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Abstract—Mining trajectory data has been gaining
significant interest in recent years. However, existing
approaches to trajectory clustering are mainly based on density
and Euclidean distance measures. We argue that when the
utility of spatial clustering of mobile object trajectories is
targeted at road network aware location based applications,
density and Euclidean distance are no longer the effective
measures. This is because traffic flows in a road network
and the flow-based density characterization become important
factors for finding interesting trajectory clusters of mobile
objects travelling in road networks. In this paper, we propose
NEAT−a road network aware approach for fast and effective
clustering of spatial trajectories of mobile objects travelling
in road networks. Our method takes into account the physical
constraints of the road network, the network proximity and the
traffic flows among consecutive road segments to organize tra-
jectories into spatial clusters. The clusters discovered by NEAT
are groups of sub-trajectories which describe both dense and
highly continuous traffic flows of mobile objects. We perform
extensive experiments with mobility traces generated using
different scales of real road network maps. Our experimental
results demonstrate that the NEAT approach is highly accurate
and runs orders of magnitude faster than existing density-based
trajectory clustering approaches.

I. INTRODUCTION

Location-based services (LBSs) and applications are a
rapidly growing field due to the pervasive use of GPS
receivers and WiFi or location sensing technology embed-
ded in mobile devices (e.g. cellular phones, automobiles).
With shipments of smartphones projected to grow from
295 million units in 2010 to 1.2 billion units in 20151,
LBS revenue is forecasted to reach an annual global total
of $10.3 billion in 2015, up from $2.8 billion in 20102.
Ubiquitous GPS/WiFi-enabled mobile devices generate a
huge amount of trajectory data, which are sequences of
time-ordered locations of mobile objects. There has been
a lot of work on collecting, storing, indexing and querying
trajectories of mobile objects [1] [2] [3] [4] [5]. We refer
to the trajectories of mobile objects in a road network
as MO trajectories. Clustering trajectories of these objects
provides the most value and has a wide range of LBS
applications. For example, the resulting clusters would help
provide knowledge about traffic flows as well as dense
areas in a road network. Such knowledge is very useful
for applications in vehicular ad hoc network (VANET) [6]
[7], traffic monitoring [8], transportation planning [9] and
location-based advertising [10]. We briefly present below
two interesting application scenarios which show the use-
fulness of trajectory clustering and motivate us to study the

1http://www.berginsight.com
2http://www.pyramidresearch.com

problem of clustering trajectories of mobile objects moving
in a spatially constrained road network.

• Public transit planning: The establishment of public
transportation system always target the road network
routes which can maximize the utilization of public
transportation vehicles. Knowing which routes in a road
network with highly dense and continuous traffic helps
optimize rail/bus line and terminal arrangement.

• Location based advertising on mobile devices: Mobile
advertisers are trying to improve the matching of
user locations and marketing information. It would be
beneficial for local stores to place advertisements, such
as special offers or discounts, to mobile devices taking
path in major traffic flows passing by their stores.

A straight forward solution to address this clustering
problem is to adapt the traditional density-based cluster-
ing algorithms (e.g. DBSCAN [11] or OPTICS [12] - a
variant of DBSCAN) to group similar MO trajectories.
However, clustering trajectories as a whole does not take into
account similar sub-trajectories since trajectories have vari-
ous lengths. This is addressed by partial trajectory clustering.
The TraClus algorithm [13] is the representative method
for clustering portions of a trajectory instead of the whole
trajectory. Specifically, TraClus is a two phase clustering
algorithm. In the partitioning phase, each trajectory is first
examined sample by sample to identify a sequence of char-
acteristic points at which the moving object makes a rapid
change in direction, and then the trajectory is partitioned into
line segments by these characteristic points. The grouping
phase performs a DBSCAN style clustering on those line
segments using an Euclidean based distance function to find
similar sub-trajectories. A drawback to this and most similar
partial trajectory clustering approaches is that they only con-
sider distances in Euclidean space, while show reasonable
performance for clustering trajectories of objects moving
freely (e.g. the movement of animals through a forest or the
movement of hurricanes across an ocean), are inappropriate
for clustering MO trajectories. For instance, given a set of
objects moving along the same road segment. In the context
of a road network, those objects have similar movement
behavior with respect to the road segment. Therefore, their
trajectories should be grouped together regardless of the
difference in their specific movement on the road segment.
Hence, it is unnecessary to further partition these trajectories,
even though some rapid changes in direction are found in
those trajectories. Also, the proximity in a road network
space is different from Euclidean space. That difference can
be easily observed for trajectories on and under a bridge, or



on multilevel road segments.
In this paper, we present NEAT−a road NEtwork Aware

approach to Trajectory clustering. To the best of our knowl-
edge, NEAT is the first technique to address the MO
trajectory clustering problem by taking into account the
continuity of movements restricted by the underlying road
network, the network proximity and the traffic flows among
consecutive road segments to organize MO trajectories into
spatial clusters. The clusters discovered by NEAT are groups
of sub-trajectories, which describe both dense and highly
continuous traffic flows of mobile objects. Specifically, we
identify these following important design guidelines. First,
for a given set of MO trajectories, the road intersections can
be viewed as the initial partitioning points where trajectories
can be split into atomic sub-trajectories, called trajectory
fragments. Second, the trajectory fragments corresponding
to a road segment can be viewed as a locally dense cluster
of objects involved in the given set of trajectories. Third,
trajectory fragments should be clustered based on their
continuity with regard to the traffic flows on consecutive
road segments. In addition, the proximity measure in a
road network space uses shortest path distance instead
of Euclidean distance. We perform extensive experiments
with road network mobility traces generated using different
scales of real road network maps. Our experimental results
demonstrate that NEAT is highly efficient and accurate. It
can run more than three orders of magnitude faster than
existing density-based trajectory clustering approaches.

