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Abstract

Social influences, the phenomena that one individual’s
actions can induce similar behaviors among his/her
friends via their social ties, have been observed prevail-
ingly in socially networked systems. While most exist-
ing work focuses on studying general, macro-level influ-
ence (e.g., diffusion); equally important is to understand
social influence at microscopic scales (i.e., at the gran-
ularity of single individuals, actions, and time-stamps),
which may benefit a range of applications. We propose
u1SI, a microscopic social-influence model wherein: indi-
viduals’ actions are modeled as temporary interactions
between social network (formed by individuals) and ob-
ject network (formed by targets of actions); one indi-
vidual’s actions influence his/her friends in a dynamic,
network-wise manner (i.e., dependent on both social and
object networks).

We develop for uSI a suite of novel inference tools
that enable to answer questions of the form: How may
an occurred interaction trigger another? More impor-
tantly, when and where may a new interaction be ob-
served? We carefully address the computational chal-
lenges for inferencing over such semantically rich mod-
els by dynamically identifying sub-domains of interest
and varying the precision of solutions over different sub-
domains. We demonstrate the breadth and generality
of pSI using two seemingly disparate applications. In
the context of social tagging service, we show how it
can help improve the accuracy and freshness of resource
recommendation; in the context of mobile phone call
service, we show how it can help improve the efficiency
of paging operation.

1 INTRODUCTION

Cascading behavior, diffusion, and propagation of ideas,
innovations, and information are fundamental processes
taking place in socially networked systems [1, 2, 3]. It
is well recognized that social influence is one complex
and subtle force that governs these dynamics [4, 5]: the
actions of one individual may induce his/her friends to
behave in a similar way via their social connections.
Interpreting an individual’s behavior in his/her social
context and correlating the actions of socially connected
individuals are thus of tremendous interests from both
analysis and design perspectives.

lingliu@cc.gatech.edu

Recently social influence analysis has attracted
intensive research interests, with examples including
differentiating the effects of social correlation (e.g.,
homophily and confounding) and social influence on
users’l activities [4], verifying the existence of corre-
lation between personal behavior and social connec-
tion [5], finding the most influential nodes in social
networks [6, 7], estimating the influence strength of so-
cial ties [8], and inferring influence channels for implicit
networks [9]. Most of these studies focus on general,
macro-level influence phenomena, irrespective of con-
crete users, actions, or time-stamps. We argue that
equally important is to understand and model social in-
fluence at microscopic scales (i.e., individual users, ac-
tions, and time-stamps), which may carry significant
benefits for a range of applications, such as

e Information filtering. With the advance of Web 2.0
technologies and social media, the amount of infor-
mation received by normal users can easily go beyond
their processing capacities (e.g., an average Twit-
ter user receives over 93 tweets per day). Under-
standing at individual level how the browsing behav-
iors of users with similar interests affect each other
may facilitate personalized recommendation to ef-
fectively filter uninteresting information and deliver
high-quality information in time.

o Mobile phone-call service. Recent studies on human
mobility [10, 11, 12] have revealed strong correlation
between geographical and social distance of individ-
uals (e.g., users tend to make more calls to closer
friends within closer geographical distance). Mod-
eling such influence at the level of individual users
and locations offers valuable insight into character-
izing user mobility and creating caller-callee profiles,
which may significantly improve the efficiency of pag-
ing operation [13].

e Targeted advertising. Through “word of mouth” and
product comparison, one user’s purchase of a prod-
uct may trigger his/her friends to buy functionally
similar products, but with more personally favor-
able features [3, 14]. Clearly, accounting for such
influence at the granularity of particular users and

TFollowing we use “user” and “individual” interchangeably.



Figure 1: Example of social and object networks.

products is crucial for developing successful adver-
tisement strategies.

Not surprisingly, modeling microscopic social influ-
ence is in general a difficult task, featuring a set of
unique challenges: (i) the model should account for
the distinct characteristics of individual users, actions,
and time-stamps, as well as their complex interconnec-
tions; (ii) it should support application-specific, micro-
level influence mechanisms (e.g., how one action induces
another concretely); (iii) it should be accompanied by
scalable inference tools to track the influence of occurred
actions and predict future actions. None of these chal-
lenges are trivial. Consider challenge (iii) for example:
given that we target the level of individual users and
actions, we need to consider all the potential actions by
all the users when performing inference, which implies
prohibitive computational complexity for large user or
action space. This work, to our best knowledge, rep-
resents the first attempt to model microscopic social
influence at the granularity of individual users, actions,
and time-stamps.

For the first challenge, in contrast of alternative
models such as bipartite network or heterogenous net-
work [15], we define a more general model (shown in
Figure 1) wherein: it replicates all individual users and
objects (targets of actions, e.g., weblogs), whose inter-
connections respectively form social network and object
network; meanwhile, actions are modeled as temporary
interactions between these two networks, which reflect
their dynamic nature.

For the second challenge, we propose a novel heat
field over product network (HFPN) model to encode the
concrete influence mechanism. Intuitively in the “prod-
uct” of social and object networks, each node represents
one potential action, while each edge represents the “in-
fluence channel” between two actions. The influence is
naturally modeled as “heat” that flows through such
channels. The flexibility of this model lies in its poten-
tially unlimited number of ways to specify the influence
channels and strengths.

For the third challenge, we develop a complete li-
brary of inference operations that capacitate to contin-
uously track the state of “heat distribution” over HFPN
model, update the state once new actions are observed,
and predict where and when new actions may occur.
We carefully address the computational challenges for

inferencing over HFPN model by drawing analogy to fi-
nite element analysis (FEA), where the key idea is to
vary the precision of numerical methods over a phys-
ical domain. In this paper, we present solutions that
dynamically identify sub-domains of interest (over the
entire space of potential actions), and vary the precision
of influence estimation around interesting sub-domains.

