0

1000

2000

3000

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (

R
eq

/s
ec

)

Load (%)

(1K, 1K)_1K (1K, 1M)_1K
(1K, 1M)_1M (1M, 1M)_1M

20

50

80

30 50 70

Fig. 5. Throughput performance on Platform II.

XING PU ET AL.: WHO'S YOUR NEIGHBOR: NET I/O WORKLOADS INTERFERENCE IN VIRTUALIZED CLOUD 7

fewer CPU (Figure 12).
For (1K, 1K) combination on Platform I, we observe

that it has the lowest event and switch numbers in Figure
6 and Figure 7. Because (1K, 1K) incurs severe CPU
contention, the poor throughput performance shown in
Figure 4 should come from other factors. In Figure 8, (1K,
1K) combination processes the I/O communication more
efficiently than (100K, 100K), which has almost three times
I/O Execution under heavy load. Moreover, before 80%
load, (1K, 1K) has the highest I/O Execution compared to
other combinations. Thus, we infer that the throughput
interference of (1K, 1K) may be caused by fast I/O
processing between guest domains and Dom0. This
conclusion can be further validated using experimental
results shown in Figure 11 and Figure 14. We observe that
waiting time of Dom0 and guest domains are both the
longest in comparison with other curves, approximately
achieving 17% and 34% respectively, i.e., CPU run queues
are crowded with more vCPUs waiting for being put into
execution state. All VMs in the combination of (1K, 1K),
including Dom0, are eager to use CPU resource. The Credit
scheduler used in our tests is configured with equal weight
for all VMs, i.e., each VM is dispatched with same CPU. In
Figure 9 and Figure 12, CPU usage of Dom0 and guest
domains have similar trend and sharing (100%/3 ≈ 33%)
when they are all demanding for CPU resource.

Briefly, to achieve high throughput, all VMs in (1K, 1K)
need to perform fast I/O processing, which results in
higher interference in CPU scheduling and lower
throughput performance shown in Figure 4.

By analyzing throughput interference in combinations
of (100K, 100K) and (1K, 1K) on Platform I, we understand
that frequent memory page exchange in I/O channel
leads to severe CPU contention among VMs in (1K, 1K),
while (100K, 100K) combination incurs higher event and
switch costs in VMM and Dom0, leading to high level of
network contention. In comparison, the combination of
(1K, 100K) founds a balance to achieve higher throughput
with load rate increasing. Concretely, comparing with (1K,
1K)_1K, Dom0 and VM1 (i.e., (1K, 100K)_1K) experience
blocked state infrequently and shorter waiting time, finally
allocated over 10% additional CPU resource (Figure 10
and Figure 13). Comparing with (100K, 100K)_100K, for
(1K, 100K)_100K, VM2 is blocked frequently and waiting
longer to reduce event and switch costs (Figure 11 and
Figure 14). Finally, page exchanges become more efficient
under high load rate (Figure 8) and Dom0 is better utilized.

From this group of experiments on Platform I hardware
capacity, we draw four concluding remarks:

1. Due to larger number of packets to be routed per
HTTP request, the combination of both network-
intensive workloads leads to at least twice higher

0

4

8

12

16

0 20 40 60 80 100

I/O
 E

xe
cu

tio
n

(p
ag

es
/e

xe
)

Load (%)

(1K, 1K)
(1K, 100K)
(100K, 100K)

Fig. 8. Pages per execution on Platform I.

0.0E+0

1.0E+5

2.0E+5

3.0E+5

4.0E+5

5.0E+5

0 20 40 60 80 100

Ev
en

t (
ev

en
ts

/s
ec

)

Load (%)

(1K, 1K)
(1K, 100K)
(100K, 100K)

Fig. 7. Events per second on Platform I.

0

10

20

30

40

0 20 40 60 80 100

W
ai

t T
im

e
(%

)

Load (%)

(1K, 1K)_1K
(1K, 100K)_1K
(1K, 100K)_100K
(100K, 100K)_100K

0.5

1.5

2.5

30 40 50 60 70

II

Fig. 14. Guests Waiting Time on Platform I.

0

10

20

30

40

50

0 20 40 60 80 100

C
PU

 U
til

 (%
)

Load (%)

(1K, 1K)_1K
(1K, 100K)_1K
(1K, 100K)_100K
(100K, 100K)_100K

Fig. 12. Guests CPU usage on Platform I.

0

10

20

30

40

0 20 40 60 80 100

C
PU

 U
til

 (%
)

Load (%)

(1K, 1K)
(1K, 100K)
(100K, 100K)

Fig. 9. Dom0 CPU utilization on Platform I.

0

10000

20000

30000

40000

0 20 40 60 80 100

Sw
itc

h
(s

w
itc

he
s/

se
c)

Load (%)

(1K, 1K)
(1K, 100K)
(100K, 100K)

Fig. 6. Switches per second on Platform I.

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Bl
oc

k
Ti

m
e

(%
)

Load (%)

(1K, 1K)_1K
(1K, 100K)_1K
(1K, 100K)_100K
(100K, 100K)_100K

Fig. 13. Guests Block Time on Platform I.

0

5

10

15

20

0 20 40 60 80 100

W
ai

tin
g

Ti
m

e
(%

)

Load (%)

(1K, 1K)
(1K, 100K)
(100K, 100K)

Fig. 11. Dom0 Waiting Time on Platform I.

0

20

40

60

0 20 40 60 80 100

Bl
oc

k
Ti

m
e

(%
)

Load (%)

(1K, 1K)
(1K, 100K)
(100K, 100K)

Fig. 10. Dom0 Block Time on Platform I.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

event and switch costs in event channel, making
driver domain busy for processing I/O interrupts,
while leaving guest domains spending longer time
on waiting for corresponding I/O events.

2. To achieve high throughput, the combination of
both CPU-intensive workloads results in guest
domains competing with driver domain for CPU
resource to perform fast I/O processing, while the
switch cost is the lowest, leading to certain level of
performance interference due to CPU contention,
though the degree of interference is relatively less
severe when compared to (100K, 100K).

3. The workload combination with least resource
competition is (1K, 100K). This is mainly due to the
fact that it alleviates stresses in driver domain by
scheduling extra CPU to Dom0 and guest domain
(VM1) serving CPU-intensive workload,
meanwhile, it increases the block time and waiting
time of guest domain (VM2) serving network-
intensive workload to reduce switch overhead.