The rest of this paper is organized as follows. Section II
presents an overview of NEAT model and the three phase
clustering framework. Section III describes the algorithms
used in each of the three phases of NEAT framework. We
report experimental results in Section IV, discuss related
work in Section V and conclude the paper in Section VI.

II. OVERVIEW

We first describe a reference model for road networks
and present the basic concepts and operations of the NEAT
model. We end this section with a brief overview of the
NEAT three phase framework and an illustrative example.

A. Road-Network Model

A road network is represented by a single directed
graph G = (V, E), composed of the junction nodes
V = {n0, n1, . . . , nN} and directed edges E =
{(sid, ninj)|ni, nj ∈ V}.

An edge e = (sid, ninj) ∈ E representing a road
segment connecting two junctions ni and nj in the real road
network. The listed order ninj indicates the direction from
ni to nj of the road segment. For road segments which
have bidirectional lanes, we use edge e = (sid, ninj) and
e′ = (sid, njni) to denote the fact that the road segment is
bi-directional and we label each edge with the corresponding
road segment identifier sid. The length of a road segment
e = (sid, ninj) is denoted by length(ninj) .

Let L(e) denote the set of adjacent edges of e =
(sid, ninj) and Lni

(e) denote the set of adjacent edges of e,
which connect to e at junction ni. Hence, we have L(e) =
Lni

(e) ∪ Lnj
(e). If ni is a dead-end node connected by

edge e, then Lni
(e) = φ. If two edges ei and ej are adjacent,

function I(ei, ej) will return the junction node (intersection)
of these two edges. A route in the road network G is a
network path e0e1...ek such that ei+1 ∈ L(ei) (0 ≤ i < k).

We define a road network location of a mobile object
as a tuple of three elements: sid − the identifier of the
road segment on which this object resides, the geometric
coordinates (x, y) of the position of the object on the road
segment sid, and the timestamp t when the position is
recorded, denoted by l = (sid, x, y, t). A road network
location can also be represented by a tuple (sid, p, t) where
p is the offset of the location from the start junction of the
road segment identified by sid. We use the (x, y) coordinates
to represent location in this paper due to the popularity of
geometric coordinates. We use the terms point and location
interchangeably in the paper to refer to a road network
location and the terms junction, intersection and endpoint
interchangeably to refer to a road junction.

B. NEAT model

In this section, we define the basic concepts and op-
erations of our road network aware trajectory model with
illustrative examples.

For each mobile object, each of his/her trips with a
beginning location and a destination location forms a tra-
jectory. A trajectory, denoted by TR = (trid, l0l1...ln),
is a time-ordered sequence of locations l0, l1, ..., ln of an
MO in the road network over time and uniquely identified
by a trajectory identifier trid. A subsequence of points
in a trajectory forms a sub-trajectory. Note that in our
model, the temporal information in a trajectory, i.e. the
recorded timestamps, determines the order of locations in the
trajectory. Therefore, the direction of movement of a mobile
object is always preserved. For presentation convenience, we
do not explicitly mention the directions of movement in the
definitions and figures used in the subsequent sections of the
paper when no confusion occurs.

Definition 1. (t-fragment) Let TR = {trid, l0l1...ln}
denote a trajectory consisting of n + 1 points and trid
denote the trajectory identifier. A t-fragment of TR, denoted
by tf = {trid, sid, lklk+m}, represents a sub-trajectory
lklk+1...lk+m consisting of m + 1 consecutive points ex-
tracted from TR which lie on the same road segment sid,
i.e. li.sid = lj .sid (∀i, j : k ≤ i, j ≤ k +m, i 6= j).

Definition 2. (base cluster) Let T denote a set of trajectories
and e denote a road segment. A base cluster S with respect to
e is a group of distinct t-fragments, each of these t-fragments
belongs to a trajectory in T and is associated with e. The
base cluster S is formally defined as follows:
S = {tfi|TR(tfi) ∈ T , tfi.sid = e.sid} where TR(tfi)

denotes the trajectory from which the t-fragment tfi ∈ S is
extracted. The road segment e is called the representative of
the base cluster S, and is denoted by eS . The base cluster
S is said to be associated with the road segment eS .

We call a trajectory which has t-fragments in a base
cluster the participating trajectory of the base cluster.



Definition 3. (trajectory cardinality) The set of participat-
ing trajectories of a base cluster S is defined as: PTr(S) =
{TR(tfi)|∀tfi ∈ S}. The cardinality of PTr(S), denoted
by |PTr(S)|, is called the trajectory cardinality of S.

Definition 4. (cluster density) The density of a base cluster
S, denoted by d(S), is the number of t-fragments in S.
Given B = {S0, S1, ..., SN} is a set of base clusters, we call
the base cluster with the highest density in B the dense-core
of B, denoted by densecore(B).

Definition 5. (netflow) The netflow between two base
clusters Si and Sj , denoted by f(Si, Sj), is the number
of trajectories participating in both clusters: f(Si, Sj) =
|PTr(Si) ∩ PTr(Sj)|

The function netflow between two base clusters computes
the number of common objects traveled on both representa-
tive road segments eSi and eSj .

Definition 6. (f -neighborhood) Let B denote a set of base
clusters, Si denote a base cluster and nu denote one endpoint
of eSi . The f -neighborhood of Si wrt. nu, denoted by
Nf (Si, nu), is the set of base clusters that have at least one
common participating trajectory, and is formally defined as:
Nf (Si, nu) = {Sj | e

Sj ∈ Lnu
(eSi) & f(Si, Sj) > 0}.

Let nv be the other endpoint of eSi . We define the f -
neighborhood of Si wrt. eSi as: Nf (Si) = Nf (Si, nu) ∪
Nf (Si, nv). Each Sj ∈ Nf (Si) is called the f -neighbor of
Si. Note that the f -neighbor is a symmetric relation.