We entitle this complete framework as uSI. We con-
duct an empirical evaluation in two seemingly disparate
applications using real-life datasets. In the case of social
tagging service (e.g., Del.icio.us), we perform web re-
source recommendation based on the prediction of uSI,
which demonstrates significant improvement over con-
ventional solutions in terms of accuracy and freshness
of recommendation. In the case of mobile phone call
service, we apply uSI to improve the efficiency of pag-
ing operation by reducing the number of cells to search.
It is shown that pSI enhances the state-of-the-art callee
profile-based approach [13] by reducing about 25% of
signaling traffic.

The remainder of the paper is organized as follows.
Section 2 surveys relevant literature; Section 3 intro-
duces the fundamental concepts and building blocks of
uSI; a library of inference operations are presented in
Section 4, in which we also detail their scalable imple-
mentation; we present the empirical evaluation of uSI
in Section 5; the limitations of uSI and future research
directions are discussed in Section 6.

2 RELATED WORK

Network dynamics has been a long-lasting topic for net-
work science. Existing research mostly focuses on study-
ing network dynamics within the setting of a single, ho-
mogenous network, with examples including diffusion
and propagation [1], influence maximization [2, 7], com-
munity formation [16], and network evolution [17, 18].
Recently intensive research efforts have been directed
to social influence in online networks [4, 8]. Using the
terms of our microscopic influence model, these works
essentially focus on the interactions between one (im-
plicit) object and multiple users.

More recently, a few works have started to take ac-
count of the rich information conveyed by the inter-
actions between multiple objects and users, to detect
communities [19], to analyze the evolution of both ob-
ject and social networks [20], or to model topic-sensitive
social influence [21]. In all these cases, however, the re-
lationships between users and objects are modeled as a
heterogenous network wherein user-object interactions
are treated as static links. This formation, even though
amenable to graphical model-based learning, ignores the
dynamic nature of interactions (i.e., time-sensitivity),
which we deem as one key element in understanding
and modeling microscopic social influence.

The work closest to ours is perhaps [22], in which
the authors attempt to predict the social influence of
a specific user-object interaction, i.e., how many other



users will interact with the specific object. We target a
more general setting wherein multiple interactions may
exert their influence simultaneously. Moreover the time
sensitivity of social influence is ignored in [22].

There are several other lines of work we build upon.
Heat field model on a manifold has been applied for clas-
sification [23] and spam-resilient ranking [24]. Mean-
while, product network, especially Kronecker product
has been applied to model graph generation [25] and
dynamic tensor analysis [26]. To the best of our knowl-
edge, however, the present work is the first that consid-
ers the optimization of heat field model in the context
of product network.

3 FUNDAMENTALS
This section introduces the basic building blocks of uSI.

3.1 Preliminaries

We start with introducing a set of fundamental con-
cepts used throughout the paper. We consider two types
of entities, “users” (subjects of actions, e.g., Internet
users) and “objects” (targets of actions, e.g., weblogs).
We first formalize the concept of interaction.

Definition 1 (INTERACTION/ACTION). An interaction
(or action) is a temporary (say, occur at a specific
timestamp t) association between a user u and an object
v, denoted by ¢(u,v,t).

Examples include Internet users reading weblogs
and mobiles connecting to base stations. We consider
such interactions within the context of networks.

Definition 2 (NETWORK). A network is modeled as a
(directed) graph G = (V, E) where V and E represent
a set of entities and their interconnections, respectively.
Each e € E may be further associated with weight w(e)
specifying the strength of such interconnection.

The interconnections in social and object networks
may convey different meanings. In social network, an
interconnection between two users indicates their social
tie, which functions as the channel of social influence;
while in object network, an interconnection between
two objects indicates their proximity in certain sense,
e.g., semantic similarity of two weblogs (as reflected in
their references to each other), or geographical closeness
of two cellular towers. Interestingly, such proximity
may also become the channel via which one interaction
influences another. For example, after reading one
weblog, a user may further read another relevant one
by following their reference.

3.2 Building Blocks

To model the influence of occurred interactions {¢} on
triggering (potential) interactions {¢'}, we essentially
need to capture (i) how the influence of {¢} is passed to
{#'}, (ii) how much influence is transferred, and (iii)
how the accumulated influence at {¢'} triggers their
occurrence.
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Figure 2: Examples of product networks.

3.2.1 Product Network Model

The structures of both social and object networks con-
strain the locality of the influence between interactions,
i.e., interaction ¢ = (u,v,t) tends to affect “neighbor-
ing” users of u or objects of v.

Ezxample 1. In Figure 1, assuming G as an online social
network and G as a blogosphere, after reading weblog
vg, user ug may further read vy if interested in the
topic covered by vg. Meanwhile, knowing that his/her
friend uo has read vy, user u; may also be interested
in reading it. Therefore the interaction (ug,vo) triggers
both interactions (ug,v1) and (u1,vo).

It is clear that such concrete “influence channels”
are highly application-specific: the influence may spread
over a single network or over both networks simultane-
ously, or may feature different spread rates within two
networks. Instead of attempting for a one-size-fit-all
model, we enable a class of influence channel instantia-
tions based on the concept of product network.

Definition 3 (PrRODUCT NETWORK). For two net-
works Go = (Vo, Ep) and G1 = (V1, E1), their product
network is defined as a graph Gx = (Vi, Ex) such that
node ¢ = (u,v) € Vi if u € Vo,v € Vi, while the exis-
tence of edge ¢; — 5 ((ui,vi) — (uj,v;)) can be specified
by any logical statements of w; — uj, v; — v, u; = u;,
and v; = v;.