4. Interference is highly sensitive to the effectiveness
of driver domain due to multiple VMs are
competing for communication efficiency and fast
I/O processing in driver domain.

4.1.3 Platform II: Throughput Interference Analysis
From Figure 15 to Figure 23, we present the measured
metrics details on Platform II, to which the previous
similar analysis approaches on Platform I could also be
applied. Most previous conclusions still work under
Platform II, only except the instance of two CPU-intensive
workloads combination (i.e., (1K, 1K)). Let us focus on
some interesting phenomena of (1K, 1K) on Platform II.

Figure 15 illustrates switch costs per second from load
10% to 100%. After 50% load, (1M, 1M) combination
achieves the highest and relative stable switch cost. The
other two combinations achieve the peak in the range 20%
to 50% and start to drop with load increasing from 60% to
100%. Figure 16 gives measured event number per second
in event channel. Comparing with cases on Platform I: 1)
during the range 10% to 50%, (1M, 1M) does not exhibit
highest event cost, while (1K, 1K) and (1K, 1M) spend at
least more than 17% higher cost, and then (1M, 1M) gains
the highest event cost after 70% load rate (the test is
extended to 150% load); 2) with increased CPU capacities,
messages in event channel get raised for CPU-intensive
workload, while the trends of VMM switch controls
among VMs remain relatively unchanged. In general,
Figure 15 and Figure 16 are consistent compared with the
corresponding cases on Platform I (Figure 6 and Figure 7).

0

10

20

30

40

0 20 40 60 80 100

W
ai

tin
g

Ti
m

e
(%

)

Load (%)

(1K, 1K)
(1K, 1M)
(1M, 1M)

Fig. 20. Dom0 Waiting Time on Platform II.

0

20

40

60

80

100

0 20 40 60 80 100

B
lo

ck
 T

im
e

(%
)

Load (%)

(1K, 1K)_1K
(1K, 1M)_1K
(1K, 1M)_1M
(1M, 1M)_1M

Fig. 22. Guests Block Time on Platform II.

0

10

20

30

0 20 40 60 80 100

C
PU

 U
til

 (%
)

Load (%)

(1K, 1K)_1K
(1K, 1M)_1K
(1K, 1M)_1M
(1M, 1M)_1M

Fig. 21. Guests CPU usage on Platform II.

0

10000

20000

30000

40000

0 20 40 60 80 100

Sw
itc

h
(s

w
itc

he
s/

se
c)

Load (%)

(1K, 1K)
(1K, 1M)
(1M, 1M)

Fig. 15. Switches per second on Platform II.

0

20

40

60

80

100

0 20 40 60 80 100

Bl
oc

k
Ti

m
e

(%
)

Load (%)

(1K, 1K)
(1K, 1M)
(1M, 1M)

Fig. 19. Dom0 Block Time on Platform II.

0.0E+0

2.0E+5

4.0E+5

6.0E+5

8.0E+5

1.0E+6

0 20 40 60 80 100

Ev
en

t (
ev

en
ts

/s
ec

)

Load (%)

(1K, 1K)
(1K, 1M)
(1M, 1M)

Fig. 16. Events per second on Platform II.

0

20

40

60

80

0 20 40 60 80 100

W
ai

t T
im

e
(%

)

Load (%)

(1K, 1K)_1K
(1K, 1M)_1K
(1K, 1M)_1M
(1M, 1M)_1M

Fig. 23. Guests Waiting Time on Platform II.

0

20

40

60

80

0 20 40 60 80 100

C
PU

 U
til

 (%
)

Load (%)

(1K, 1K)
(1K, 1M)
(1M, 1M)

Fig. 18. Dom0 CPU utilization on Platform II.

0

4

8

12

16

0 20 40 60 80 100

I/O
 E

xe
cu

tio
n

(p
ag

es
/e

xe
)

Load (%)

(1K, 1K)
(1K, 1M)
(1M, 1M)

Fig. 17. Pages per execution on Platform II.

XING PU ET AL.: WHO'S YOUR NEIGHBOR: NET I/O WORKLOADS INTERFERENCE IN VIRTUALIZED CLOUD 9

The interference for co-locating network-intensive
workloads comes from high event and switch costs.

Figure 17 shows the I/O Execution on Platform II. It is
quite interesting that (1K, 1K) experiences the worst
memory pages exchange efficiency in I/O channel. It has
no more than 2 pages per CPU execution. Comparing with
the details on Platform I (Figure 8), which indicates co-
locating CPU-bound workloads leads to CPU contention
for fast I/O processing, Figure 17 shows that there is
another factor for performance interference: during each
CPU execution time, the most burdensome job is not
limited to memory pages exchange among VMs.

The details of vCPUs should tell us further information
about this phenomenon. In Figure 18, the measured Dom0
CPU trends for three diverse combinations are plotted.
(1M, 1M) combination maintains a flat CPU usage around
60% under heavy load. However, other two combinations
go up straight to 70% CPU usage with load increasing
from 10% to 100%. Especially, (1K, 1K) reaches almost 80%
CPU usage. Comparing with the cases on Platform I in
Figure 9, the highest CPU utilization is less than 40%,
which is a half of Platform II. Dom0 has some kinds of
jobs to do and demands more CPU on Platform II, because
of quite few pages processed during each CPU execution.
Figure 19 gives the block time of Dom0 and Figure 20
shows waiting time of Dom0. For (1K, 1K) combination,
the block time of Dom0 is around 15% at 50%load and
higher, which is the lowest block time curve, and the
waiting time of Dom0 is around 30% after 50% load,
which is the highest waiting time curve. This indicates
that Dom0 is busy: Dom0’s vCPUs are scheduled into
CPU run queues frequently, and CPU run queues are
crowded with Dom0’s vCPUs.

At this point, it can be concluded that for (1K, 1K)
combination on Platform II, the fast I/O processing is not
the primary interference factor causing CPU contention,
while other potential factors are in the leading position
here. We notice that (1K, 1K) exhibits some specific
numbers of the total CPU utilization on Platform II: with
load rate increasing, the maximum CPU usage is 94.57% at
100% load. Eliminating the system idle and monitor tool
costs, which are round 2.5% in totally, about 3% CPU
resource are remaining. It seems that CPU resource is not
the bottleneck here. Actually, grant mechanism incurs
poor I/O efficiency and rises to be a main interference
factor for the combination of two CPU-bound workloads
on Platform II. We will illustrate more details and analysis
with “zoom in” results in section 4.3.