Definition 7. (maxFlow-neighbor) Let Si denote a base
cluster and nu denote one endpoint of eSi . We say that
Sk is the maxFlow-neighbor of Si at nu, denoted by
maxFlow(Si, nu), if f(Si, Sk) = max{f(Si, Sj)| Sj ∈
Nf (Si, nu)}. We call f(Si, Sk) the maxFlow of Si at nu.

Definition 8. (flow cluster) A flow cluster (or a flow for
short) is an ordered list of base clusters, denoted by F =
{S0, S1, ..., SN}, where Si+1 ∈ Nf (Si)(0 ≤ i < N) and
eS0eS1 ...eSN forms a route in the road network. We call
eS0eS1 ...eSN the representative route of F , denoted by rF .

Since a base cluster is comprised of t-fragments and a
flow cluster is comprised of base clusters, we say that a flow
cluster is comprised of t-fragments. Therefore the definition
of trajectory cardinality also applies to a flow cluster. We
define the netflow between a flow cluster F and a base
cluster S as f(F, S) = |PTr(F ) ∩ PTr(S)|.

Figure 1(a) shows a trajectory which can be represented
by a sequence of three t-fragments A0A1, A1A4 and A4A6.
In Figure 1(b), we have five trajectories located on four road
segments n1n2, n2n3, n2n4 and n2n5. There are four t-
fragments of three trajectories which lie on n1n2. Those
three t-fragments are grouped together in base cluster S1

whose representative road segment is n1n2. In total, we have
a set of base clusters B = {S1, S2, S3, S4}. The density of
S1 is d(S1) = 4. Similarly, we have d(S2) = 3, d(S3) = 1
and d(S4) = 2. S1 is the dense-core of B since d(S1) = 4 is
the highest density. The netflows among these base clusters
are: f(S1, S2) = 2, f(S1, S3) = 1, f(S1, S4) = 1,
f(S2, S3) = 0 and f(S2, S4) = 1. The f -neighborhood

(a) A trajectory has
three t-fragments
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(b) An example of base clusters and
flow cluster

Figure 1. Examples of the elements in the NEAT model

of S1 wrt. n2 is Nf (S1, n2) = {S2, S3, S4}, in which S2

is the maxFlow-neighbor of S1. The possible flow clusters
include {S1, S2}, {S1, S3}, {S1, S4} and {S2, S4}.

C. NEAT Framework Overview

Given a road network G = (V, E) and a set of N
trajectories collected from mobile objects travelling on G,
denoted by T = {TR1, TR2, ..., TRN}, NEAT performs
road network aware trajectory clustering in three phases:

Phase 1 - Base cluster formation: We transform the given
set of MO trajectories into a set of trajectory fragments (t-
fragments). Then we organize these t-fragments into base
clusters by grouping those t-fragments that correspond to
the same road segment into one base cluster.

Phase 2 - Flow cluster formation: We selectively merge
base clusters into flow clusters based on the major mobility
flows and the flow continuity inherent in the given set of
trajectories.

Phase 3 - Flow cluster refinement: We optimize the
clustering results using a density-based refinement method.
Our density-based optimization modifies the widely-used
Hausdorff distance with the shortest path measurement and
adapts the DBSCAN algorithm [11].

The final result produced by NEAT is a partitioning of
the given MO trajectories into a set of trajectory clusters
O = {C1, C2, ..., CK} where each cluster Ci(0 ≤ i ≤ K)
contains a set of trajectory fragments satisfying two criteria:
(1) High density: the trajectory fragments in the same cluster
are within the network proximity of each other; (2) High
continuity: the trajectory fragments in the same cluster show
a major traffic flow in the given trajectory data.

The NEAT system uses 3-tier client/server architecture.
Each client node acts as a mobile device which records its
locations, sends its trajectories to a NEAT server and makes
requests to the server to get trajectory clustering results
for a particular road network. NEAT server also distributes
trajectory datasets across multiple nodes in a cluster. These
data nodes can perform some data preprocessing tasks. The
detailed design and implementation of NEAT system is
not within the scope of this paper. We only focus on the
trajectory clustering application running on the NEAT server.

Figure 2 illustrates the three phase NEAT framework.
Consider a set of trajectories located on 12 road segments
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Figure 2. An example of three phase clustering in the NEAT framework.

in an example road network as shown in the upper-left of
Figure 2. In Phase 1, a set of base clusters are constructed
from the given set of trajectories (the upper-right of Fig-
ure 2). In Phase 2, we utilize road network information
and mobile object movement characteristics to group base
clusters into flow clusters. Important operations include
computing the netflows, finding the f -neighborhoods and
compute the maxFlow-neighbors. For our example, the
result of this phase is a set of three flow clusters {F1, F2, F3}
(the bottom-right of Figure 2). In Phase 3, we refine the
resulting flow clusters by merging those flow clusters that
are close in terms of a network based distance measure and
a distance threshold. In Figure 2, F1 and F3 are merged in
Phase 3 to form a larger trajectory cluster. The two clusters
C1 and C2 shown in the bottom-left of Figure 2 are the final
result of clustering for this specific example.

III. THE NEAT ALGORITHMS

In this section, we describe the main components of
the algorithms used in each of the three phases of NEAT
framework. We omit the concrete algorithms and pseudo
code due to space constraint.

A. Base Cluster Formation

We perform the base cluster formation in two steps. First,
we examine the input set of MO trajectories and partition
each MO trajectory into a sequence of t-fragment. Second,
we group those t-fragments that belong to the same road
segments into one base cluster.

