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Abstract

Can we statistically compute social influence and under-
stand quantitatively to what extent people are likely to be
influenced by the opinion or the decision of their friends,
friends of friends, or acquaintances? An in-depth under-
standing of such social influence and the diffusion process
of such social influence will help us better address the ques-
tion of to what extent the ’word of mouth’ effects will take
hold on social networks. Most of the existing social in-
fluence models to define the influence diffusion are solely
based on topological connectivity of social network nodes.
In this paper, we presented an activity-base social influence
model. Our experimental results show that activity-based
social influence is more effective in understanding the viral
marketing effects on social networks.

1 Introduction
A social network is typically modeled as a graph of people
nodes connected through friend relationships or interactions
among people. Facebook, LinkedIn, and Twitter are popu-
lar social networks that not only serve as a meeting point
but also an important medium for the spread of information
and influences among its members. An important property
of social influence is the dynamics in terms of how influ-
ence evolves and which type of influence makes fast and
persistent inroads into the population of the network or dies
out quickly. Can we statistically compute social influence
and understand quantitatively or qualitatively to what ex-
tent people are likely to be influenced by the opinion, the
action, or the decision of their friends, friends of friends, or
acquaintances? An in-depth understanding of such social
influence and the diffusion process of such social influence
will help us better address the question: to what extent the
’word of mouth’ effects will take hold (i.e., one is being
influenced by the social networks to which it belongs) on
social networks.

1.1 Topological Diffusion Model
An intuitive approach to study the process of influence
diffusion over social networks is the topological diffusion
model. It examines how the spread of influence is car-
ried out through the topological relationships among people
nodes in a social network. For example, Kempe [11] charac-
terizes the state of art influence research in social sciences
into two basic diffusion models: Linear Threshold model
(LT) and Independent Cascade model (IC). Both models
classify people nodes into active and inactive. Given net-
work G = (V,E), LT model [3, 10, 11, 14, 16] requires
each node u randomly to choose a weight w(u, v) over an
edge E(u, v) from the interval [0,1]. w(u, v) is the influ-
ence of u over v. Each node is either inactive or active.
Then we set a system defined threshold θ which will be used
to determine if a node switches from being inactive to ac-
tive. An inactive node v can be switched to active when the
total weight

∑
w(u, v) is greater than or equal to θ, where u

is one of active neighbors of v. This process repeats on each
newly activated node in V . In contrast, IC model [8, 9, 11]
uses a probabilistic approach. A newly activated node u
is given one chance to activate its inactive neighbor nodes
with a probability pu,v . This process repeats until no more
activation is possible (reaching convergence).

In addition to two models, heat diffusion has been stud-
ied as another basic topological diffusion model. Mutual
influence can readily be modeled as a heat diffusion pro-
cess [12, 13, 19]. At initial time t0, all nodes has zero heat.
In a social network of n nodes, one node vi is selected and
given some amount of heat. At t1, vi diffuses its heat to
all of its neighbors equally. At t2, nodes with non-zero heat
diffuse their heat to their neighbors. This routine repeats for
a certain time period t. Then we know how many nodes are
influenced from vi by counting the number of nodes whose
heat value is greater than or equal to a system defined value.
By repeating this process for all n nodes, we find the influ-
ence of each node.



1.2 Problems with Topological Diffusion Models
Most of the existing social influence models, to the best of
our knowledge, define the influence diffusion solely based
on the topological connectivity of social network nodes. We
argue that social influence among people is not only de-
termined by the social connectivity but also the amount of
activities carried out by a node and the volume of interac-
tions between two social network nodes. It is evident in
real world that those people that have more activities in so-
cial network typically have higher level of social influence
on their neighbor nodes and the friends of their friends than
those who are significantly less active. In addition, two peo-
ple who interact more frequently in a social network will
have higher influence on each other than two people who
have not had many interactions. Bearing these observations
in mind, we design and develop an activity-based social in-
fluence model and a suite of activity-based influence rank-
ing algorithms.

2 Related Work
TwitterRank [18] measures the influence by taking into ac-
count both the topical similarity between users and the link
structure. On the other hand, Anger [1] reveals that highly
reciprocal social network structure cannot be observed with
the top 10 Twitter users in Austria. This is due to the asym-
metric phenomenon of social influence. The most popular
super hubs are followed by many users, but the super hubs
are seldomly following those users who are their followers.

Ma et al [13] and Bao et al [2] studied social influence
in terms of the heat diffusion phenomena such that the in-
fluence spreading over the social network can be modeled
as heat flowing along the links from a social network node
to another at some diffusion rate. After several iterations
of such topological heat diffusion, those users who spread
heat most are selected as the most influential nodes in the
give social network. Unfortunately, the heat diffusion pro-
cess utilizes only the topological structure of the given so-
cial network. As a result, social network nodes with less
neighbor but more activities will receive lower ranking val-
ues.

3 ACTIVITYINFLUENCE Model
3.1 Social Network Attributes
Intuitively, social network nodes that have much more activ-
ities typically have higher level of social influence on their
neighbor nodes than those that are significantly less active
even though they may have larger number of friends (neigh-
bor nodes) and thus higher node degree. Thus, the number
of activities that a node has performed should be an impor-
tant indicator of social influence in addition to topological
structure of nodes.