As an example, Tensor product (Gg) is defined as
¢i_¢j ((ui,vi)—(uj,vj)) TU—U; € Epy and Vi—V; € FEi.

In the product of two networks Gy and Gi, each
node ¢ = (u,v) essentially corresponds to a (potential)
interaction between u € Gy and v € Gi, while each
edge specifies an influence channel between two inter-
actions. The flexibility of the specification of edges al-
lows application-dependent instantiation, as shown in
the next example.

Ezxample 2. Figure 2 shows a subset of possible product
networks corresponding to two sub-networks {ug,u1} C
Go and {vg,v1,v2} C G1 in Figure 1.

A critical question is how to choose the “right”
product model for the intended application. To an-
swer this, we need to understand the influence prop-
agation pattern by observing historical data (details in
Section 5). In Example 1, we may choose Cartesian
product because it is observed that the influence propa-
gates between connected users (with respect to a specific
weblog) or between connected weblogs (with respect to a



specific user), but not simultaneously. Another question
is how to determine the weight w;; of edge ¢; —¢; € Ex,
which essentially specifies the influence spread rate from
¢; to ¢;. In this paper we set w;; based on the weight
wy; and wj; of corresponding edges u; — u; and v; — v,
in Go and G;. We will detail the setting of parameters
in Section 5.

3.2.2 Heat Field with Update Model

Heat diffusion [23] is a physical phenomenon wherein
heat flows from positions with high temperature to that
with low temperature. It has been observed [24, 27] that
this is a natural way to describe the influence spreading
from occurred interactions to other (potential) interac-
tions: occurred interactions can be considered as heat
sources with high temperature, and their influence is
modeled as heat that flows to other (potential) interac-
tions with low temperature through the underlying ge-
ometric structure of product network; the accumulated
heat at a potential interaction indicate its tendency to
happen; the initial heat sources (occurred interactions)
and geometric structures (influence channels) determine
the heat distribution.

More specifically, let f;(t) represent the heat
amount (or temperature) at node? ¢; at time t. During
a tiny time period [t, ¢ + At], we consider two types of
heat movement.

e The heat node ¢; receives from or transfers to its
neighbor ¢; through edge (influence channel) ¢; —¢;,
T(i,j,t, At) over period At. Intuitively, T(i, j,t, At)
should be proportional to the difference (f;(t) —
fi(t)), the elapsed time At, and the weight w;; of
edge ¢; — ¢; (which specifies the influence spread
rate over ¢; — ¢;).

e The heat of ¢; diffuses to the environment surround-
ing the network, D(i, ¢, At), which captures the intu-
ition that the influence decays with time, even with-
out being transferred to other interactions. We as-
sume that D(i, ¢, At) is proportional to the heat f;(t)
and elapsed time At.

Combing the two components above, we can formu-
late the heat change at node ¢; at time ¢ as follows:

filt + At) — f;(t)
= Dgi—a, owii (f5(t) — fi(t) At — Bfi(t) At

where a and [ denote respectively the diffusion rate
inside and outside the network. Note that here we
consider the product network as an undirected graph,
while the discussion can be readily generalized to the
case of directed or probabilistic network. Expressed in
a matrix form:

£(t + At) — £(t) = (a(W — D) — BI)E(t)At

?In the context of product network, we consider the terms

“node” and “interaction” interchangeable.
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Figure 3: Operations of uSI.

where W denotes the weight matrix of product network,
the diagonal matrix D is defined as D;; = > Gimb; Wi,
and I an identify matrix. Let H = W — D. With
At — 0, we have the solution: f(t) = e!@H=BDf(0).
We name the heat distribution over the network as the
heat field (HF).

It is noticed that this is a time-invariant system,
i.e., for f(t1) = f(t2), we have f(t; + At) = f(t2 + At).
Based on this nice property, we can readily incorporate
the mechanism of update in our model: an update at
t replaces f(-) with a (possibly arbitrary) configuration
f*, i.e., starting from ¢, the system evolves with f* as
the initial condition, that is

(31) f(t + At) = eAt(O‘H_ﬁI)f(t) N eAt(aH—BI)f*

We entitle the combination of product network and
heat diffusion with update models as heat field over
product network (HFPN). Using HFPN, we can contin-
uously track the heat distribution over the product net-
work; for newly occurred interactions, we consider them
as new heat sources, and update the heat field accord-
ingly. In general the initial heat should be set according
to the influence capacity of corresponding users or ob-
jects (e.g., users who have more friends tend to have
more capacity). In this paper, without loss of gener-
ality, we assume that each new heat source is initiated
with one unit of heat.

3.2.3 Invocation Model

The accumulated influence at node ¢; at given time ¢
indicates the tendency that the corresponding interac-
tion occurs at ¢t. Yet, we need an invocation model that
describes how the accumulated influence at ¢; actually
triggers its occurrence.

We assume that with heat as f;(t), ¢; is activated
with probability g(f;(t)—A), where A is a threshold. The
function g(-) has the property that g(z) = 0 if z < 0,
and is non-decreasing as x increases.

The concrete formation of invocation model should
be empirically validated and parameterized using histor-
ical data in intended application, with details discussed
in Section 5.

4 TRACKING, UPDATING, PREDICTING

Atop the heat field over product network and invocation
models, we now construct the complete framework
of uSI, which enables to track, update, and predict
interactions.