From Figure 21 to Figure 23, these three figures present
CPU utilization, block time and waiting time of guest
domains for each representative combination respectively.
The overall trends of these three figures hide some useful
information. For CPU-intensive workloads combination
(1K, 1K), guest domains experience relative higher block
time percentage above 55% and the longest waiting time
percentage around 60% under heavy load. In comparison
with the Dom0, which has 15% block time and 30%
waiting time after 50% load rate, guest domains do not
have too much works to do, as Dom0 needs to get into
CPU run queue so frequently. And since CPU run queue

is full of Dom0, guest domains get such high waiting time
percentages. For (1M, 1M), it exhibits the highest block
time percentage, higher than 80% CPU time during the
whole process, and lowest waiting time percentage in
CPU run queue, stabilized around 10% waiting time after
70% load rate and higher. The CPU run queue of (1M, 1M)
is not crowed. Virtualized system is busy to do the VM
switch and event processing, which also proves our
previous conclusions for network-intensive workloads
combination. In summary, the overall block times of three
workload combinations are all above 50% in Figure 22,
which are higher than the cases on Platform I, this is
because platform II has only one physical CPU and thus is
easier to incur congestion in CPU run queue.

Although Platform I and Platform II are heterogeneous,
we observe performance interference between workloads
with high resource contentions due to running in a shared
physical host through running in separate VMs. Moreover,
we would like to draw two additional concluding remarks:

1. With lower L2 cache misses rate due to increased
L2 cache size, even with poor CPU frequency, CPU
contention will be alleviated and interference
performance will be improved for both the
combination of two CPU-bound workloads (i.e.,
(1K, 1K)) and the combination of one CPU-bound
and one network-bound workload (i.e., (1K, 1M)).

2. With higher hardware capacities, especially larger
L2 cache size, interference is still sensitive to the
I/O efficiency in the privileged driver domain for
the combination of two CPU-bound workloads.
The grant table size is another potential bottleneck
in addition to CPU resource.

4.2 Net I/O Performance Interference
From our throughput performance interference analysis in
previous section, we know that the combination of both
CPU-bound workloads (i.e., (1K, 1K) for Platform I and II)
causes throughput interference mainly due to Dom0
demanding for fast I/O processing and grant mechanism
management, while the combination of both network-
intensive workloads (i.e., (100K, 100K) for Platform I and
(1M, 1M) for Platform II) incurs the highest VMM switch
overhead. Moreover, diverse workloads combinations (i.e.,
(1K, 100K) for Platform I and (1K, 1M) for Platform II)
reach better performance by alleviating the stresses in
driver domain. In this section we study the net I/O
interference based on these three types of combinations.

Figure 24 presents the net I/O measurements for (1K,
1K), (1K, 100K) and (100K, 100K) on Platform I. These
curves are highly correlated with trends of request
throughput in Figure 4, based on the fact that (workload
size) × (request rate) ≈ Net I/O. Both 1 KB and 100 KB
workloads in (1K, 100K) achieve higher maximal net I/O
than others under high workload rates, i.e., 1 KB × 1560
req/sec ≈ 1634 KB/sec and 100 KB × 85 req/sec ≈ 8550
KB/sec respectively. It is interesting to note that when the
load rate is approximately less than 70%, (100K, 100K)
gains better net I/O performance compared to (1K, 100K)
combination, while from 30% to 70% load (i.e., the range II
in Figure 24) the net I/O of 100 KB workload in (1K, 100K)

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

combination (i.e., (1K, 100K)_100K) remains flat, around
3600 KB/sec, which is close to the current window size (i.e.,
4 KB) in XenoLinux. It seems that 100 KB workload is
“paused” during range II. We can understand this
phenomenon better by examining the guest domain
details of 100 KB curves presented in Figure 12, Figure 13
and Figure 14. Within the load range 30% to 70%, (1K,
100K)_100K has average 5% higher block time than (100K,
100K)_100K. Meanwhile, the waiting time of (1K,
100K)_100K in Figure 14 (enhanced graph) is keeping
around 2%. Thought, the waiting time of (100K,
100K)_100K increases three times from 0.5% to 1.7%, it is
still the lowest one. These result in (1K, 100K)_100K
utilizes CPU around 4%, while (100K, 100K)_100K
consumes CPU continuously until saturating the NIC.

Despite achieving better request throughput and net
I/O in the combination of (1K, 100K), we notice that 1 KB
workload in this combination gets “priority” treatment
while leaving 100 KB workload blocked more often and
waiting longer. To understand this phenomenon, it is
worthwhile to discuss the details of CPU run queues
under Credit scheduler. Under normal circumstances, all
vCPUs in the CPU queues are served in the FIFO manner.
However, when a VM receives an interrupt while it is idle,
the VM enters the particular Boost state which has a higher
priority to be inserted into the head of the run queue for
the first CPU execution. This mechanism prevents long
waiting time for the latest active VM by preempting the
current running VM. However, the even priority shares of
CPU usage remains a problem for network-intensive
workloads here. Considering (1K, 100K) combination,
because of 1 KB file is the shortest size, it could finish each
request and enters the idle state faster (most infrequently
blocked in Figure 13). Finally, VMM makes the decision to
put VM1 in the head of run queue frequently. This makes
1 KB file have higher priority. Thus, the effects of Credit
scheduler should be considered in virtualized cloud
environments as it is making positive contributions to
CPU-intensive workload while treating network-intensive
workload unfairly with higher processing latency,
bringing poor I/O performance.

In the experimental setups, we configured Platform II
with one CPU run queue with Credit scheduler turned on.
Figure 25 shows the net I/O performance results of three
combinations on Platform II, i.e., (1K, 1K), (1K, 1M) and
(1M, 1M). Herein 1 MB file is the representative network-
intensive workload. It is observed that (1K, 1M) achieves
maximum net I/O 1 MB × 97 req/sec ≈ 96900 KB/sec at

100% load and (1M, 1M) achieves maximum net I/O at
50% load with 1 MB × 55 req/sec ≈ 56100 KB/sec. In
contrast to the network-intensive workload for Platform I
in Figure 24, 1 MB file goes smoothly in both (1K, 1M) and
(1M, 1M) during the entire tested range of workload rates.
The “paused” net I/O phenomenon in Platform I for
network-intensive workload does not occur for Platform II
in Figure 25. According to the latest Xen documents, the
Credit scheduler is designed for multi-core processors. With
single CPU run queue, the scheduling policy of Credit
scheduler is limited and CPU run queue is easy to get
saturation. Under such situation, Credit scheduler works as
the former CPU scheduler BVT [5], leading to a relatively
fair CPU execution treatment.