Furthermore, we argued that one pair of social network
nodes that interact more frequently will have higher social

influence on each other than another pair of nodes that have
significantly fewer interactions recently. This leads us to
introduce the number of interactive activities between two
nodes as another important indicator of social influence. We
call the activities performed at each node the non-interactive
activities and the activities performed via interactions be-
tween a pair of nodes the interactive activities in this paper.

As a final remark, we would like to point out the im-
portance of asymmetric influence between a pair of social
network nodes. In the context of topology based social in-
fluence model, the simplest way of constructing a social net-
work graph is to create a vertex for each user and connect
two vertices if any two users are friends. All the edges have
an equal weight and thus the edge weight is insignificant.
This approach assumes that influence is symmetric between
two nodes. However, the equality of influence between a
pair of nodes does not always exist in real world. The so-
cial influence between a pair of social network nodes are
not symmetric, no matter whether the two nodes are mu-
tual friends or one is a follower of another. For example, a
user s is a famous singer and f is one of her fans. Then f
is keen on being informed about s’s activities but not vice
versa. Similarly, two friends s and f may not have equal
influence on one another if f is less active and s is highly
active in terms of conducting non-interactive and interactive
activities.
Number of Friends Measuring the social influence based
on the number of friends is the easiest and the most com-
mon way. We refer to this type of social influence as popu-
larity based or friendship based social influence to differen-
tiate it from the general concept of social influence, which
should capture both topological structure and activity based
semantics of social network nodes. Indeed, highly influ-
ential people often have more followers than less or non-
influential people. Thus node degree (number of friends)
is an important measure for computing social influence of
nodes in a social network. However, the number of friends
should not be used as the best and the only indicator of the
level of influence. Some people report that they cannot re-
ject friend requests from their clients [17] or they accept
friend requests from even vaguely recognized people [4] to
increase their popularity. Therefore, the influence diffusion
model, which is based solely on the number of friends and
the uniform distribution of influence among all friends of
a node, will fail to capture how social influence is actually
diffused in real life.
Activities In reality, friendship is not the only contextual
feature that most social network services provide. Users
can post photos, videos, and reviews on any subject. For
friends’ posting, users can vote for ’like’ or write a com-
ment. We categorize user activities into two groups: in-
teractive activities (such as comments on friends postings)
and non-interactive activities (such as reviews on a product



or tips for programming). Interactive activities are user ac-
tivities that involves another social network node than self.
Otherwise, activities are considered as non-interactive. For
example, Alice posts a photo on her profile page. This ac-
tivity is non-interactive because it involves only herself and
no one else. If another social network node Bob leaves a
comment on Alice’s photo. Then this activity is an interac-
tive activity between Bob and Alice because it involves two
nodes in the social network.

Figure 1 shows an example of social network of 10 users,
v1, v2, . . . , v10. Each user is represented as a vertex. Each
node may have performed a number of non-interactive ac-
tivities, such as posting of reviews, photos or videos. The
underlined positive integer attached to each node represents
the number of non-interactive activities performed by the
node. If two users are friends, then there is an edge be-
tween two vertices. The positive integer attached to each
edge connecting two nodes denotes the number of interac-
tive activities performed between them. For example, v1 in
the middle of nodes has 70 postings, v2 has 40 postings,
and v3 has 3 postings. There are 80 interactive activities
between v1 and v2. However, there are only 4 activities be-
tween v1 and v3.
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Figure 1. Example Social Network

3.2 Heat Diffusion Kernel
Heat diffusion is a physical phenomenon such that heat al-
ways flows from an object with high temperature to an ob-
ject with low temperature. In physics, the heat capacity is a
thermodynamic property; i.e., the heat capacity is a measure
of how much an intensive thermodynamic variable (tem-
perature) changes when a small amount of energy is added
or subtracted from the sample. Thermal conductivity is a
transport property; the thermal conductivity, α, is the lin-
ear transport coefficient that relates a temperature gradient
to a heat flux. In most cases of practical interest, the α is
a tensor and is diagonal. The ratio of the thermal conduc-
tivity and heat capacity per unit volume, C, is the thermal
diffusivity, D = α

C . We can get a rough idea of the time
t it takes for heat to diffuse some distance L from dimen-
sional analysis and t is increasing with increase of L and
decrease of D. Thus, the time scales of heat diffusion in
practical situations varies enormously. In scientific studies,
the relevant time scales of heat diffusion span an amazing
27 orders of magnitude. For example, some physicists study

heat diffusion in thin films on 10 picosecond time scales and
planetary scientists are concerned with the diffusion of heat
on the time scale of billions of years.