4.1 A Complete Framework

Starting with the heat field of product network G«
of Gy and G; at any given time, pSI capacitates us to
perform the following three operations:

e Track. Given the estimation of heat field f({y4) at
time t,;q when the latest interaction is observed, we
estimate the current heat field f(¢,0u);

e Update. For an interaction ¢ that is observed at
current time t,,,, we update the estimation of heat
field f(¢,0w) accordingly;

e Predict. Based on the estimation regarding current
heat field f(thow), we predict the heat field state
f(tnew)? at a future time t,,eq -

The relationships among these operations are illus-
trated in Figure 3. Equipped with the three operations,
we are able to query the state of heat field at arbitrary
time-stamp?.

4.2 Implementation

The concepts of Track and Update in the HFPN model
are fairly straightforward. Specifically, for tracking,
given previous state f(t,4), the current heat field can
be estimated as f(tpoy) = eltnow=toa)(@H=BDf (¢ ).
for updating, given an observed interaction ¢; =
(Wi, Vi, tnow), we consider it as a new heat source, and
update fi(tnow) = 1.

Directly evaluating this model features prohibitive
computational complexity due to the costly matrix ex-
ponential operation. In general, for matrix exponen-
tial eM, we may resort to a discrete approximation:
eM ~ (I + M/N)N, where N is the number of itera-
tions that controls the error ||(I +M/N)N —eM||. Next
we expose possible solutions that further simplify the
computation by (i) fully exploiting the structural prop-
erties of product network and (ii) intelligently caching
and reusing invariant intermediate results. Due to space
constraint, we use Cartesian product as an example,
while our discussion can be extended to other types of
product networks.

4.2.1 Decomposition of Product Network
Note that Eq. (3.1) can be re-written as

f(t—l— At) _ efAt(aDJrﬁI)eAtan(t)

While e~2HeP+8D) (oD + BI) is diagonal) is easy
to compute, we focus on e *Wf(t). In the case of
Cartesian product, the weight matrix W is defined as
a Kronecker sum W = Wy ® I + I ® Wy, where W;
(¢ = 0,1) represent the weight matrices of component
networks. The matrix exponential of Kronecker sum
has a nice property.

3We use f and f to distinguish the estimates using predicting
and tracking, respectively.

4Note that essentially we can also derive a “Backtrack” oper-
ation that takes current state f(tnow) as input, and estimates the
heat field At ago: ?(tnow — At).

Property 1. For matrices My and M, the exponential
of their Kronecker sum satisfies eMo®M1 = Mo i oM

We therefore have the following transformation:

eAtaW _ eAtaWo ® eAtaW1

Let m = vec(M) denote the vectorization of matrix
M formed by stacking the columns of M into a single
column vector m, and M = dvec(m) be the inverse
operation. We have the next property.

Property 2. For three (multiplication compatible) ma-
trices My, My, and X, the following vectorization prop-
erty holds: (Mo ® M )vec(X) = vec(M X MT).

Clearly, the matrix-vector multiplication can be
computed in O(n?) time for |M;] = n? (i = 0,1).
Especially, when M, and M; are sparse (which is
typically the case), it can be more efficient: if there
are O(n) non-significant entries in My and M, the
computation takes only O(n?) time. Thus for Cartesian
product network, we have the following transformation
of heat field equation:

£(t + At) = e~ 2D yoc(eA10Wi dyec(£(t))e AW )

4.2.2 Caching of Intermediate Results
It is noticed that in the heat field equation for given
f(t), «, and B, £(t + At) is essentially a function of At.

Clearly, if the time dimension can be discretized into
time-ticks dt, we can essentially cache the intermediate
results e2HH=B1) for At = §t, 26t, ..., and reuse them
in state estimation. In following we use x(7) to denote
the “kernel” e®*(@H—=BI)  The saving of computation,
however, comes at the expense of storage. We introduce
two optimization strategies to strike a balance between
computation and storage costs.

Instead of storing x(i) for all ¢’s from 1 to m, we
may selectively cache a subset of i’s in a geometric
manner, i.e., i = 20,21 . 2°%2™ (assuming m is an
exponential of two). We can now compute f(t+ kdt) for
any k € [1,m] as the multiplication of less than log, m
matrices k(-) and vector f(t).

Next we introduce the second optimization strategy,
partial materialization. Instead of caching entire matrix
exponential, we may only need to cache its core part,
which, in conjunction of geometric increment, leads to
a both space and computation efficient scheme. Recall
that in Cartesian product, the heat field function is de-
fined as f(t 4 kot) = e~ ROUaDHAI) ghotaWo g pkdtaWi £ (1),
Clearly, the term e #0*(aP+81) i directly computable;
while the part eFoteWo @ ¢kdtaWi can be re-written as:

J J
ek&taWO ® ek&tawl (H 62’% JtaWO) ® (H 82’%‘ amwl)
=1 =1
J J
= ([[rok:) @ (J w2 (k)
=1

=1



where we only cache the part {ko(z)} and {xk1(z)}
(x = 0,...,logom — 1), reducing the storage cost to
O(n?logm). Meanwhile, the computation now consists
of no more than (2log, m + 2) matrix multiplications,
thus featuring complexity of O(n?376 logm) if the state-
of-the-art matrix multiplication algorithms are applied.

4.3 More on Prediction

The Predict operation essentially takes as input the
current state f(t,0,), and attempts to estimate a fu-
ture state f'(tnew). The difficulty lies in taking ac-
count of those interactions that may occur during the
time interval (fnow,tnew]. These potential interac-
tions (invocations) may make the actual result signif-
icantly deviate from the invocation-agnostic prediction
e(tmw_t”"w)(o‘H_ﬁI)f(tnow).