1) Partitioning Trajectories into t-fragments: Since a
mobile object moves along contiguous road segments, two
consecutive locations recorded in a MO trajectory are either
on the same road segment or on two different road segments.
In the latter case, the two different road segments are either
contiguous or lie on the route (travel path) of the mobile
object such that they are connected through a sequence of
road junction nodes on the same path. For each trajectory

TRk = {tridk, l0l1...ln} in the given trajectory dataset,
we start the t-fragment extraction by examining TRk from
the first location l0 to the last location ln in the sequence
of location samples {l0l1...ln} of the trajectory. Based on
the fact that a mobile object has to go through the road
intersection when moving between two contiguous road
segments, we take every two consecutive points in the
trajectory, say li and li+1, and check if their road segment
identifiers, denoted by sid(li) and sid(li+1) respectively, are
different. If sid(li) 6= sid(li+1), we know that li and li+1 are
on different road segments. If they are contiguous, we can
obtain the road junction node that intersects these two road
segments. If the two road segments happen to be not con-
tiguous, we can obtain the sequence of road junction nodes
connecting them on the travel path of the object using the
map-matching approach [14]. Next, we insert the obtained
junction node(s) as new points in between li and li+1 in the
trajectory being examined. The junction nodes added to a
trajectory in this phase are marked as different points than
the original location samples. After examining every point
in a given trajectory TRk, the sequence of junction nodes
added to TRk will serve as the trajectory splitting points
used to partition the trajectory into t-fragments.

When a given set of trajectories are given as time series
of geometric coordinates, NEAT will first preprocess the
set of trajectories using map-matching algorithms such that
each point in a trajectory is mapped to a road network
location as defined in Section II-A. We use the SLAMM
map-matching algorithm [14] in this data prepocessing step.
Map-matching (MM) algorithms for bulk location data are
more effective as noted in [14] because look-ahead and look-
around algorithms can catch many known errors of earlier
MM algorithms, such as map-matching location samples
between two nearby parallel road segments.

By transforming a trajectory into a set of t-fragments,
only the first and the last point in the original trajectory are
kept, together with the newly inserted road junction points.
These points play critical roles in extracting t-fragments and
constructing base clusters in the next step of Phase 1 as
well as in subsequent phases of NEAT. Furthermore, the
sequence of t-fragments extracted from an MO trajectory
still maintains the travelling route, the direction of movement
as well as the identifier of the original trajectory.

2) Grouping t-fragments into Base Clusters: We examine
the t-fragments extracted from the MO trajectories and
group them by their road segment identifiers. Each group
of t-fragments corresponding to a road segment forms one
base cluster with the road segment as its representative
(Definition 2). As discussed in Section I, the t-fragments
on the same road segment are considered close in terms
of network proximity and they display similarity in the
movement of their mobile objects. We compute the density
of the resulting base clusters (Definition 4), then sort them
by their densities in descending order. The output of the base
cluster formation phase is a sorted list of base clusters with
the first base cluster as the dense-core of the set of base
clusters. The base clusters are used as the building blocks
of our flow-based clustering in the next phase. We will use



flow and density controlled merging algorithms to construct
the final trajectory clusters of a given trajectory dataset T .

B. Flow Cluster Formation

The flow-based clustering algorithm takes as an input the
list of base clusters B produced from Phase 1. It starts
by selecting one base cluster in B as the first initial flow
cluster. It then expands this initial cluster by adding other
base clusters one at a time such that the representative
road segments of the base clusters selected for merging
are concatenated to make a route. This expanding process
will stop when every base cluster in B has been examined
for its potential to be merged with existing flow clusters.
We consider flow, density and road speed limit as three
characteristics of a traffic stream to define a set of merging
criteria. We construct flow clusters by grouping base clusters
according to these criteria. We discuss below how to choose
the initial base cluster and determine which base clusters are
the best candidates for merging with the flow cluster under
consideration.

1) Density-based Flow Cluster Initialization: In the first
prototype of NEAT, we take the dense-core of the density-
ordered list of base clusters B to begin the flow-based
clustering process. There are at least two reasons for choos-
ing densecore(B) as the initial flow cluster to start Phase
2. Given that a major traffic stream usually covers the
road segment(s) with the highest traffic density in the road
network, if we randomly pick a base cluster in B to initialize
a flow cluster, it might lead to a flow cluster that describes a
negligible traffic stream and will eventually be filtered out.
In addition, choosing densecore(B) also guarantees that
the set of base clusters are merged in a deterministic order.
Hence, the resulting flow clusters are always the same for
the same input set of trajectories.

2) f -neighbor based formation of Flow Clusters: In this
section, we describe how to merge a base cluster into an
existing flow cluster. Suppose we are in the process of ex-
panding a flow cluster F , which is in the form of an ordered
list of base clusters, denoted by {SaSa+1 . . . Sb−1Sb}. We
extend the list by inserting a base cluster either at the front
or at the end of the list. Inserting a base cluster at the front
of the list is performed similarly to inserting a base cluster
at the end of the list. Let nu denote the other end point
of eSb other than the intersection I(eSb−1 , eSb) of the two
representative road segments of base clusters Sb−1 and Sb.
The base cluster Sb+1 to be added to the end of the list has
to be an f -neighbor of Sb wrt. nu, i.e. Sb+1 ∈ Nf (Sb, nu).
We choose Sb+1 among the base clusters in Nf (Sb, nu) by
considering the flow factor q, density factor k and speed
limit factor v.

Definition 9. Given a base cluster S and nu as one endpoint
of eS , the flow factor q, density factor k and speed limit
factor v of a base cluster Sj ∈ Nf (S, nu) wrt. S are defined
respectively as follows:

q =
f (S, Sj)

|PTr(S)|
(1)

k =
d (Sj)

d(S) +
∑

Si∈Nf (S,nu)
d (Si)

(2)

v =
speed (Sj)

∑

Si∈Nf (S,nu)
speed (Si)

(3)

where speed(Sj) is the speed limit of road segment eSj .