In a large social network graph, heat diffusion kernel can
be used to model to social influence diffusion process in the
social network graph. Let G = (V,E) denote a social net-
work graph where V = {v1, v2, ..., vn} is the set of vertices
representing users and E = {(u, v)|u, v ∈ V } is a set of
edges representing friend relationship between users. Let α
denote the thermal conductivity (the heat diffusion coeffi-
cient) on G. The heat on vertex vi at time t is represented
as a function Hi(t) and heat flows from a high tempera-
ture node to a low temperature node following the edges
between vertices. On a directed graph, for the duration ∆t,
vi diffuses its heat, denoted byDHi(∆t), through its outgo-
ing edges, and receives heat, denoted byRHi (∆t), through
its incoming edges. The heat at vertex vi ∈ V between t and
t+ ∆t is defined by the sum of the differences between the
heat that it receives from, and the heat it diffuses to, all its
neighbors, and is formulated as follows:

Hi(t+ ∆t)−Hi(t) = RHi(∆t)−DHi(∆t) (1)

This formula shows that a number of factors impacts on
Hi(t+ ∆t)−Hi(t), including the heat conductivity α, the
heat at vertex vi, the duration of heat diffusion process ∆t,
and the number of friends of vi, denoted by di.

Each heat distribution medium has different heat con-
ductivity α, which is a real number between 0 and 1. If α
is approaching zero, then the medium barely transfer any
heat. If α is approaching the upper bound of 1, it transfers
heat without loss and the speed of heat diffusion is faster
than when α is close to the lower bound of 0. Each social
network has different speed of information diffusion and so
does each type of products or opinions. In this paper we set
α to be 1 to allow us to focus more on the methods to define
heat at a node and heat diffusion on weighted edges by tak-
ing the assumption that the more heat a social network node
vi has, the more heat vi can diffuse.

The amount of heat transfer depends on the topology of
graph, time of period, and the amount of heat at source
node. If vi is directly reachable from vj through an edge
in E(vj , vi), then the more heat vj has, the more heat vi re-
ceives, and the longer the heat diffusion process takes, the
more heat vi receives from its neighbors and vj diffuses to
its neighbors. Lastly, the number of friends of vi, denoted
by di, is the out-degree of vertex vi, another important fac-
tor for influence diffusion. In the topology based heat dif-
fusion model where heat at a vertex is uniformly distributed
to all its neighbors, each neighbor node of vi receives 1

dj
of

heat that vi diffuses.
Figure 2(a) shows an example extracted from the sam-

ple social network given in Figure 1. Weight on edges are
computed based on the uniform distribution, namely 1

di
of

the heat of vertex vi will be diffused to each of its neigh-



bors. For example, v5 in the lower right of vertices has two
friends, v4 and v6. Hence, the weight of 0.5 is assigned to
E(v5, v4) and E(v5, v6) respectively and one half of v5’s
heat is transmitted to v4 and the other half is transferred to
v6. v10 in the upper left of vertices has only one friend, v9.
Therefore, the weight onE(v10, v9) is 1 and all of v10’s heat
is diffused to v9. In summary, the amount of heat vi dif-
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(a) Constructed Graph
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Figure 2. Heat Diffusion (Topology)

fused to its neighbors, DHi(∆t), is proportional to α, ∆t,
and Hi(t). The amount of heat that vi received from her
neighbors, RHi, (∆t) is proportional to α, ∆t, and Hj(t)

dj
.

we can formulate DHi(∆t) and RHi(∆t) as follows:

DHi(∆t) = α∆tHi(t) (2)

RHi(∆t) = α∆t
∑

j:(vj ,vi)∈V

Hj(t)

dj
. (3)

We can plug Eq. (2) and (3) into Eq. (1) then we have the
following form:

Hi(t+ ∆t)−Hi(t) = α∆t

( ∑
j:(vj ,vi)∈V

Hj(t)

dj
−Hi(t)

)
. (4)

Consider the example in Figure 2(a), we have:

H1(t+ ∆t)−H1(t) =α∆t
(
−H1(t) + 0.5H2(t) +H3(t)

+ 0.25H4(t) + 0.25H6(t) + 0.5H8(t)

+ 0.5H9(t)
)

H2(t+ ∆t)−H2(t) =α∆t
(

0.17H1(t)−H2(t) + 0.25H4(t)
)

H3(t+ ∆t)−H3(t) =α∆t
(

0.17H1(t)−H3(t)
)

...

H10(t+ ∆t)−H10(t) =α∆t
(

0.5H9(t)−H10(t)
)
.

The above heat difference can be represented in a matrix

form as follows:

H(t+ ∆t)−H(t) =

α∆t



−1 0.5 1.0 0.25 0 0.25 0 0.5 0.5 0
0.17 −1 0 0.25 0 0 0 0 0 0
0.17 0 −1 0 0 0 0 0 0 0
0.17 0.5 0 −1 0.5 0.25 0 0 0 0

0 0 0 0.25 −1 0.25 0 0 0 0
0.17 0 0 0.25 0.5 −1 0.5 0 0 0

0 0 0 0 0 0.25 −1 0.5 0 0
0.17 0 0 0 0 0 0.5 −1 0 0
0.17 0 0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 0 0.5 −1


H(t)

= α∆tKH(t)

(5)
where K is a n × n matrix whose element K(i, j) is

defined as in Eq. (6) and H(t) is a column vector of size n
defined in Eq. (7). In this example n = 10.

K(i, j) =


1
dj

(vj , vi) ∈ E
−1 i = j and di > 0
0 otherwise

(6)

H(t) =


H1(t)
H2(t)
H3(t)
. . .