A naive solution would be a Monte Carlo
simulation-based scheme: we divide the time axis into a
sequence of high-resolution “time-ticks”, each of length
d: at the (i + 1)-th tick, we estimate f(¢t 4+ (¢ + 1)d)
based on the simulation result of f(t + id;) (essentially
a tracking operation); for an interaction ¢; with heat
above A\, we activate it with probability according to
g(fi(t+(i+1)d;)— ) in the invocation model (essentially
a sampling operation). While intuitive and faithful to
the invocation mechanism, this scheme suffers scalabil-
ity issues especially when the network scale is large or
the granularity of time-tick is small, because it involves
the tracking and sampling operations at each time-tick
and possibly for all potential interactions. We consider
this scheme as the baseline solution in comparison.

We attempt to construct a scheme that provides
flexible trade-off between the cost of tracking and sam-
pling operations and the quality of simulation results.
We start with defining the concept of activation window.

Definition 4 (AcTivATION WINDOW). For given
threshold A and interaction ¢;, a time interval [ts,t.]
is called an activation window of ¢; if (i) fi(t) > X for
t € (ts,te) and (ii) A[tL,t.] D [ts,te] has such prop-
erty. The peak value max; f;(t) (t € [ts,te]) is called the
window height, and ts and t. the starting and ending

bounds of the window.

According to the invocation model, inside each ac-
tivation window, the potential interaction obtains the
opportunity to be activated. A model faithful to the
exact simulation guarantees that such opportunities are
fully respected. We therefore strive for an approximate
objective: each interaction is given (with high probabil-
ity) one activation opportunity during each of its win-
dows; while the probability is positively correlated with
the window height. This is similar to Finite Element
Analysis (FEA) in spirit.

Based on this approximation, we propose a “lazy-
probing” scheme that allows to skip state estimation
during a “safe window” without denying the invocation
opportunities for highly likely interactions. To do so, we
first need to understand the maximum length of such
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Figure 4: Charge and discharge phases of an activation
window, and length of safe window with respect to
window height h (default setting: a = 0.2, § = 0.05,
A=0.5,f=03,h=08,d=2).

safe window. We have the following theorem:

Theorem 1. At time t, for an interaction ¢; with
current heat f (f < A), degree d, the ending bound t.
of its next activation window with height above h must
satisfy:

s 1 I ad — (ad + ) f
“ad+ 3 (ad—(ad+ B)h)(A+1—h)

te —

Proof (Theorem 1). For simplicity of exposition, we
assume that each occurred interaction is initiated with
one unit of heat, and the weights of all the edges are
uniformly set as one. Assume that the next appearing
activation window has height h. We divide the time
interval [t, t.] into two phases, charge and discharge. Let
At. and Aty be their length. In the charge phase, the
heat of ¢ increases; after reaching the expected height
h, it enters the discharge phase, and the heat drops
below A. These concepts are illustrated in Figure 4. We
intend to find the lower bounds of At, and Aty. Clearly,
te —t > At. 4+ Aty.

First notice that the lower bound of At. is achieved
when all of neighboring interactions have maximum
possible heat “1”. In this case, the heat equation for the
b — ad(1 - f;) - 1.
with initial condition f;(0) = f and end condition
fi(At.) = h. Solving the differential equation, we
get At, > ad1+5 In Zg:gzgiggi. Meanwhile, the lower
bound of Aty is achieved when ¢; receives no heat, but
diffuses its heat to neighboring nodes and the media.

We have the corresponding heat equation as d—f:
—(a + B) fi, with initial condition f;(0) = h and end
condition f;(Atg) = A. Solving the equation gives us:
Aty > Wlﬂi In ﬁ Combining these two inequalities
leads to the result. The overall behavior of (At. + Ag)
with respect to window height h is illustrated in the
right plot of Figure 4, which shows approximately linear
correlation.

charge phase can be written as

Atop Theorem 1, we introduce our lazy-probing pre-
diction scheme (Algorithm 1). At each examined time-
tick t’, we attempt to activate each potential interaction



Algorithm 1: Lazy-probing prediction.

Input: current time ¢4y, current state f(tnow),
future time t,cq, activation threshold A,
activation window height h

Output: estimated future state f (tnew)

1t — tnow; f(t/) — f(tnow);
2 while t' < t,,¢, do
3 At — tpew — t';
4 foreach ¢; € V« do
5 if f;(t') > X then
// sampling (activation trial)
6 if i is not activated then
L set f;(t') = 1 with prob.
g(fi') = A);
8 else
// estimate minimum skippable
interval
9 At —
. 1 ad—(ad+B) fi (')
B min{At, adrp I [ad—(ad-‘,—ﬁ)h]()\-i—l—h)}
// update estimation
10 f(t' + At) — eAHaH-BDE)Y;
1 | et + AL

¢; with heat above threshold A according to probability
g(fi(t') = \); for potential interactions with heat below
A, we estimate the maximum skippable interval accord-
ing to Theorem 1; the minimum of all such skippable in-
tervals is considered as the global skippable interval At,
and the state estimation is updated for time (¢’ + At).
This process repeats until ' = t,,¢q,.