Definition 10. Given a base cluster S and nu as one
endpoint of eS , the merging selectivity of a base cluster
Sj ∈ Nf (S, nu) is defined as:

SF = wq × q + wk × k + wv × v (4)

where the coefficients wq , wk and wv determine the weights
of q, k, v respectively. The weights wq ≥ 0, wk ≥ 0 and
wv ≥ 0 satisfy wq + wk + wv = 1.

Here we assume that S is currently either the first element
or the last element of a flow cluster F . Thus, selecting a
base cluster to merge with F implies selecting a base cluster
to merge with S. According to the above definitions, the
base cluster in Nf (S, nu) which has the highest merging
selectivity will be chosen to merge with S. The setting of the
weights wq , wk and wv is usually determined by the specific
location-based applications. If an application favors the three
factors equally when considering a traffic stream, we can set
wq = wk = wv = 1/3. If we set (wq, wk, wv) = (0, 1, 0),
we will merge a base cluster with its densest f -neighbor.
The resulting flows in this case will describe a route where
traffic is highly concentrated. A combination of (wq, wk, wv)
= (0, 0, 1) will produce flow clusters that describe the routes
where objects can travel the fastest. For traffic monitoring
applications, the flow factor and the density factor can be
considered the most important factors so that we can set
(wq, wk, wv) to (1/2, 1/2, 0). If the application emphasizes
the flow property of a traffic stream and considers the flow
factor as the most important one, it can set wq = 1 and
wk = wv = 0. Therefore, the maxFlow-neighbor of S
(Definition 7) will be selected to merge with S.

Note that choosing the maxFlow-neighbor is not always
the right decision in terms of capturing the major traffic flow
in a road network. For example, a base cluster S has two f -
neighbors S1 and S2 where f(S, S1) = 5, f(S, S2) = 2 and
f(S1, S2) = 50. It is obvious that f(S1, S2) is the dominant
netflow and they should be grouped into another flow cluster.
In this case, if we choose the maxFlow-neighbor of S
which is S1 to merge with S, we will miss the important
netflow f(S1, S2). Therefore, when selecting an f -neigbor
of S to merge with S, we not only consider the netflows
between S and its f -neigbors but also consider the netflows
between those f -neighbors. If there is a netflow between
two f -neighbors of S that dominates the maxFlow of S,
we remove those two f -neighbors from the f -neighborhood
of S and restart the f -neighbor merging for S with its
updated f -neighborhood. Let f1 and f2 denote two different
netflows and β denote a domination threshold to decide
whether a netflow dominates another netflow. We say that
f1 dominates f2 if and only if f1 > 0, f2 > 0 and
the ratio f1/f2 ≥ β. This β threshold is also determined



by specific applications. If we want to use the maxFlow-
neighbor of S as the selection criterion to merge with S,
we can set β to +∞. When there are more than one base
clusters meeting the f -neighbor merging criteria, such as the
maxFlow-neighbor selection, we can consider the netflows
between the flow cluster under consideration or its member
base clusters and the candidate base clusters to examine the
f -neighbor merging opportunities. Each base cluster which
has been merged into a flow cluster is removed from B. We
also use a threshold minCard for the trajectory cardinality
of a flow cluster to filter out those flow clusters whose
trajectory cardinalities are smaller than minCard. Finally, the
condition to stop expanding the list {SaSa+1 . . . Sb−1Sb} at
the end of the list is when Sb has no f -neighbor wrt. its
endpoint nu, i.e. Nf (Sb, nu) = ∅. A similar condition is
applied to stop expanding the list at the front. When both
conditions are reached, we add the resulting flow cluster to
W , the output set of flow clusters in Phase 2. Then, we
begin the next iteration of flow-based clustering with the
remaining base clusters in the list B with the same process
as described above, until all the base clusters are assigned
to flow clusters, i.e. the set B becomes empty.

C. Flow Cluster Refinement

The third phase of NEAT is designed to exploit
opportunities to further merge some flow clusters generated
from Phase 2. We describe in this section a density-based
approach to group flow clusters. We modify the popular
Hausdorff metric to measure the distance between two flow
clusters and adapt DBSCAN algorithm [11] to perform the
flow cluster merging process. This optimization is especially
effective for real time trajectory clustering where online
clustering can be executed in an incremental and distributed
manner. In particular, the first two phases of NEAT can be
performed on each newly arrived set of trajectories. The new
flow clusters are then merged with the available flow clusters
to produce compact clustering results.

1) Measuring the distance of two flow clusters: We
modify the Hausdorff distance to measure the distance
between two flow clusters Fi and Fj in terms of network
proximity. The distance between two flow clusters Fi and
Fj can be determined by the distance between their rep-
resentative routes rFi

and rFj
. In the first prototype of

NEAT, we measure the distance between rFi
and rFj

by
the network proximity of their ending locations. When the
ends of two flow clusters are within a predefined network
distance, we merge them into a larger cluster such that the
resulting cluster will be able to show a group of frequent
routes between two hotspot areas as illustrated in Figure 2.

Definition 11. Given two flow clusters Fi ∈ W and Fj ∈
W , the distance between Fi and Fj is defined as:

distN (Fi, Fj) = distN
(

rFi
, rFj

)

= max{maxa∈{a1,a2}minb∈{b1,b2}dN (a, b) ,

maxb∈{b1,b2}mina∈{a1,a2}dN (b, a)} (5)

where dN (a, b) is the shortest path from a to b, and {a1, a2},
{b1, b2} are the two endpoints of rFi

, rFj
respectively.