H10(t)

 (7)

We can transform Eq. (5) as follows:

H(t+ ∆t)−H(t) = α∆tKH(t)

⇔
H(t+ ∆t)−H(t)

∆t
= αKH(t)

⇔ lim
∆t→0

H(t+ ∆t)−H(t)

∆t
= αKH(t)

⇔
d

dt
H(t) = αKH(t) (8)

.
Eq. (8) is a linear homogenous differential equation and

can be solved as follows:

H(t) = eαtKH(0) (9)

where K denotes the heat diffusion kernel of G and
H(0) denotes the initial heat distribution column vector at
time zero on G. Eq. (9) defines the vertex’s thermal capac-
ity at time t by an exponential function H(t) with indepen-
dent variable t for the initial heat source H(0). The matrix
eαtK is called the propagating heat diffusion kernel and can
be represented as a Taylor series:

H(t) =eαtKH(0)

=(I + αtK +
α2t2

2!
K2 +

α3t3

3!
K3 + . . . )H(0)

=I +
∞∑
n=1

αntn

n!
KnH(0) (10)

where n! denotes the factorial of n and 0! is defined to be 1.
K(n) denotes the nth derivative of K evaluated at the point
t and the zeroth derivative of K is defined to be K itself.



Figure 2(b) shows the result of heat diffusion using Eq.
(9). v5 is selected as a heat source. x-axis is the time line
and y-axis is the amount of heat at each node vi. v4 and
v6 are nodes that are 1-hop away from v5. They evenly
receive heat from v5. Thus their heat graphs are the same. 2-
hop away nodes, v1, v2, v7, have less amount of heat than 1-
hop away nodes but larger than 3 or more -hop away nodes.
Although v1 is 2-hop away node, it is receiving from three
nodes. Thus its heat is higher than other two 2-hop away
nodes.
3.3 Activity-based Heat Diffusion
3.3.1 Design Guidelines

Let IAij denote the number of interactive activities from
node vi to its neighbor node vj and NIAi denote the num-
ber of non-interactive activities at node vi. There are several
ways one can extend the heat diffusion kernel to incorporate
both interactive and non-interactive activities. We choose to
extend the basic heat diffusion kernel in two steps.

First, we argue that non-interactive activities at node vi
may play a role as heat source. The more non-interactive
activities a node vi has performed, the more heat is added
to vi and consequently vi is losing its heat at a slower pace
in the diffusion process. Concretely, let NAi denote the
number of non-interactive activities at node vi. We de-
fine MAX(NA) as the largest number of non-interactive
activities in V . Thus, the diffused influence at vertex vi,
denoted by DHi(t), is augmented by the number of non-
interactive activities at vi normalized by MAX(NA), de-
noted by NAi

MAX(NA) . In order to express that vi loses its heat
slower when it has larger number of NAi, we set DHi(t)
is proportional to 1− NAi

MAX(NA) .
Second, we argue that the amount of influence received

by node vi from one of its neighbors, say vj , should be
proportional to the number of interactive activities that vj
has performed with vi normalized by the total number of
interactive activities that vj has performed with all of its
neighbors, namely IAji∑

k:(vj,vk)∈E IAjk
. Thus RHi(t) is pro-

portional to IAji∑
k:(vj,vk)∈E IAjk

.

Consider the example in Figure 1, v2 has 80 interactions
with v1 and 50 with v4. Instead of following topology based
heat diffusion where v1 and v4 receive equal amount of heat
from v2, namely H2(t)

2 , we define that v1 receives 80
80+50 of

H2(t) and v4 receives 50
80+50 of H2(t). Similarly, we can

consider non-interactive activities. NA1 is 70, NA10 is 2,
and MAX(NA) is 80. Then we can normalize NA1 as 70

80
and NA10 is normalized as 2

80 . Then the amount of heat v1
loses is (1− 70

80 )H1(t) and v10 loses (1− 2
80 )H10(t) amount

of heat. Thus v10 loses its heat faster than v1.

3.3.2 Activity based Diffusion Kernel

In this section we formally define the activity based diffu-
sion kernel by taking into account of both interactive and
non-interactive activities.

Considering the above example we can formulate as fol-
lows:

RHi(∆t) = α∆t
∑

j:(vj ,vi)∈E
Hj(t)(

IAji∑
k:(vj ,vk)∈E IAjk

) (11)

DHi(∆t) = α∆tHi(t)(1− β
NAi

MAX(NA)
) (12)

where β is a real number between 0 to 1 and served as the
weight for non-interactive activities. If β is set to 0 then
non-interactive activities are ignored. If β is set to 1, then
DHi(∆t) may become zero when MAX(NIA) = NAi.