5 APPLICATION & EVALUATION

Following we empirically evaluate the efficacy of uSI in
two concrete applications, namely, social tagging service
and mobile phone call service, using real-life datasets.
The first dataset is the social network corresponding
to a set of IBM employees who participated in the Small-
Blue project [28]. The dataset comprises two snapshots
of the network as of January 2009 and July 2009, involv-
ing 41,702 and 43,041 individuals, respectively. With-
out further information, all links of the network are set
with uniform weight 1.0. It also contains an archive
of bookmarks tagged by the individuals appearing in
the SmallBlue project, collected by Dogear®, a personal
bookmark management application. The archive con-
tains 20,870 bookmark records, with respect to 7,819
urls. Since the urls are fully anonymized, we solely use
their associated tags define their semantic relationships
and to construct the url network. Let tag(r) denote the
set of tags associated with url r. Specifically, we de-
fine the weight w;; of the link r;r; using their Jaccard

Shttp://www.ibm.com/dogear

simalarity coefficient:
wij = wji = |tag(ri) N tag(r;)|/|tag(r:) U tag(r;)|

The second dataset was collected from the Reality
Mining dataset [29] project. It consists of the communi-
cation logs of 94 users over the period from September
2004 to June 2005, with information including location
logs (nearest base stations), phone call logs, social rela-
tionships (friends or non-friends). We use the cell transi-
tion information in location logs to infer the cell network
(totally 3,138 cells), and use the friend and non-friend
relationships to construct the social network. Without
further information, the links in both networks are of
uniform weight 1.0. We extract the part of logs cor-
responding to communications (voice, data, SMS) be-
tween the 94 users. The resulting archive contains 3,984
communication records.

In this paper we set the edge weight w;; in the
product network based on the weight w?j and wilj of
corresponding edges u; —u; and v; —v; (or nodes) in Gy
and ;. We use Tensor and Normal product networks in
our experiments (the selection of product network type
will be discussed in concrete case studies). For Tensor
product network Gg, a natural way of doing so is to set
Wij = w?j wilj; intuitively, we assume that the influence
spread rate between two neighboring interactions ¢; =
(u;,v;) and ¢; = (uj,v;) is proportional to the similarity
of u; and u;, and that between v; and v;. While for
Normal product network which allow “stationary walk”
in either one of the networks (e.g., u; and u; or v; and
v; can be equivalent), we need to determine the weight
of self-loop, e.g., u; — u;. If no further information is
available, we use a non-informative setting 1.0.

We implement our models in Matlab and conduct
all the experiments on a workstation running Linux with
4G RAM and 2GHz Intel Core 2 Duo.

5.1 Case Study 1: Resource Recommendation
in Social Tagging Service

Social tagging services (e.g., Del.icio.us, CiteULike,
etc.) allow everyday users to annotate online resources
(e.g., urls) with freely chosen keywords (tags), which
provide meaningful collaborative semantic data that
can be exploited by recommender systems. However,
performing resource recommendation based on tagging
data is a challenging problem. First, it involves multi-
type, complexly interrelated entities, namely, users,
tags, and resources; the available tagging data in the
form of user-tag-resource may only expose a fairly sparse
set of views of the hidden semantic correlation between
users and resources. Second, the tagging behavior of
users may demonstrate strong time sensitivity, e.g.,
most tags of a resource may be generated during a short
time period when the resource features an ongoing hot
topic among users; while the historical tagging records
of a user may not reflect his/her current interest. Most
existing solutions fail to address these two aspects [30,
31, 32].
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Figure 5: Spatial (in user and resource networks)
temporal locality of influence of tagging actions.

With the help of the microscopic social influence
model, we provide a dynamic, social perspective of
online resource recommendation. We consider a tagging
action as a dynamic interaction between the social and
resource networks. We have the following assumptions.
First, the tagging action of a specific user regarding a
specific resource indicates his/her ongoing interest in
the resource. Second, the influence of a tagging action
may spread over both social and resource networks:
(i) socially close users tend to share common interests,
and may follow peers to tag the same resource (which
is frequently observed in social networking sites); (ii)
meanwhile, users tend to tag similar resources if they
find the topic covered by these resources interesting.

Based on these two observations, we propose a novel
resource recommendation approach for social tagging
service. Intuitively, we use the social influence model to
capture the effect of specific tagging actions on inducing
other tagging actions. Leveraging this model, we
may predict the tagging actions of potential interested
users before the actions actually occur, such that the
resources can be recommended to these users in advance
of time.

Assumption Validation and Model Instantiation
We start with analyzing the dataset to validate the as-
sumptions of our solution. Specifically three important
assumptions are made in our model: (i) the influence
of occurred interactions on triggering other interactions
is local to both networks; (ii) the influence may ex-
hibit different spread characteristics in the two networks
(captured by the concrete instantiation of production
network and parameterization); and (iii) such influence
tends to decay over time.

We examine the entire history of tagging actions
that occurred during the time period from April 20,
2008 to August 20, 2009. For each interaction (u,v) (u
in user space and v in resource space), we search for
its closest neighboring interaction (u’,v’) in the history
before (u,v) along the dimensions of user and resource
(within a reasonable time window, say 30 days), i.e.,
ming, ) dist(u,u') V dist(v,v’), and measure this
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Figure 6: Estimated heat intensity of observed interac-
tions and inactive (background) interactions.

closest (hop) distance.

The upper plot of Figure 5 shows the distribution
of such shortest distance in both user and resource net-
works, where hop-0 refers to the node itself (e.g., one
user tags several relevant resources or one blog is tagged
by several relevant users), and hop-oo includes all the
cases of shortest distance above 4 hops. It is noticed
that both distributions demonstrate strong locality: a
majority of closest neighbors belong to the hop-0 or
hop-1 categories, and the distribution decays as hop in-
creases. Further, the distributions exhibit significantly
different characteristics in the two networks: the hop-
0 category dominates in the social network, while the
hop-1 category accounts for the majority in the resource
space. This may be explained by that the influence in re-
source space is more “dynamic” than that in user space,
i.e., the tendency that a specific user looks for resources
with similar topics is stronger than that he/she is influ-
enced by the interests of other users. Leveraging this
observation, in our implementation, we adopt a Normal
product network which intuitively captures hop-0 influ-
ence in both networks (see Figure 2), but assign the
resource network with larger diffusion rate. In particu-
lar, after testing three sets of setting of diffusion rates
« in both networks: 0.1, 1, and 10, we fix the diffusion
rate & = 0.1 and 10 respectively for the user and re-
source networks for its best performance. By default,
the time-tick is fixed as 108 ms (approximately a day).