4.3 Multi-core Performance Interference
We dedicate this section to analyze the impact of multi-
core and larger L2 cache size on performance interference
of co-locating CPU-bound or network-bound workloads
in a virtualized cloud environment. First, the experimental
setup is introduced. Then we study the performance
impact of increasing the number of cores on Platform III in
Section 4.3.1 and analyze different strategies for allocating
cores to driver domain and guest domains in Section 4.3.2.

Table 4 displays the CPU configurations we used for
multi-core interference studies. The left three groups are
the total number of CPUs shared by all VMs without
dedicated allocation of certain cores to specific VMs. We
use these three configurations to further understand the
performance interference of (1K, 1K) combination under
increasing shared number of cores. The right groups of
CPU configurations represent six specific configuration of
assigning individual CPUs to each domain. Herein, we
use the notation of (Dom0, [VM1, VM2]) to denote CPUs
pinned on VMs in a specified order of Dom0, VM1 and
VM2, with [VM1, VM2] indicating that VM1 and VM2 are
sharing same number of CPUs during the measurements.
For example, the expression (1, [2, 2]) means that Dom0 is
allocated one exclusive CPU, while VM1 and VM2 are
configured to share two CPUs. The expression (1, 1, 1)
means each domain owns one CPU exclusively.

The basecase measurement for CPU-bound 1 KB
workload on Platform III is 10000 req/sec. In fact, for all
measurements, only when Dom0 is configured with one
dedicated individual core, the basecase performance of 1
KB workload is limited by CPU resource at 10000 req/sec,
because the achievable maximal request throughput of 1
KB workload for diverse CPU configurations depend on
concrete allocations of CPUs to VMs (especially, in driver

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

N
et

 I/
O

 (K
B

/se
c)

Load (%)

(1K, 1K)_1K
(1K, 100K)_1K
(1K, 100K)_100K
(100K, 100K)_100K

II IIII

Fig. 24. Net I/O performance on Platform I. (Within range II, (1K,
100K)_100K gets poor performance than (100K, 100K)_100K).

0

20000

40000

60000

80000

100000

0 20 40 60 80 100

N
et

 I/
O

 (K
B/

se
c)

Load (%)

(1K, 1K)_1K
(1K, 1M)_1K
(1K, 1M)_1M
(1M, 1M)_1M

Fig. 25. Net I/O performance on Platform II (1 MB workloads goes
more smoothly during the whole test).

XING PU ET AL.: WHO'S YOUR NEIGHBOR: NET I/O WORKLOADS INTERFERENCE IN VIRTUALIZED CLOUD 11

domain). Also guest domains may run into the risk of
insufficient TCP/IP ports with higher request rate than
10000 req/sec1. We believe that using the request rate of
10000 req/sec is sufficient enough to understand multi-
core related performance interference in Table 4. Similarly,
the basecase throughput of network-bound 1 MB workload
is 110 req/ses, limited by NIC used in the experiments.

4.3.1 Performance Impact of Varing Shared Cores
This subsection shows performance interference of left
three CPU configurations in Table 4, where 1, 3 and 4
cores are shared by all VMs respectively. Obviously, the
peak performance points are key entries to understand
performance impacts of co-locating workloads in neighbor
VMs. We concentrate on analyzing these peak points.

Figure 26 displays the achieved maximal load. To get
an overview of performance on all three configurations,
the maximal throughputs are converted into the same
scales in term of the percentage of maximal load rates in
basecase. For (1K, 1K)_1K, 1 KB workload achieves 100%
load with 1 shared core, while dropping to maximal loads
of 40% and 45% for the cases of 3 cores and 4 cores
respectively. In (1K, 1M)_1K, 1 KB workload is also
observed 40% decrement for 3 cores and 35% decrement
for 4 cores. In contrast, 1 MB workload maintains quit
stable request rates in all measured combinations when
we vary the number of shared CPUs, which are 100% in
(1K, 1M)_1M and 50% in (1M, 1M)_1M.

Figure 27 measures the total CPU utilization under
varying CPUs for three combinations of workloads. We
observe that only (1K, 1K) and (1K, 1M) sharing 1 core
consume more than 94% CPU resource and CPUs are
under utilized in all the other cases. More cores do not
improve the overall throughput. It is easy to understand
that (1M, 1M) demands NIC capacity and thus network
I/O becomes the primary resource bottleneck, thus it
leads to low CPU utilization. However, with 1 KB
workload reaching at least 10000 req/sec in the basecase,
one would expect that (1K, 1K)_1K should achieve more
than 50% load and (1K, 1M)_1K is supposed to utilize
CPU adequately to achieve 100% load. Thus, an
immediate question following the observations in Figure
26 and Figure 27 is what the key factors are, which lead to
potential bottleneck and interference for CPU-intensive 1
KB workload running concurrently among multiple VMs.
Recall the performance interference study on Platform II
in the previous sections, comparing with other workload

1We extended TCP ports to 65536. The lower 1024 ports are reserved for
Linux OS, so about 64000 ports are remaining. Httperf timeout is 3 sec [13].

co-location combinations, (1K, 1K) exhibits the lowest I/O
efficiency on Platform II and it only has about 3% CPU not
utilized. With Platform III offering 3 cores or 4 cores
shared across VMs, the combination of (1K, 1K) still
exhibits the lowest I/O efficiency and, furthermore, total
CPU usages are no more than 57%. This result shows that
enhancing CPU capacity by adding more number of cores
or increasing on-chip L2 cache size do not necessarily
guarantee better performance for running CPU-intensive
workloads concurrently among multiple VMs. To be more
specific, CPU resource is not the bottleneck for CPU
bound 1 KB workload. Furthermore, even though TCP/IP
request rate is high with 1KB workloads running in
neighboring VMs on the same host, the monitored NIC
usages and memory are far from the configured maximal
values for neither driver domain nor guest domains. Thus
to answer the question of where the potential bottleneck
and interference factors are for CPU-intensive 1 KB
workload running in multiple VMs concurrently, we next
examine closely on the switches (or events) per second as
well as CPU utilization and block time of each VM.