By plugging Eq. (11) and (12) into the heat difference
during ∆t, defined in Eq. (1), we have the activity-based
heat diffusion formula as follows:

Hi(t+ ∆t)−Hi(t)
=RHi(∆t)−DHi(∆t)

=α∆t
∑

j:(vj ,vi)∈E
Hj(t)(

IAji∑
k:(vj ,vk)∈E IAjk

)+

α∆tHi(t)(1− β
NAi

MAX(NA)
) (13)

Eq. (13) is transformed into matrix form as follows:
α∆tKH(t) (14)

, where K is a n× n matrix as defined as follows:

K(i, j) =


IAji∑

k:(vj,vk)∈E IAjk
(vj , vi) ∈ E

1− β NAi
MAX(NA)

i = j and di > 0

0 otherwise

(15)

We also define node activity-based diffusion kernel and
node interaction-based diffusion kernel. If there are only
node activity information and no node interaction, then
RHi(∆t) is the same as one in the topological heat dif-
fusion. In concrete, we use DHi(∆t) in Eq. (12) and
RHi(∆t) in Eq. (3):

DHi(∆t) = α∆tHi(t)(1− β
NAi

MAX(NA)
)

RHi(∆t) = α∆t
∑

j:(vj ,vi)∈V

Hj(t)

dj
.

. Then we modify K as follows:

K(i, j) =


1
dj

(vj , vi) ∈ E
1− β NAi

MAX(NA)
i = j and di > 0

0 otherwise

(16)

On the other hand, if there are only node interaction infor-
mation and no node activity information, then DHi(∆t) is
the same as one in the topological heat diffusion. In con-
crete, we use DHi(∆t) in Eq. (2) and RHi(∆t) in Eq.
(11):

DHi(∆t) = α∆tHi(t)

RHi(∆t) = α∆t
∑

j:(vj ,vi)∈E
Hj(t)(

IAji∑
m:(vj ,vm)∈E IAjm

)



and K is also defined as follows:

K(i, j) =


IAji∑

k:(vj,vk)∈E IAjk
(vj , vi) ∈ E

1 i = j and di > 0
0 otherwise

(17)

Figure 3(a) shows K as weights on edges computed using
the above formula. Weights on Figure 3(a) is different from
those in Figure 2(a). Figure 3(b) shows activity based heat
diffusion result. From the heat source v5, v4 receives the
largest amount of heat (83%) and its heat increases faster
followed by v6, which receives 17% of v5’s heat. Note that
in Figure 2(a), v4 and v6 receive the same amount of heat
from v5, but now the ratio is changed. Also note that v1 are
v2 have higher heat than v6. This is because v4 has higher
heat than v6 and v4’s heat is diffused more to v1 and v2 than
v6. Also v1 is receiving heat from v6. Therefore v1 and v2
have higher heat than v6.
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Figure 3. Heat Diffusion (Interactive Activities
Only)

Figure 4 shows the result of activity based heat diffusion
process with information on both the number of interactive
activities and the number of non-interactive activities. We
set β to 0.5 in order to fully consider non-interactive activi-
ties. Each node receives the same heat as in Figure 3(a) but
they lose heat differently. The rate of heat loss in Figure
4(b) is slower than the one in Figure 3(b). Note that some
users such as v1 and v2 are actively posting once they are
influenced by v4.

4 INFLUENCERANK, INFLUENCECOVERAGE
Algorithms

In this section we design the INFLUENCECOVERAGE,
which can measure the coverage of nodes that are influ-
enced by a given user using the heat diffusion process. We
can define the INFLUENCECOVERAGE of a node vi by the
coverage of the nodes that are influenced by vi. Given
INFLUENCECOVERAGE, we assign INFLUENCERANK by
descending order of INFLUENCECOVERAGE. This can be
directly applied to viral marketing scenarios where a lim-
ited budget is allocated to some new products. Therefore
marketing candidates should be carefully selected so that
the marketing efficiency can be maximized.
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Figure 4. Heat Diffusion (Non-interactive and
Interactive Activities)

Determining Influence Threshold: Given heat at vi, vi
diffuses its heat to its neighbors. At some time t, we check
the heat value at every vertex. Each vertex has an accep-
tance threshold θ. If the heat is greater than or equal to θ,
we consider the user is influenced by the initial heat source,
vi.
Top K Influential Nodes by INFLUENCERANK: Given
a social network G of size |V |, the top K influence rank
based node selection algorithm performs the following four
tasks in sequence: (a) activity based social influence com-
putation using the activity based heat diffusion kernel,
(b) INFLUENCECOVERAGE computation, (c) sorting social
network nodes by INFLUENCECOVERAGE, and assigning
INFLUENCERANK based on INFLUENCECOVERAGE, and
(d) returning top-k nodes by their INFLUENCERANK.

It is well known that selecting top-k influential people
from the network of |V | nodes (k < |V |) to maximize the
spread of their influence is NP-hard [11]. Thus we can
present greedy algorithms for selecting top-k people in a
social network graph.

There are several ways to compute the top k most in-
fluential nodes based on INFLUENCERANK. For exam-
ple, if we simply rank all nodes in V based on their
INFLUENCECOVERAGE, then the top k nodes are selected
as they have the top k largest influence coverage. How-
ever, this approach may not give the highest overall node
coverage by the top k nodes when there is a large over-
lap in terms of node coverage among the top k nodes.
In this section we describe three influence ranking cri-
teria: (a) independent INFLUENCECOVERAGE, (b) local
optimal INFLUENCECOVERAGE and (c) global optimal
INFLUENCECOVERAGE.
Top K by Independent INFLUENCECOVERAGE: The sim-
plest approach to selecting top-k influential nodes in a social
network is to compute their INFLUENCECOVERAGE and
sort the nodes by their individual INFLUENCECOVERAGE.
Algorithm 1 shows the pseudocode of the indepen-



dent INFLUENCECOVERAGE algorithm. For each vi
in G, we assign the same heat h0 and compute
INFLUENCECOVERAGE in terms of the number of nodes
over which vi has influenced.