2) Density-based Optimization: With the modified
Hausdorff distance measure for flow clusters, we need an
algorithm to merge the flow clusters when their distance is
within some user-defined or system-supplied default thresh-
old. We adapt the DBSCAN algorithm to group the set
of flow clusters when the density opportunity exists. The
DBSCAN algorithm was originally used to cluster a set
of data points and requires two parameters: a distance
threshold ε between two points and a minimum number
of points minPts in a cluster. An object is a member of
a cluster if it has at least MinPts neighboring objects within
a given radius ε. All the objects in its ε-neighborhood are
also members of the same cluster. Otherwise the object is
classified as noise. We make the following modifications:
(1) The data unit to be clustered is a flow cluster; (2)
The distance function is our modified Hausdorff distance
between two flow clusters; (3) No minimum cardinality is
set for the resulting cluster; (4) The density-based clustering
for merging flow clusters always starts each round with the
flow cluster whose representative route is the longest. It
ensures that the final clustering results are always the same
with the same distance threshold. This is different from the
traditional DBSCAN in which data points are not processed
in a deterministic order.

3) Flow-Distance Computation Optimization: As shown
in Formula 5, a distance computation for each pair of flow
clusters consists of four shortest path computations. Note
that dN (a, b) and dN (b, a) are the same since we consider
undirected graphs. Let W = {F1, F2, . . . , FC} (C > 1)
denote the set of flow clusters generated from Phase 2 of
NEAT. For each Fi, we need to compare it with the rest
C − 1 flow clusters, one at a time, to determine whether
there is a merging opportunity. When the number of flow
clusters in W is large, the cost of computing the network
proximity of a pair of flow clusters can be expensive. If we
use the popular Dijkstra’s network expansion algorithm to
compute these shortest paths, the computation cost can be
high compared to the standard Euclidean distance, especially
when the representative routes of the flow clusters are long
in terms of segment counts. For a graph with n nodes and m
edges, traditional network expansion based algorithms (e.g.
Dijkstra, Floyd-Warshall) compute shortest paths for each
node pair in O(nlogn + m), while the Euclidean distance
computation for a node pair only takes O(1).

In phase 3 of NEAT, we use the Euclidean lower bound
(ELB) property to reduce the number of shortest path
computations while retrieving the ε-neighborhood of a flow
cluster Fi. By ELB, the Euclidean distance dE(li, lj) be-
tween two road network locations li and lj is always
the lower bound of the network distance dN (li, lj), i.e.
the condition of dE(li, lj) ≤ dN (li, lj) is always hold.
Hence, if dE(li, lj) > ε, we also have dN (li, lj) > ε.
In case of dN (Fi, Fj), instead of computing four shortest
paths dN (a1, b1), dN (a1, b2), dN (a2, b1) and dN (a2, b2), we
compute four Euclidean between those locations first. If the
minimum Euclidean distance between them exceeds ε, we
can filter Fj from the search space for ε-neighborhood of
Fi. Only when the minimum Euclidean distance between



Table II
DATASETS USED IN OUR EXPERIMENTS

Datasets Number of points
ATL SJ MIA

ATL/SJ/MIA500 114878 131982 276711
ATL/SJ/MIA1000 233793 255162 452224
ATL/SJ/MIA2000 468738 542598 893412
ATL/SJ/MIA3000 669924 794638 1302145
ATL/SJ/MIA5000 1277521 1296739 2262313

those points does not exceed ε, we calculate dN (Fi, Fj)
using our modified Hausdorff distance based on shortest
path computations to determine whether Fj is in the ε-
neighborhood of Fi or not.

IV. EXPERIMENTAL EVALUATION

We perform three sets of experiments to evaluate the
efficiency and effectiveness of our NEAT framework. Real
road networks of different sizes are used in our experiments.
The first set of experiments is to visualize the NEAT
clustering results. The second set of experiments compares
the efficiency and accuracy of NEAT with the traditional
density-based approach, represented by TraClus. The third
set of experiments thoroughly analyzes the performance of
the NEAT framework by breaking down the performance
of three phases and by considering different datasets and
different scales of maps.

In order to analyze the performance of each phase, we
refer to the trajectory clustering using the base cluster
formation algorithm as the base-NEAT, the trajectory clus-
tering using the first two phases as the flow-NEAT, and the
trajectory clustering using all three phases as opt-NEAT.
NEAT allows users to perform trajectory clustering using
any of these three versions of NEAT. Base clusters, flow
clusters and final trajectory clusters are the outputs of base-
NEAT, flow-NEAT and opt-NEAT respectively, and each
may have its own attraction in terms of delivering interesting
trajectory clustering results to location-based applications.

A. Experimental Setup

We use three real road networks in our experiments (Table
I). The road networks of North West Atlanta (ATL) and
West San Jose (SJ) are obtained from [15]. The Miami-Dade
(MIA) road network is obtained from [16]. We adapt the
public event-based simulator GTMobiSIM [17] to generate
thousands of mobility traces on those road networks for a
large-scale evaluation. We use five trajectory datasets for
each of the road networks ATL, SJ and MIA. Table II
gives the information of our synthetic datasets. To create
a trajectory dataset, for example SJ1000, we place 1000
mobile objects on West San Jose road network. Each object
is simulated to travel under speed limit constrained on road
segments, following shortest paths to a final destination
chosen randomly from a predefined set of locations as in
real life traveling. We implement our algorithms using Java
and visualize the results using GTMobiSIM GUI. All the
experiments are conducted on the NEAT server machine
with Intel Core2 Duo CPU of 2.00GHz and 1GB of main
memory allocated for the Java heap size.