Figure 28 and Figure 29 illustrate switches per second
in hypervisor and events per second in event channel
respectively. These two numbers are normalized, using
switches (or events) per second of one shared core as the
baseline reference value for each combination. For the
combination of (1M, 1M), the switch and event numbers
are quit similar for three CPU configurations with less
than 10% discrepancy. Intuitively, the small increments of
switches/sec and events/sec are incurred by additional
scheduling costs for managing more CPUs. Recall our
performance interference analysis on Platform II, the
leading interference factor for co-locating network-
intensive workloads comes from switch and event costs
residing in VMM and driver domain, and the resource
bottleneck is the NIC capacity. Important to note is that
these observations remain the same for shared multi-core
environments. Unfortunately, for the combinations of (1K,
1K) and (1K, 1M), we observe a significant increase of the
switch overhead and moderately higher event cost
compared to one core case: switch costs are more than 3.7
times; event values are 2.4 times larger. These overhead
increments are way beyond the overheads incurred by
additional scheduling costs due to managing more cores.

Figure 30 to Figure 33 report CPU utilization and block
time in driver domain and guest domains. Figure 30
shows the descending trends of CPU utilization in Dom0
as the number of shared cores increases. This is consistent
with the increasing switch and event overheads shown in
Figure 28 and Figure 29. Figure 31 shows the increasing
block time of Dom0 as the number of cores increases for
each workload combination. These figures indicate that,
with increasing cores, Dom0 consumes less and less CPU
and is less and less frequently getting into CPU run
queues. In contrast, Figure 32 and Figure 33 show some
opposite trends of CPU usage and block time in guest
domains. For (1K, 1K)_1K and (1K, 1M)_1K, as the
number of cores increases, CPU usage are increasing
gradually and block time are dropping gradually in guest
domains. However, for (1K, 1M)_1M and (1M, 1M)_1M, as

TABLE 4
CPU CONFIGURATIONS FOR MULTI-CORE INTERFERENCE

Total
CPUs

CPU Sharing
(Shared by all VMs)

Total
CPUs

Configuration
(Dom0, VM1, VM2)

1 1 3 (1, 1, 1)
3 3 3 (1, [2, 2])
4 4 4 (1, [3, 3])

N/A N/A 4 (2, [2, 2])
N/A N/A 3 (2, [1, 1])
N/A N/A

4 (3, [1, 1])

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

the number of cores increases, CPU utilizations of guest
domains are decreasing sharply and the block time of
guest domains are dropped by more than 30%. But the
difference in CPU utilization and block time of guest
domains are very small when the number of cores changes
from 3 to 4. Combined with Figure 30 and Figure 31, we
can conclude that guest domains are getting much busier
than Dom0 when serving CPU-intensive 1 KB workload
under multi-core settings. Furthermore, for network-
intensive 1MB workload, when the number of cores
changes from single to multi cores, CPU utilization also
decreases in both Dom0 and guest domains but the block
time decreases only in guest domains and increases in
Dom0. This implies that there are some other cost factors
in addition to multi-core management in guest domains.

To understand other potential interference factors for
CPU-intensive workload running on multi-core system,
we take the combination of (1K, 1K) running with 3
shared cores as a representative instance below. We
investigate some other system-level metrics in these two
guest domains, such as memory usage, disk I/O, network
details, fragmentations, etc [31], when they are serving 1
KB workload at 40% load rate (i.e., maximal achievable
load in Figure 26). During the entire experimental time
suggested by httperf, most metrics are varying within an
acceptable range, no more than 5% discrepancy. The only
exception is the number of SLAB allocators: for each guest
domain, allocated SLAB number goes up from 21 to and
sticks around 148, almost a factor of five. SLAB allocation
[32] is a dedicated memory management mechanism
adopted by Linux system to eliminate fragmentations. The
number of SLAB allocator indicates cached data objects in
guest domains. In practice, this number is associated with
grant mechanism in virtualized Xen system.

Recall section 3.1, when a memory page in I/O buffer is
granted to driver domain, one free grant entry in grant
table is occupied and one new SLAB allocator is created.
The increased absolute number of SLAB allocator equals
to the number of occupied grant entries in grant table. In
(1K, 1K) for 3 shared cores, SLAB allocator gains an
increment of 148 - 21 ≈ 128, which means that each guest
domain is holding approximate 128 table entries during
the experimental period. In the current Xen version, the
maximum number of grant entries is co-defined by

parameters of MAX_MAPTRACK_TO_GRANTS_RATIO
and gnttab_max_nr_frames, which limit the maximum
entries to 128. The purpose of this limitation is to provide
a meaningful number of data copies without occupying
too much kernel memory. When guest domains are
performing high rate I/O processing on shared multi-core
host, applications co-locating with their neighbors
interfere with each other causing hypervisor to be busy
with scheduling and communication. The increased
switch and event overheads lead to the delay of the
operations of grant invoke and revoke. As a consequence,
the grant table easily becomes a bottleneck causing lower
I/O count per execution. In our experiments, for all
virtual instances serving 1 KB workload (i.e., (1K, 1K)_1K
and (1K, 1M)_1K) with all CPU configurations in Table 4,
we consistently observed the grant table bottleneck at the
peak of throughput. Although tuning the parameters of
MAX_MAPTRACK_TO_GRANTS_RATIO and gnttab_
max_nr_frames may alleviate the size limit of the grant
table at the cost of occupying more kernel memory of
guest domains. A balance is worth of study in the future.

In short, the experiments in this section reveal that
increasing number of shared cores among VMs does not
guarantee performance improvement for workloads
running in separate VMs on the same physical host:

1. The performance of CPU-intensive workload (i.e., 1
KB) is highly sensitive to the number of cores
shared by all VMs. In general, throughput
descends gradually when the number of shared
cores increasing

2. The performance of network-intensive workload
(i.e., 1 MB) is relatively insensitive to the number of
cores shared by all VMs.

3. As a result of lower I/O execution, the limitation of
grant table entries can be a potential bottleneck for
guest domains serving CPU-intensive workload.

4.3.2 Specific CPU Configuration Studies
This section is dedicated to understand the performance
impact of specific CPU assignments to each VM, especially,
can we decrease potential communication and scheduling
overheads in VMM and Dom0 through smart assignment
of cores to VMs. We use the right six configurations given
in Table 4 to study the effects of varying pinned CPUs on

0

20

40

60

80

100

(1K, 1K) (1K, 1M) (1M, 1M)

To
ta

l C
PU

 U
tl.

 (%
)

1 CPU 3 CPUs 4 CPUs

Fig. 27. Total CPU utilization.