ALGORITHM 1: Independent INFLUENCECOVERAGE

1 foreach vi ∈ G do
2 H(0)← 0; /* initialize heat */
3 Hi(0)← h0; /* assign heat h0 to vi */
4 ICi ← ∅; /* initialize ICi */
5 HeatDiffusion(t, H(0));
6 foreach vj ∈ G do
7 if Hj(t) ≥ θj then
8 Add vj into set ICi;
9 end

10 end
11 end
12 Sort {ICi|vi ∈ G} by set size;
13 return top-k vi ordered by |ICi|

ALGORITHM 2: Minimizing Local Overlap

1 Line 1 to 12 in Algorithm 1;
2 IC ← ∅; /* universal result set */
3 m← 0;
4 Vlocal ← 0;
5 while m < k do
6 foreach vi ∈ (G− Vlocal) do
7 Find ICi that has max(ICi − IC);
8 end
9 Vlocal ← Vlocal ∪ vi;

10 m← m+ 1;
11 IC ← IC ∪ ICi;
12 end
13 return marked ICi

Algorithm 1 is easy to implement but it may select top
k nodes that have very high level of overlapping in terms
of node coverage. Given k = 2, we denote a set of in-
fluenced users by v1 as IC1. For example, given IC1 =
{v11, v12, v13}, IC2 = {v11, v12, v13, v14}, and IC3 =
{v20, v21}, Algorithm 1 returns v2 and v1 as top 2 influen-
tial users because |IC2| > |IC1| > |IC3|. v2 and v1 influ-
ence four users, which is IC1 ∪ IC2 = {v11, v12, v13, v14}.
On the other hand, v2 and v3 influence 6 users, which is
IC2 ∪ IC3 = {v11, v12, v13, v14, v20, v21}. Simply return-
ing first k largest ICi does not guarantee the true top-k in-
fluential people. Therefore we present the second criteria in
selecting top-k people, which is minimizing the local over-
lap.
Top K by Locally Optimal INFLUENCECOVERAGE:
Instead of selecting top k nodes with the largest
individual INFLUENCECOVERAGE, the locally optimal

INFLUENCECOVERAGE algorithm adds node vi to its top
k list if it satisfies two conditions: (i) vi has the high
INFLUENCECOVERAGE and (ii) vi has the minimal inter-
section with previously selected set of nodes as described
in Algorithm 2. This algorithm extends the independent
influence ranking Algorithm 1 by adding another round of
computation to find the set of nodes in the social network,
which minimizes local overlap, upon completion of the heat
diffusion process. Each node found is added to the top-k list
of influential nodes until every node in the social network is
examined.
Top k By Globally Optimal INFLUENCECOVERAGE: Al-
gorithm 1 and 2 computes INFLUENCECOVERAGE of vi
while assuming that vi is the only heat source. But in re-
ality, there are multiple heat sources at the same time. For
example, a new iPhone is released, then several reviews are
posted on the first day of release. Then people read mul-
titple reviews and decide to buy based on these multiple
reviews. Therefore, we need an algorithm that uses multi-
ple heat sources to conduct the social influence computation
and influence ranking.

Algorithm 3 gives a sketch of the top k selection by
globally optimal influence ranking. It uses the Hill Climb-
ing approach. In order to avoid local maximum, it per-
forms Algorithm 1 and gets the sorted vertices by indi-
vidual INFLUENCECOVERAGE. We then select vi whose
INFLUENCECOVERAGE, denoted by ICi is the largest and
initialize Vglobal by adding vi into Vglobal. At each step
in the outer loop, we give heat to vertices in Vglobal. By
adding one more heat source at a time, we simulate the sce-
nario that there are multiple heat sources. After the second
inner loop, we find vi, which has the minimal overlap with
previous selected nodes in Vglobal.

ALGORITHM 3: Minimizing Global Overlap

1 Line 1 to 12 in Algorithm 1;
2 IC ← ∅; m← 0;
3 Find vi that has max(ICi);
4 Vglobal ← vi;
5 while m < k do
6 H(0)← 0;
7 foreach vi ∈ Vglobal do
8 Hi(0)← h0;
9 end

10 foreach vi ∈ (G− Vglobal) do
11 Hi(0)← h0;
12 HeatDiffusion(t, H(0));
13 end
14 Find vi that has max(ICi − IC);
15 Vmulti ← Vglobal ∪ vi;
16 m← m+ 1;
17 return Vglobal
18 end



5 Experiments
We performed experimental evaluations in order to show
the performance and effectiveness of the activity-based so-
cial influence against topology-based heat diffusion. First
of all, we explain how we collect datasets, what proper-
ties these datasets have, what the effects of parameters, and
the performance of our approaches. Our results show that
activity-based approach has larger coverage so that with
limited marketing budges marketing companies maximize
the advertising.
5.1 Datasets
We used datasets from three sources, DBLP[5],
Epinions[6], and and Facebook[7], to evaluate the ef-
fectiveness of our activity based social influence model and
influence ranking algorithms. DBLP dataset provides bib-
liographic information on major computer science journals
and proceedings. We parse DBLP data and extracted 5,000
authors and their co-authorship information. For example,
if authors u and v wrote x number of papers together, then
we create two edges e1(u, v) and e2(v, u) and set x as the
number of interactive activities for both e1 and e2.