B. Visualization of NEAT clustering results

We visualize the clustering results obtained after process-
ing trajectory datasets with the two phase NEAT approach
(flow-NEAT) and with the three-phase NEAT approach (opt-
NEAT). Figure 3 shows the clustering results for ATL500
dataset. The visualization of clustering results for SJ and
MIA datatsets are omitted due to space limit. Figure 3(a)
plots 500 trajectories (in green color) on North West Atlanta
map. After the first two phases, 31 flow clusters are dis-
covered (Figure 3(b)). These flow clusters capture all the
major traffic flows from the ATL500 dataset. Some traces
that we see in the original dataset disappear in Figure
3(b) since there are too few objects moving in them. The
threshold to filter those flow clusters in this experiment is
minCard=5, which is the average number of participating
trajectories in each of the flow clusters. There are two dense
regions that concentrates the short flows. They are the two
hotspots where we place the 500 mobile objects at the
beginning of their trips. After travelling on those short flows,
they start merging into the long flows to reach one of the
three destinations marked with the red X-signs on the map.
These 31 flow clusters are grouped into 2 clusters as shown
in Figure 3(c) after performing the density-based flow cluster
refinement. We start the density-based optimization with the
longest representative route (the dark red polyline number
30 in Figure 3(b)). This route connects to one of the two
hotspots and its endpoints are close to the endpoints of the
other long flows (the polylines 29, 28 and 27). As defined in
the DBSCAN algorithm, they are in a density-connected set.
Therefore, when we perform density-based clustering (with
the distance threshold ε = 6500m) we have them grouped
together in one cluster (contains the red polylines in Figure
3(c)). The rest of the flows are grouped into another cluster
(contains the gray polylines).

C. Efficiency and Effectiveness of NEAT

In this section, we evaluate the efficiency and effectiveness
of NEAT by comparing it with the conventional density-
based approach, represented by TraClus. To find the optimal
parameter values for TraClus, we vary the values of ε from
1m to 50m and correspondingly choose the suitable value for
MinLns by visual inspection of clustering results. Figure
4(a) shows 81 resulting clusters when running TraClus
algorithm on ATL500 dataset with the optimal parameter
values ε = 10m and MinLns = 30. Each cluster has its
representative trajectory plotted and numbered on the map.
Another result of 460 clusters for ATL500 is shown in Figure
4(b) when running Traclus with ε = 1m and MinLns = 1.
As we see, these clusters are discrete on the road network.
Their representative trajectories are short in lengths. These
clusters only show short routes in the road network where
there is dense traffic. They do not provide information
about the traffic continuity implied in the original trajectory
dataset. Recall the NEAT clustering results shown in Figure
3, we can see that most of the important routes are missed
when using TraClus. An interesting point to note is that our
framework with base-NEAT can also provide this knowledge
if we filter out those base clusters where the density is



Table I
ROAD NETWORKS USED IN OUR EXPERIMENTS

Regions Total length # Segments # Junctions Avg. segment length Junction degree
North West Atlanta, GA 1384.4km 9187 6979 150.7m avg: 2.6, max: 6

West San Jose, CA 1821.2km 14600 10929 124.7m avg: 2.7, max: 6
Miami-Dade, FL 26148.3km 154681 103377 169.0m avg: 3.0, max: 9

(a) Input data: ATL500 (b) 31 flow clusters (c) 2 clusters after optimizing phase (ε =

6500)

Figure 3. Results for North West Atlanta road network

(a) 81 clusters for ATL500
(ε=10m, MinLns=30)

(b) 460 clusters for ATL500
(ε=1m, MinLns=1)

Figure 4. TraClus

below a specific threshold. The remaining base clusters
will represent the road segments where traffic is highly
concentrated.

Figure 5(a) and Figure 5(b) shows the comparisons of
the average and maximum lengths of the representative
routes discovered using flow-NEAT and TraClus. Compared
to TraClus, flow-NEAT produces clusters with longer rep-
resentative routes, which are favorable for location based
applications such as bus line organizing or ride sharing [9].
This results in a smaller number of clusters produced by
flow-NEAT as shown in Fig 5(c). In comparison, NEAT
produces more compact and meaningful results through road
network aware trajectory clustering.

By utilizing the road network information, NEAT not only
produces meaningful trajectory clusters but also runs very
fast. Both traffic flow and traffic density can be discovered
using flow-NEAT without the need to compute any distance
function. We only compute shortest path distances in Phase 3
for clustering refinement and optimize this costly operation
by using ELB to eliminate the unnecessary shortest path
computation. In constrast, TraClus depends heavily on the
distance measurements among every pairs of samples in the
trajectory dataset. This makes TraClus overall very slow as
the number of samples in each trajectory and the number
of trajectories in each dataset are high. The semi-log graph
in Figure 5(d) shows the efficiency comparison between the
three-phase NEAT framework and TraClus framework by
varying the number of points in ATL datasets. TraClus is
very time-consuming and the time complexity grows as the
number of points gets larger. TraClus runs in 2573.5 seconds
to cluster ATL500 (114878 points) and 334735.1 seconds to
cluster ATL5000 (1277521 points). While opt-NEAT only
takes 1.29 seconds to cluster ATL500 and 59.7 seconds to
cluster ATL5000. Compared to TraClus, NEAT is faster by
more than three orders of magnitude.

One may ask what if TraClus is given the benefit of
our map-matching preprocessing step to partition a trajec-
tory into trajectory fragments and uses a network distance
measure such as our modified Hausdorff function in its
grouping phase? To address this concern, we have run a
variant of TraClus on our test datasets (the graphing result
is omitted due to space limit). In this variant of TraClus, we
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Figure 5. Comparison of flow-NEAT and TraClus (ATL datasets)

Table III
NUMBER OF FLOW CLUSTERS PRODUCED BY OPT-NEAT

Datasets SJ500 SJ1000 SJ2000 SJ3000 SJ5000
# flows 73 156 55 52 180
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(a) MIA datasets
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(b) Relative performance of
base cluster formation and
flow cluster formation

Figure 6. Relative performance of our approaches

even provide TraClus with the partitioning of trajectories
into base clusters instead of t-fragments, then the grouping
phase merges the base clusters using our modified Hausdorff
distance. Note that the number of base clusters is usually
much smaller than that of t-fragments. However, TraClus
remains slow compared to NEAT due to their grouping
algorithm which heavily depends on distance computations
and the resulting clusters only show discrete traffic density
in the road network. For instance, with the SJ2000 dataset
(226151 t-fragments, 901 base clusters), this variant of
TraClus takes 6396.79 seconds to finish with 117 resulting
clusters. While NEAT produces a more compact results of
42 flow clusters and 14 final clusters in only 11.68 seconds.