One questions remains: what are the temporal
characteristics of such closest neighboring interactions?
To answer this, we measure the temporal distance
between the interactions (u, v) and (v, v’), and examine
the distribution of the closest interactions along the user
and resource dimensions, with results shown in the lower
plot of Figure 5. It is clear that (i) both distributions
match fairly well, indicating that with high chance the
closest neighboring interactions in the two networks are
essentially the same one, and (ii) both distributions
decay quickly as the temporal distance grows, implying
the strong temporal locality of influence.

Predictive Power
This set of experiments evaluate the predictive power of
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our social influence model, i.e., its capability of differen-
tiating interactions highly likely to occur from the rest
“inactive” ones. We run the tracking process. Specif-
ically at the ¢-th time-tick, we update the estimation
f(t) of the heat field based on the observed interactions
at t, based on which we predict f(¢+1) for the (t+1)-th
tick. We then compare the estimated heat intensity of
those interactions actually observed at (¢ + 1) and the
rest inactive ones.

The results (mean and deviation) are shown in
the upper plot of Figure 6 (in logarithmic scale®). Tt
is observed that the two bands are clearly separable,
indicating the predictive power of our model: the heat
of actually observed interactions is typically two orders
of magnitude higher than that of inactive ones. It
is also observed that there exists certain “fluctuation”
at the heat estimates (for both observed and inactive
interactions) for the approximate time period of 290th
~ 350th day, as highlighted in box. We then examine
the overall growth of number of interactions, as shown
in the lower plot of Figure 6. It is seen that for the
corresponding period, there exists a burst of tagging
actions. We therefore conclude that (i) the absolute
heat intensity measure is sensitive to the occurrence rate
of interactions, which tends to evolve over time; yet
(ii) the relative heat intensity (over the average level)
may still serve as a good indication of the occurrence
likelihood of interactions.

Scalability

This set of experiments are designed to evaluate the
operation efficiency of ©SI, by measuring the execution
time of Track, the most fundamental operation of uSI,
with respect to varying network scale and precision
requirement. More specifically, we apply the KronFit
tool in Stanford Network Analysis Platform” (SNAP)
to extract the “cores structures” of user and resource
networks, and apply the KronGen tool in SNAP over
such cores to generate networks of different scales; also
we generate different precision settings by varying the
number of iterations required in computing the discrete
approximation of matrix exponential. We evaluate both
baseline and optimized versions of Track operation,

6Tn following, all the heat intensity measures are in logarithmic
scale, unless otherwise noted.
"http://snap.stanford.edu

with results shown in Figure 7. As predicted by
the theoretical analysis, the optimized Track operation
achieves orders of magnitude of performance gain over
the baseline implementation, and can easily scale up

| to product network of scale 8.2 x 10'* or hundreds of
| iterations.

Prediction Accuracy versus Execution Efficiency
Following the estimation regarding the state of heat
field, the next step is to accurately predict the inter-
actions that are highly likely to occur. The invocation
model bridges the gap between the two. The concrete
form of the invocation model is typically application-
dependent; in this set of experiments, we consider one
possible construction for the application of resource rec-
ommendation.

At each time-tick t, we measure the estimated heat
intensity for both observed interactions and inactive
ones. We plot the results in Figure 8. The left plot
shows the distribution of the heat intensity of both oc-
curred and inactive interactions. Note that the mea-
sures here have been normalized to the average heat in-
tensity, i.e., the average level as 0 (in logarithmic scale).
One can notice the significant statistical difference be-
tween observed and inactive interactions. For each spe-
cific heat level (in logarithmic scale), we then measure
the relative frequency of observed interactions over the
total number of interactions at that level. The right plot
of Figure 8 shows the result (in logarithmic scale). We
use an exponential curve to fit the relative frequency,
which shows a tight match with the data. We use this
fitted model as our invocation model.

Next we evaluate the Predict operation of puSI.
Given the current time ¢ and the elapsed time At, to
predict the heat field over all the (active or inactive) in-
teractions at (¢t + At), the baseline approach is to faith-
fully simulate the estimating/sampling/updating proce-
dure at each time-tick, which provides the best possible
estimation regarding the future state f(t+At), featuring
linear complexity in terms of At. We propose a novel
prediction model that trades the prediction accuracy for
the execution efficiency. We achieve this by focusing on
interactions with higher invocation likelihood (above a
threshold &) while ignoring less likely ones.

This prediction accuracy-execution efficiency trade-
off is illustrated in Figure 9. Here the accuracy is
measured by the cosine distance between the predicted
heat field vector f(t + At) and the tracked result
f(t + At). We compare the prediction accuracy and
execution time for the baseline simulation approach
and the lazy-probing approach (with three different
settings of threshold h). Clearly, under acceptable
accuracy loss (less than 0.1), the lazy-probing approach
achieves considerable saving on execution time, e.g.,
about 37% for h = e® and 57% for h = °. However,
as h increases, the accuracy loss becomes significant,
especially when At is large, the error is accumulated at
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each time-tick. It is thus important to properly tune h
to achieve the balance, e.g., h = €° in the case here.