0

20

40

60

80

100

(1K,1K)_1K (1K,1M)_1K(1K,1M)_1M(1M,1M)_1M

M
ax

. L
oa

d
(%

)

1 CPU 3 CPUs 4 CPUs

Fig. 26. Achieved maximum load.

0

1

2

3

4

5

6

(1K, 1K) (1K, 1M) (1M, 1M)

N
or

m
al

iz
ed

 S
w

itc
h

1 CPU 3 CPUs 4 CPUs

Fig. 28. Normalized switch cost.

0

20

40

60

(1K, 1K) (1K, 1M) (1M, 1M)

D
om

0
B

lo
ck

 (%
) 1 CPU 3 CPUs 4 CPUs

Fig. 31. Block time of Dom0.

0

20

40

60

80

100

(1K,1K)_1K (1K,1M)_1K (1K,1M)_1M(1M,1M)_1M

G
ue

st
 B

lo
ck

 (%
) 1 CPU 3 CPUs 4 CPUs

Fig. 33. Block time of guests.

0

1

2

3

4

5

6

(1K, 1K) (1K, 1M) (1M, 1M)

N
or

m
al

iz
ed

 E
ve

nt

1 CPU 3 CPUs 4 CPUs

Fig. 29. Normalized event cost.

0

10

20

30

(1K,1K)_1K (1K,1M)_1K (1K,1M)_1M(1M,1M)_1M

G
ue

st
 C

PU
 U

tl.
 (%

) 1 CPU 3 CPUs 4 CPUs

Fig. 32. CPU utilization of guests.

0

20

40

60

80

100

(1K, 1K) (1K, 1M) (1M, 1M)

D
om

0
C

PU
 U

tl.
 (%

) 1 CPU 3 CPUs 4 CPUs

Fig. 30. CPU utilization of Dom0.

XING PU ET AL.: WHO'S YOUR NEIGHBOR: NET I/O WORKLOADS INTERFERENCE IN VIRTUALIZED CLOUD 13

each VM by measuring the peak performance in terms of
normalized throughput, switch and event respectively for
the three representative combinations of workloads.

Figure 34 shows achieved maximal request throughput
of each combination under the six CPU configurations.
Throughput results are normalized basing on the values
of basecase, namely 10000 req/sec for 1 KB workload and
110 req/sec for 1 MB workload. First, the impacts on CPU-
bound 1 KB workload are studied. In the group of (1K,
1K)_1K, 1 KB workload gains highest score around 5181
req/sec under (1, 1, 1). With pinned CPUs increasing,
throughput of 1 KB workload starts to drop gradually.
The worst assignment setting is (3, [1, 1]), which reaches
maximal performance around 4351 req/sec. Comparing
with (1, 1, 1), it is 16% throughput degradation. In the
group of (1K, 1M)_1K, throughput drop is also observed.
The best assignment setting is (1, 1, 1) around 7425
req/sec, while the worst is (3, [1, 1]) around 6434 req/sec.
Dom0 is a critical place related to interference factors
when neighbors interact with each other on the same host.
Every I/O data and most messages go through or involve
Dom0. If configured with CPUs exclusively, Dom0 serves
other VMs more efficiently. In Figure 35 and Figure 36, for
1 KB workload, switch and event numbers grows
gradually with throughput drops gradually.

We conclude that for 1 KB workload: 1) less CPUs
pinned to Dom0, better performance obtained; 2) given
the same CPUs pinned on Dom0, more CPUs assigned to
guest domains poorer throughput achieved. Incidentally,
grant table bottleneck is also observed in guest domain
serving 1 KB workload. SLAB’s increment is around 128
as previous case in 4.3.1.

No matter in which workload combination, network-
intensive 1 MB workload utilizes NIC adequately and
exhibits relative stable performance under all specific CPU
assignments: In terms of throughput, we have roughly 110
req/sec in (1K, 1M) and 55 req/sec in (1M, 1M). In terms
of response time, (1M, 1M)_1M keeps around 2 ms and
(1K, 1M)_1M keeps around 10~15 ms. Switch and event
overheads of (1M, 1M) in Figure 35 show tiny difference
among different combinations. These results are consistent
with the 1 MB workload observed in Section 4.3.1.

We summarize the results from Section 4.3.1 and
Section 4.3.2 as follows:

1. Performance of guest domain serving CPU-bound
workload (i.e., 1 KB) is highly sensitive to CPU
assignment among neighbor VMs on the same host,
especially driver domain for three reasons: i) As
more CPUs are assigned to the driver domain

exclusively, throughput performance suffers more;
ii) With the same CPUs pinned on the driver
domain, less CPUs will be shared by guest
domains, which improves the performance by
alleviating switch/event costs; iii) Limited size of
grant entries exists as a potential bottleneck for
high request rate services.

2. For lower request rate and larger data transfer, the
performance of guest domains serving network-
bound workload (i.e., 1 MB) is insensitive to the
CPU assignments among neighbor VMs on the
same host.

In summary, the basis of our measurement interference
analysis can be summarized as a three-step process. First,
we propose to use eight system-level metrics as outlined
in Section 3 to perform the analysis of performance
interference and we argue that they are suitable for
understanding the communication interference, VMM
control interference and I/O processing costs. Second, we
choose to use a basecase on Platform I as a reference and at
the same time to illustrate the usage of some VM-specific
basic metrics, such as block time and waiting time. Finally,
we present a detailed measurement study and analytical
discussion on the most important results and observations.

5 CONCLUSIONS
We have presented an extensive experimental study of
performance interference in running CPU-bound and
network-bound workloads on separate VMs hosted by the
same physical infrastructure, enabled by Xen Virtual
Machine Monitor (VMM). Eight metrics are used to
analyze the performance interference among VMs serving
net I/O workloads that are either CPU bound or network
bound. Based on measurements and observations, we
conclude with five key findings which are critical to
effective management of virtualized cloud for both cloud
service providers and consumers. First, running network-
bound workloads in isolated VMs on a shared hardware
platform leads to high overheads due to extensive context
switches and events in driver domain and VMM. Second,
co-locating CPU-bound workloads in isolated VMs on a
shared hardware platform incurs high CPU contention
due to the demand for fast memory page exchanges in
I/O channel. Third, running CPU-bound and network-
bound workloads in conjunction incurs the least resource
contention, delivering higher aggregate performance.
However, default Credit scheduler treats network-bound
workload unfairly under SMP system. Fourth, the

0.0E+0

4.0E+5

8.0E+5

1.2E+6

1.6E+6

(1K, 1K) (1K, 1M) (1M, 1M)

Ev
en

t (
ev

en
ts

/se
c)

(1, 1, 1) (1, [2, 2]) (1, [3, 3])
(2, [1, 1]) (2, [2, 2]) (3, [1, 1])

Fig. 36. Event number per second for specific
CPU configurations in Dom0 on Platform III.