Epinions dataset, collected by Massa[15], contains con-
sumer reviews and trust networks. Epinions is a platform
for people to share their experiences and to maintain a trust
network. Customers will be influenced by reviews when
they consider buying products. These reviews are displayed
after filtered using users’ trust network. For example, if
users u and v made some reviews and user w likes u’s re-
views and does not v’s reviews, then w creates a trust list
by adding u and does a block list by adding v. Now Epin-
ions displays u’s reviews first and hides v’s reviews for w.
Epinions’ dataset has 49,289 users, 664,824 reviews, and
487,181 trust statements after 5-week crawl in 2003. Given
a user u and her x number of reviews, we construct a vertex
u and set x as the number of non-interactive activities for
the vertex u. If a user v adds a user u into a trust network,
then we create an edge e(u, v).

Facebook is recognized by many as one of the largest so-
cial network services. Each user has her profile page where
the owner can post photos, videos, and other owner spe-
cific information. For each posting, her friends can leave
comments. When a user u posts photos, videos, or statuses,
we consider it as non-interactive activities. When a user u
leaves a comment on v’s posting, then we consider it as an
interactive activity. Given a user u and her x number of
postings, we create a vertex u and set x as the number of
non-interactive activities. Given a friendship between two
users u and v, we create two edges e1(u, v) and e2(v, u).
If node u has y number of comments on node v’s posting,
then we create an edge e(u, v) and set y, the number of in-
teractive activities, as the weight for this edge. We launched
a Facebook app to analyze users’ posting trends and statis-
tics of friends. From 273 Facebook app users, we extract

their friend relationship information which creates 76,954
nodes and 1,121,861 friendship edges. For example, one
user may have 300 friends. Then we can create 301 users
nodes. Repeating this procedure for all 273 users results in
76,954 nodes.
5.2 Effect of Various Parameters
In our activity-based model, we use parameters such as a
heat conductivity, α, an acceptance threshold, θ, an activity
weight, β, and initial heat, h0. Different settings of these pa-
rameters may significantly affect the heat diffusion process
and consequently the influence computation result. Before
assigning values for experiments, Figures 5(a) to (l) present
how these values affect heat diffusion process. We initial-
ize α as 1.0, β as 0.6, θ as 0.6, and initial heat h0 as 30
and measure the number of influenced nodes by varying the
value of each parameter.

The heat conductivity, α, controls the speed of heat
spread. Some social networks spread news or rumors
quickly while others do not. By setting the value of α, we
can mimic the speed of spread. The value of α is a real num-
ber between 0 and 1. If it is set to 0, heat will not be diffused
at all. On the other hand, if α is set to 1, all of the heat at
the heat source will be diffused to its neighbors without any
loss. Figures 5(a), 5(e), and 5(i) show how many users are
influenced by top-k people while varying α from 0.2 to 1.0
for each dataset. As stated above, higher α value results in
more influenced users because more heat will be diffused.

The activity weight, β, regulates how much weight will
be given for non-interactive activities. If it is set to 0, the
number of non-interactive activities does not play a role
at all on the heat diffusion process. Then each user loses
their heat as proportional to time. If β is high, then a user
loses heat with regard to her activities in posting. Figure
5(j) shows that higher β value results in larger number of
influenced users because heat sources will lose their heat
much slower, which means the amount of heat to diffuse de-
creases slower. Figure 5(b) shows that the total number of
influenced users does not change significantly while varying
β. In the DBLP dataset, each node has no non-interactive
activities. It has only interactive activities, which is co-
authorship relation. Therefore, β does not affect the heat
diffusion process. Each node loses its heat as the time goes
by.

The acceptance threshold, θ, is used to determine if a
user is influenced or not. If Hi(t) is greater than or equal to
θi, then we consider vi is influenced by heat source users.
θi value varies from 0 to 1. If it is low, more users will
be influenced. Figures 5(c), 5(g), and 5(k) show that when
we decrease θ, the number of influenced users increases.
Especially, for Facebook dataset, the number of influence
users are increased 6 times more when we decrease θ from
0.6 to 0.2.

The next parameter we measure is the initial amount of
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(a) α (DBLP)
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(b) β (DBLP)
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(c) θ (DBLP)
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(d) h0 (DBLP)
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(e) α (Epinions)
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(f) β (Epinions)
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(g) θ (Epinions)

0 5 10 15 20
0

100

200

300

400

K

# 
of

 A
ct

iv
at

ed
 U

se
rs

 

 

HEAT 20.0
HEAT 30.0
HEAT 40.0

(h) h0 (Epinions)
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(i) α (Facebook)
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(j) β (Facebook)
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(k) θ (Facebook)
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(l) h0 (Facebook)
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(m) DBLP

0 5 10 15 20
0

50

100

150

200

250

300

350

K

# 
of

 In
flu

en
ce

d 
P

eo
pl

e

 

 

Topology (C1)
Topology (C2)
Topology (C3)
Activity (C1)
Activity (C2)
Activity (C3)

(n) Epinions
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(o) Facebook

Figure 5. Effect of Parameters: (a) to (l) and Accumulated Number of Influenced Users: (m) to (o)

heat, h0. We varied h0 from 20 to 40. The more heat that a
user is assigned to, the more users are influenced by the top
k nodes in Figures 5(d), 5(h), and 5(l).