5.2 Case Study 2: Paging Operation in Mobile
Phone Call Service

For incoming mobile service requests (e.g., voice, SMS,
data), efficiently locating requested mobiles or devices
is a critical operation for service providers. This is typ-
ically done using a combination of location update (by
the mobile) and paging (by the network). The paging
operation determines where (i.e., which cells) to search
for the mobile given its latest location update. Because
paging consumes valuable spectrum and signaling re-
sources and the paging channel is a low bandwidth chan-
nel, which can also easily become overwhelmed by denial
of service attacks, it is considered critical to decrease the
utilization of this signaling channel (i.e., minimize the
number of cells to be probed).

Existing work on paging schemes has mostly relied
on location management-based approaches (e.g., [13]),
i.e., create mobility profiles for mobile users, and predict
their current locations based on their latest updates
and historical profile. In this paper, we take a different
approach: instead of focusing on the mobility patterns
of requested mobiles (callee), we analyze the combined
social and geographical characteristics of both caller and
callee. We then use such characteristics to design smart
paging schemes that minimize signaling traffics.

More specifically, we consider two networks: the
social network formed by mobile users, and the cell
network formed by cellular base stations. A successfully
connected mobile phone call essentially comprises two
interactions: caller - caller’s station and callee - callee’s
station. Clearly, understanding the characteristics of
these two interactions is the key for us to design effective
paging schemes.

Characteristics and Feasibility
We start with examining the geographical characteris-
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Figure 10: Hop distance between caller’s and callee’s
base stations (4oo indicates no connection, PMF: prob-
ability mass function).

tics of caller’ and callee’s base stations. We differentiate
the communications between friends and that between
non-friends. The distribution of calls with respect to the
hop distance of base stations is illustrated in Figure 10.
It is noted that both friend and non-friend contacts show
fairly similar patterns: the callers tend to contact the
callees geographically close to them (but not too close,
e.g., within the same cell), while such likelihood decays
almost exponentially as hop distance grows. It seems a
natural option to use this geographical characteristics to
design paging schemes, e.g., given a call request (caller
+ caller’s station + callee), first search base stations
with shorter distance to caller’s station.

To validate the feasibility of this scheme, and
also contrast our solution against traditional mobility
profile-based approaches (e.g., [13]), we perform the fol-
lowing experiments. Assume (i) the base station associ-
ated with callee as a random variable X, (ii) the callee’s
historical location logs as: received M calls with the cor-
responding base stations as a vector L = (I1,la,...,lx)
(K distinct stations in total), each of these K stations
appears x; times in L, Zfil x; = M. We consider the
following five measures: (1) entropy of X, entropy of X
conditional on (2) previous N = 1 station, (3) previ-
ous N = 2 stations, (4) caller’s station, and (5) caller’s
identify (phone number) and base station. Taking (1)
and (2) as an example, the entropy of X is measured
as H(X) = — Zfil(xl/M) log(z; /M), while the con-
ditional entropy of X given previous station Y is de-
fined as H(X,Y)— H(X) where H(X,Y) is the entropy
of the joint distribution of two consecutive stations in
L. Here, scheme (1), (2), and (3) have been used in
the state-of-the-art paging schemes [13], while scheme
(4) corresponds to the aforementioned caller’s station-
based scheme. The CDFs of these entropy and condi-
tional entropy are plotted in Figure 11. It is observed:
first, the information of caller’s station alone may not
be sufficient to determine callee’s station, while caller’s
station and caller’ and callee’ identities together may
pinpoint callee’s station with fairly high chance; second,
this scheme may help improve the traditional mobility
profile-based solutions.

Success Rate and Paging Cost

Leveraging the observations in Figure 10 and 11, we
construct an influence-based paging scheme. We first
modify the cell network: for each station, add links to
its hop-2 neighbors, and delete links to hop-1 neighbors
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(observation in Figure 10); we adopt an instantiation
of Tensor product of the cell and social networks. For
the set of candidate base stations (maybe returned
by profile-based approaches), we sort them according
to their heat intensity, and probe the base stations
according to this order. Figure 12 shows the efficacy
of this paging scheme. We construct five schemes,
according to the measures discussed in Figure 11. We
measure them using two metrics, the success rate of
paging operation, which is defined as the probability
that the callee’s actual base station appears in the “first-
search list” of paging scheme (or a broadcast would
be invoked), and the cost of paging, which is defined
as the number of base stations actually searched (the
results are normalized to [0,1] where 1 indicates a
global broadcast). It is noticed that the influence-based
scheme outperforms all the rest in terms of both success
rate and paging cost, particularly, when the learning
data is limited. This validates our theoretical analysis
on its advantage of handling data sparsity issues.

6 CONCLUSION

This work advances the state-of-the-art in modeling the
influence between the actions of individuals with social
ties. We present a novel heat field over product network
model (HFPN) that explicitly accounts for the action-
sensitivity, time-sensitivity, and user-sensitivity of such
influence. We show that a broad range of applications,
such as online resource recommendation and mobile
phone call services, can be benefited by this model
in terms of accuracy and freshness of customer action
prediction.

While the framework of ©SI is rich and flexible, sev-
eral key challenges need to be addressed before it can
be readily adopted. (i) Metrics of influence strength.
To meet our ambitious goal of informative action pre-
diction, it may require to assign influence strength over

social ties. Various measures can be used to derive influ-
ence strength; it however requires to empirically mea-
sure these metrics and identify the optimal one. (ii)
Network evolution. While our model captures dynamic
aspects including the shift of communities’ and individ-
uals’ interests, as well as the dynamic nature of social
influence, it assumes relatively static interconnections
between users and objects. How to extend it to support
social or object networks in rapid evolution? (iii) Multi-
type objects. We considered the interactions between
users and one type of objects. What if different types
of objects are present? How to transfer the knowledge
for the interactions with one type of objects to another?
Our work might be part of a temporary solution until
more comprehensive models are available, and it might
inform the design of these models.
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