0.2

0.4

0.6

0.8

1

(1K, 1K)_1K (1K, 1M)_1K (1K, 1M)_1M (1M, 1M)_1M

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(1, 1, 1) (1, [2, 2]) (1, [3, 3])
(2, [1, 1]) (2, [2, 2]) (3, [1, 1])

Fig. 34. Normalized throughput for specific
CPU configurations in Dom0 on Platform III.

0

5000

10000

15000

20000

25000

30000

(1K, 1K) (1K, 1M) (1M, 1M)

Sw
itc

h
(s

w
itc

he
s/

se
c)

(1, 1, 1) (1, [2, 2]) (1, [3, 3])
(2, [1, 1]) (2, [2, 2]) (3, [1, 1])

Fig. 35. Switch number per second for specific
CPU configurations in Dom0 on Platform III.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

performance of network-bound workload is not sensitive
to CPU core assignment among VMs. In contrast, more
cores pinned on driver domain delivers worse
performance for CPU-bound workload. Finally, due to
fast I/O processing in I/O channel, the limited size on
grant table can be a potential bottleneck in current Xen
system. Identifying factors that impact total demand of
exchanged memory pages is critical to in-depth
understanding of interference overheads in driver domain
and VMM layer.

ACKNOWLEDGMENT
This work is partially supported by grants from NSF CISE
NetSE program, CyberTrust program, and grants from IBM
faculty award, IBM SUR, and Intel Research Council. The
first author conducted this research as a visiting PhD student
at Distributed Data Intensive Systems Lab (DiSL), College of
Computing, Georgia Institute of Technology, supported by
China Scholarship Council (CSC) and School of Computer
Science and Technology, Beijing Institute of Technology.

REFERENCES
[1] P. Apparao, S. Makineni, and D. Newell, “Characterization of

Network Processing Overheads in Xen,” Proc. 2nd Int’l Workshop
on Virtualization Technology in Distributed Computing (VTDC ‘06),
pp. 2-9, Nov. 2006.

[2] P. Barham, B. Dragovic, K. A. Fraser, S. Hand, T. Harris, A. Ho,
E. Kotsovinos, A. Madhavapeddy, R. Neugebauer, I. Pratt, and
A. Warfield, “Xen 2002,” Technical Report UCAM-CL-TR-553,
University of Cambridge, Cambridge, Jan. 2003.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” Proc. the 9th ACM Symp. Operating Systems Principles
(SOSP ‘03), pp. 164-177, Oct. 2003.

[4] L. Cherkasova, R.Gardner, “Measuring CPU Overhead for I/O
Processing in the Xen Virtual Machine Monitor,” Proc. USENIX
Annual Technical Conference (ATC ‘05), pp. 387-390, Apr. 2005.

[5] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the
Three CPU Schedulers in Xen,” ACM SIGMETRICS Performance
Evaluation Review (PER ’2007), pp. 42-51, Sep. 2007.

[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.
Williamson, “Reconstructing I/O,” Technical Report UCAM-CL-TR-596,
University of Cambridge, Cambridge, Aug. 2004.

[7] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.
Williams, "Safe Hardware Access with the Xen Virtual Machine
Monitor," Proc. Operating System and Architectural Support for the
on demand IT Infrastructure (OASIS'04), pp. 1-10, Oct. 2004.

[8] D. Gupta, R. Gardner, and L. Cherkasova, “XenMon: Qos
monitoring and performance profiling tool,” Technical Report
HPL-2005-187, HP Laboratories, Palo Alto, Oct. 2005.

[9] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat,
“Enforcing Performance Isolation Across Virtual Machines in
Xen,” Proc. ACM/IFIP/USENIX 7th International Middleware
Conference (Middleware ’06), pp. 342-362, Nov. 2006.

[10] T. Hatori and H. Oi, “Implementation and Analysis of Large
Receive Offload in a Virtualized System,” Proc. Virtualization
Performance: Analysis, Characterization, and Tools (VPACT ’08),
Apr. 2008.

[11] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray, T.

Christian, N. Edwards, C. Dalton, and F. Gittler, "SoftUDC: A
Software-Based Data Center for Utility Computing," Computer,
vol. 37, no. 11, pp. 38-46, Nov. 2004, doi:10.1109/MC.2004.221.

[12] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu,
“An Analysis of Performance Interference Effects in Virtual
Environments,” Proc. IEEE Symp. on Performance Analysis of
Systems and Software (ISPASS ’07), pp. 200-209, Apr. 2007.

[13] D. Mosberger and T. Jin, “Httperf—A Tool for Measuring Web
Server Performance,” In Performance Evaluation Review, vol. 26,
no. 3, pp. 31-37, Dec. 1998.

[14] A. Menon, J. Santos, Y. Turner, “Diagnosing Performance
Overheads in the Xen Virtual Machine Environment,” Proc.
ACM/USENIX Conf. on Virtual Execution Environments (VEE ‘05),
pp. 13-23, Jun. 2005.

[15] A. Menon, A. L. Cox, W. Zwaenepoel, “Optimizing Network
Virtualization in Xen,” Proc. USENIX Annual Technical
Conference (ATC ‘06), pp. 15-28, Jun. 2006.

[16] K. Mansley, G. Law, D. Riddoch, G. Barzini, N. Turton, and S.
Pope, “Getting 10 Gb/s from Xen: Safe and Fast Device Access
from Unprivileged Domains,” Proc. Euro-Par Conf. on Parallel
Processing (Euro-Par), pp. 224-233, Dec. 2007.

[17] Y. Mei, L. Liu, X. Pu, and S. Sivathanu, “Performance
Measurements and Analysis of Network I/O Applications in
Virtualized Cloud,” Proc. IEEE Int’l Conf. on Cloud Computing
(CLOUD ‘10), pp. 59-66, Jul. 2010.

[18] H. Oi and F. Nakajima, “Performance Analysis of Large Receive
Offload in a Xen Virtualized System,” Proc. Computer
Engineering and Technology (ICCET ‘09), pp. 475-480, Aug. 2009.