In the following experiments, we initialize α as
1.0, β as 0.6, θ as 0.6, and h0 as 30. Twenty most
influential people are selected based on three crite-
ria: independent INFLUENCECOVERAGE(C1), locally
optimal INFLUENCECOVERAGE(C2), globally op-
timal INFLUENCECOVERAGE(C3). We compared
activity-based heat diffusion with topology-based
heat diffusion using three influence ranking crite-
ria: independent INFLUENCECOVERAGE(C1), locally
optimal INFLUENCECOVERAGE(C2), and globally
INFLUENCECOVERAGE(C3). For each experiment, we
show that global influence ranking is the best top k in-
fluence ranking algorithm for selecting the top k nodes
that have the overall maximal influence in terms of
non-overlapping node coverage.

5.3 DBLP Dataset
Experiments on DBLP dataset has display some interesting
results. The number of influenced people nodes based on
the influence ranks computed by topology-based heat diffu-
sion is larger than thatthe one by activity-based heat diffu-
sion.

DBLP dataset has only interactive activities information.
Therefore heat loss rate, β, does not affect the result of
heat diffusion. The only difference between topology-based
and activity-based approach is the heat distribution. In the
topology-based approach, user ui diffuses its heat evenly to
its neighbors. For example, if ui has 10 co-authors and 90%
of papers were written with uj and 10% were done with 9
authors evenly, then 1

10Hi(t) is distributed to each of ui’s
neighbors evenly. On the other hand, in the activity-based
approach, ui diffuses its heat to its neighbors based on the
rate of interaction. For example, due to the 90% of inter-
action with uj , ui diffuses 9

10Hi(t) to uj and 1
10×9Hi(t)

is distributed to other 9 neighbors evenly. In this case,
uj Therefore, the topology-based heat diffusion has larger



number of influenced people as shown in Figure 5(m).
Experiments on DBLP dataset display some interesting

results. The number of influenced nodes based on the in-
fluence ranks computed by topology-based heat diffusion is
larger than that by activity-based heat diffusion.
5.4 Epinions Dataset
Experiments on Epinions dataset show that the activity-
based approach has larger influence coverage than the
topology-based approach. Epinions dataset has non-
interactive activities only. Therefore, users in Epinions
dataset diffuse heat evenly to its neighbors like in the topo-
logical approach. However, the number of influenced peo-
ple computed by the activity based heat diffusion approach
is different from that by the topology-based approach due to
the number of non-interactive activities. Users lose its heat
at a slower rate based on the number of non-interactive ac-
tivities, which is regulated by heat loss factor β. Users with
more non-interactive activities lose its heat much slower
than the ones with smaller number of non-interactive ac-
tivities. Thus the number of influenced people by using the
activity-based approach is larger than that by the topology-
based diffusion as shown in Figure 5(n).
5.5 Facebook Dataset
Experiments on Facebook dataset show some of the most
interesting results. Facebook dataset has both interactive
and non-interactive activities. Figure 5(o) shows the exper-
imental results for Facebook datasets.

It is interesting to note that for each influence rank based
top k selection criteria, the activity-based heat diffusion
process influence more users for two reasons. First, in the
topology-based approach, users lose heat based on the time
period. On the other hand, in the activity-based approach,
users loose heat based on the number of non-interactive ac-
tivities. Thus, some users lose heat quickly while others
lose slowly, which means these users have high amount
of heat sources to diffuse. Second, users in Facebook
dataset have much more non-interactive activities than the
ones in Epinions dataset. Therefore, the gap in Facebook
dataset between the topological and activity-based approach
is much higher than that in Epinions dataset.

6 Conclusion
We have presented the activity-base social influence model
based on activity enhanced heat diffusion kernel and a suite
of activity influence rank based top k algorithms. Our
activity-based heat diffusion model has made three unique
contributions. First, we introduced a novel mechanism to
extend the heat diffusion model by effectively incorporat-
ing both interactive and non-interactive activities. Second,
we develop a suite of top k influence rank based node selec-
tion algorithms by minimizing the overlapping in the node
coverage of top k most influential nodes, including inde-
pendent influence rank, (b) locally optimal influence rank

and (c) globally optimal influence rank using Hill Climb-
ing algorithm. Finally we conduct an extensive series of
experiments on three representative real-world social net-
work datasets to show the effectiveness of our activity-
based social influence model and influence rank algorithms.
Compared to the existing topology-based influence diffu-
sion model, the activity-based social influence model con-
siders not only topology of a social network but also ac-
tivity sensitive attributes such as interactive activities and
non-interactive activities.
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