D. Performance of NEAT Algorithms

We analyze the efficiency of NEAT by analyzing the
performance of different versions of NEAT during the three
phases, focusing on the impact of the flow property of traffic
streams in NEAT design. The scaling of base-NEAT, flow-
NEAT and opt-NEAT for different MIA datasets are shown
in Figure 6(a). The curves are almost linear with the growth
of dataset size. In all cases, the flow cluster refinement phase
contributes very little to the total running time, as shown in
the graphs, due to the ELB based optimization. The opt-
NEAT curves nearly overlap the flow-NEAT curves.

We further investigate the relative performance of Phase
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(b) SJ datasets

Figure 7. Effectiveness of using Euclidean lower bound

1 (base cluster formation) and Phase 2 (flow cluster forma-
tion). Phase 1 algorithm takes the road network locations
as its data units because it scans the sequence of points in
all the trajectories to extract t-fragments. Phase 2 algorithm
takes the base cluster as its data unit. Intuitively, the number
of road network locations in the trajectory dataset is much
larger than the number of base clusters produced from
Phase 1. Thus, it takes longer to complete Phase 1. This
is confirmed by our experiments shown in Fig 6(b).

Figure 7 unveils the effectiveness of using ELB to reduce
the number of shortest path computations (opt-NEAT-ELB)
versus using Dijkstra’s network expansion algorithm to
compute all the shortest paths (opt-NEAT-Dijskstra) when
performing density-based optimization in the NEAT frame-
work. In Figure 7(a), the opt-NEAT-Dijskstra curve goes up
faster as the dataset size grows. However, the curve of opt-
NEAT-Dijkstra in Figure 7(b) shows that the cost at SJ1000
are much higher than at SJ2000 and SJ3000. This is due to
the cost of Phase 3, which computes shortest path distances,
actually depends on the number of flows produced by Phase
2 and not the data size. Table III shows the number of
resulting flows output from the second phase where numbers
of flows in SJ1000 and SJ5000 are much higher than that in
other datasets for SJ road network. Using ELB significantly
speeds up the performance of the density-based optimization
algorithm (see some big gaps between the two curves opt-
NEAT-ELB and opt-NEAT-Dijkstra).

V. RELATED WORK

The clustering problem has been extensively researched
in mobile ad hoc networks (MONET) and data streaming
systems. In MONET, data unit to be clustered is the mobility
node where the characteristics of node are taken into account



for cluster head choices in order to conserve energy and
connectivity [18] [19] [20]. In data streams, traditional k-
means and density-based clustering algorithms have been
extended to cluster large volume of multi-dimensional data
points generated by sensor networks [21] [22] [23].

Most existing work on MO trajectory clustering [13] [24]
[25] [26] [27] [28] [29] has derived proximity measures
for trajectories and adapted traditional k-means, hierarchical,
or density-based clustering algorithms to group similar tra-
jectories. Trajectory-OPTICS [24], which extends OPTICS
algorithm [12], is a good example for grouping similar
trajectories as a whole. The distance between two trajectories
is the average Euclidean distance between two objects for
every timestamp. Through an empirical comparison, [24]
also showed that the density-based approach to trajectory
clustering yields a better quality output than other traditional
k-means and hierarchical clustering algorithms. Traclus [13]
aims to find similar sub-trajectories rather than the whole
trajectories. It partitions each trajectory into line segments
using the Minimum Distance Length principle and then
performs a DBSCAN-like [11] clustering on line segments.
The similarity measure is composed of three Euclidean based
distance components between line segments. As a result,
discovered clusters are dense regions of line segments. [28]
adapts TraClus for online trajectory clustering. Although
including traffic data, the approach in [28] uses Euclidean
based distance and is unaware of the underlying road net-
works. Other works [25] [26] [27] consider the network
constraints to derive similarity measures but they only focus
on the density aspect of the given trajectories such as object
density [26], common road segments [25], shortest path
distance [27]. Our approach can produce partial clustering
but carefully considers the constrained road network focus-
ing on both flow and density characteristics and avoids the
expensive shortest path computation in its first two phases.
NEAT innovates TraClus framework in a creative manner
with higher efficiency (due to reduction of network distance
computation) and higher accuracy (due to incorporation of
flow semantics).

VI. CONCLUSION

We have presented NEAT - a novel road-network aware
approach to MO trajectory clustering which clusters MO
trajectories in a comprehensive three phase framework. We
introduce the concept of f -neighborhood to identify the
most critical and most interesting parts of the given MO
trajectories wrt. clustering. Instead of taking points or line
segments as the clustering unit as in traditional approaches,
NEAT introduces t-fragment, base cluster and flow cluster as
the basic building blocks for road-network aware trajectory
clustering. Its three-phase trajectory clustering framework
significantly reduces the data space that we need to process
in each subsequent phase. We devise the merging process for
base clusters and flow clusters by carefully combining the
density-based and the flow-based metrics to ensure trajectory
clustering quality. By carrying out extensive experiments,
we show that NEAT outperforms conventional density-based
trajectory clustering algorithms in terms of both time com-
plexity and accuracy. Experimental results show that NEAT

can discover clusters of MO trajectories which represent
major traffic stream in a road network.
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