[19] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin,
“Performance Evaluation of Vrtualization Technologies for
Server Consolidation,” Technical Report HPL-2007-59R1, HP
Laboratories, Palo Alto, Sep. 2008.

[20] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu,
“Understanding Performance Interference of I/O Workload in
Virtualized Cloud Environments,” Proc. IEEE Int’l Conf. on Cloud
Computing (CLOUD ‘10), pp. 51-58, Jul. 2010.

[21] R. Rose, “Survey of System Virtualization Techniques”, Oregon
State University, Mar. 2004.

[22] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner,
"Achieving 10 Gb/s Using Safe and Transparent Network
Interface Virtualization," Proc. ACM/SIGPLAN/SIGOPS Conf. on
Virtual Execution Environments (VEE'09), pp. 61–70, Mar. 2009.

[23] K. K. Ram, J. R. Santos, and Y. Turner, "Redesigning Xen's
Memory Sharing Mechanism for Safe and Efficient I/O
Virtualization," Proc. the 2nd Int’l Workshop on I/O Virtualization
(WIOV '10), pp. 2-9, Mar. 2010.

[24] J. R. Santos, G. J. Janakiraman, and Y. Turner, "Network
optimizations for PV guests," In 3rd Xen Summit, Sep. 2006.

[25] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt. "Bridging
the Gap between Software and Hardware Techniques for I/O
Virtualization," Proc. USENIX Annual Technical Conference
(ATC'08), pp. 29-42, Jun. 2008.

[26] VmWare: http://www.vmware.com, 2010
[27] The XenTM Virtual Machine Moniter: http://www.xen.org, 2010.
[28] Citrix® XenServer: http://www.citrix.com, 2011.
[29] KVM: http://www.linux-kvm.org, 2010
[30] Microsoft® Hyper-V: http://www.microsoft.com/hyper-v-

server, 2011
[31] Collectl: http://collectl.sourceforge.net, 2011.
[32] SLAB: http://en.wikipedia.org/wiki/Slab_allocation, 2011.

XING PU ET AL.: WHO'S YOUR NEIGHBOR: NET I/O WORKLOADS INTERFERENCE IN VIRTUALIZED CLOUD 1

Xing Pu received the BE degree in the
School of Computer Science at Beijing
Institute of Technology in 2004. During year
2008-2010, he was a visiting PhD student at
Distributed Data Intensive Systems Lab
(DiSL) in Georgia Institute of Technology.
Currently, he is a PhD student in the School
of Computer Science, Beijing Institute of
Technology. His main research interests

include cloud computing, mobile computing, system
virtualization, etc.

Ling Liu is a full Professor in the School of
Computer Science at Georgia Institute of
Technology. There she directs the research
programs in Distributed Data Intensive
Systems Lab (DiSL), examining various
aspects of data intensive systems with the
focus on performance, availability, security,
privacy, and energy efficiency. Prof. Liu
and her students have released a number of

open source software tools, including WebCQ, XWRAPElite,
PeerCrawl, GTMobiSim. Prof. Liu has published over 250
International journal and conference articles in the areas of
databases, distributed systems, and Internet Computing. She
is a recipient of the best paper award of ICDCS 2003, WWW
2004, the 2005 Pat Goldberg Memorial Best Paper Award, and
2008 Int. conf. on Software Engineering and Data Engineering.
Prof. Liu has served as general chair and PC chairs of
numerous IEEE and ACM conferences in data engineering,
distributed computing, service computing and cloud
computing fields and is a co-editor-in-chief of the 5 volume
Encyclopedia of Database Systems (Springer). She is currently
on the editorial board of several international journals, such
as Distributed and Parallel Databases (DAPD, Springer),
Journal of Parallel and Distributed Computing (JPDC), ACM
Transactions on Web, IEEE Transactions on Service
Computing (TSC), and Wireless Network (WINET, Springer).
Dr. Liu’s current research is primarily sponsored by NSF,
IBM, and Intel.

Yiduo Mei received the BE degree and the
PhD degree in Computer Science and
Technology from Xi’an Jiaotong University
in 2004 and 2011, respectively. He was a
visiting PhD student from 2008-2010 at the
Distributed Data intensive Systems Lab
(DiSL) in Georgia Institute of Technology,
Atlanta, USA. His main research interests
include cloud computing, grid computing,

system virtualization, performance optimization and trust
management in distributed and virtualized systems. He is
currently a postdoc in the China Center for Industrial
Security Research, where he works on systems and
applications security and related research.

Sankaran Sivathanu is a member of the performance team at
VMware Inc., Palo Alto, where he works on various storage
performance issues in virtualized system stack. He received
his PhD in Computer Science at the College of Computing in

Georgia Institute of Technology in 2011.
Prior to that he obtained his Master’s
degree in Computer Science at Georgia
Tech and Bachelor's degree in Anna
University, India in 2007. His research
interests include end-to-end I/O
performance issues in large-scale
virtualized deployments, workload
characterization of emerging applications,

faithful workload reproduction techniques, etc.

Younggyun Koh received his PhD degree
from the School of Computer Science in the
College of Computing at Georgia Institute
of Technology in summer, 2010. His
research interest lies in cloud computing,
system virtualization, system performance
optimization. After graduating from
Georgia Tech, he joined Google, USA.

Calton Pu received his PhD from
University of Washington in 1986 and he is
holding the position of Professor and John
P. Imlay, Jr. Chair in Software in the School
of Computer Science, Georgia Institute of
Technology. He is interested in and has
published in operating systems, transaction
processing, software dependability and
information security, Internet data

management, and service computing. He is currently
working on two major projects: 1) automated system
management in cloud environments; 2)
document/information quality analysis, including spam and
wiki vandalism detection. In addition, he is working on
automated workflow, information integration, cyber physical
systems, and service computing. He has published more than
70 journal papers and book chapters, 200 refereed conference
and workshop papers. He served on more than 120 program
committees, including PC chairs or co-chairs (7 times) and
general chairs or co-general chairs (8 times), and conference
steering committees. His research has been supported by NSF,
DARPA, ONR, AFOSR, NIH, and industry grants from ATT,
Fujitsu, HP, IBM, Intel, Wipro, among others.

Yuanda Cao is a full Professor in the
School of Computer Science and the School
of Software at Beijing Institute of
Technology. He received BE degree from
Beijing Institute of Technology in 1967. His
main research interests include artificial
intelligence, distributed computing, grid
computing, etc.

	1_TSC-2011-05-0045-main
	6_Bio

