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ABSTRACT
Spatial queries are widely used in many data mining and
analytics applications. However, a huge and growing size
of spatial data makes it challenging to process the spatial
queries efficiently. In this paper we present a lightweight
and scalable spatial index for big data stored in distributed
storage systems. Experimental results show the efficiency
and effectiveness of our spatial indexing technique for differ-
ent spatial queries.

1. INTRODUCTION
Many real-world and online activities are associated with

their spatial information. For example, when we make or
receive a call, the call information including its cell tower
location is stored as a call detail record (CDR). Even a sin-
gle tweet message of Twitter can be stored with its detailed
location (i.e., latitude and longitude) [1]. To extract more
valuable and meaningful information from such spatial data,
spatial queries are widely used in many data mining and
analytics applications. One of the most representative chal-
lenges for processing the spatial queries is that the amount
of spatial data is increasing at an unprecedented rate, espe-
cially thanks to the widespread use of GPS-enabled smart-
phones. Due to this huge size of spatial data, we need new
scalable techniques which can process the spatial queries ef-
ficiently.

To handle such huge spatial data, it is natural to uti-
lize emerging distributed computing technologies such as
Hadoop MapReduce, Hadoop Distributed File System
(HDFS) and HBase. Several techniques have been proposed
to support spatial queries on Hadoop MapReduce [7, 11,
4, 12] or HDFS [5, 6]. However, most of them require in-
ternal modification of underlying systems or frameworks to
implement their indexing techniques based on, for example,
R-trees. Those approaches not only increase the complexity
and overhead of the modified storage systems but also are
applicable only to a specific storage system.

To tackle the limitations of existing work, in this paper,
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we investigate the problem of developing efficient and scal-
able techniques for processing spatial queries over big spa-
tial data. Specifically, we present a lightweight spatial index
based on a hierarchical spatial data structure. Our spatial
index has several advantages. First, it can be easily applied
to existing storage systems without modifying their inter-
nal implementation and thus we can utilize existing systems
as they are. Second, it provides simple yet highly efficient
filtering, based on prefix matching, for finding only rele-
vant spatial objects. Last but not the least, it supports effi-
cient updates of spatial objects because it does not maintain
any costly data structure such as trees. In this paper, we
demonstrate how we implement the spatial index on top of
HBase without modifying its internal implementation. We
also provide experimental results to show the efficiency and
effectiveness of our spatial indexing techniques.

2. PRELIMINARY
In this section, we give an overview of spatial queries,

hierarchical spatial data structure and distributed storage
systems. We also outline the related work.

2.1 Spatial Queries
There are many types of spatial queries, such as selection

query, join query and k nearest neighbor (kNN) query, for
different applications. Even though there are more spatial
relations [8], in this paper, we focus on selected fundamental
queries which are basis for many other spatial queries: con-
taining, containedIn, intersects and withinDistance. Those
queries are defined for any geometries including points,
lines, rectangles and polygons. A containing(search ge-
ometry) query returns all spatial objects that contain the
given search geometry. A containedIn(search geometry)
query returns all spatial objects that are contained by the
given search geometry (i.e., the converse of containing).
An intersects(search geometry) query returns all spatial
objects that intersect with the given search geometry. A
withinDistance(search geometry, distance) query (or
range query) returns all spatial objects that are within the
given distance from the the given search geometry.

2.2 Hierarchical Spatial Data Structure
For our spatial indexing, we utilize a hierarchical spatial

data structure, called geohash [2], which is a geocoding sys-
tem for latitude and longitude. A geohash code, represented
as a string, basically denotes a rectangle (bounding box) on
the earth. It provides a spatial hierarchy and it can reduce
the precision (i.e., represent a bigger rectangle) by removing



characters from the end of the string. In other words, the
longer the geohash code is, the smaller the bounding box
represented by the code is. Another property of geohash is
that two places with a long common geohash prefix are close
each other. Similarly, nearby places usually share a similar
prefix. However, it is not always guaranteed that two close
places share a long common prefix.

2.3 Distributed Storage Systems
A growing number of non-relational distributed databases

(often called NoSQL databases) are proposed and widely
used in many big data applications and analytics because
they are designed to run on a large cluster of commodity
hardware and fault-tolerant through data replication. One
representative category of the NoSQL databases is the
key-value store, in which data is stored in a schema-less way
via an unique key that represents each row, such as Apache
HBase, Apache Accumulo, Apache Cassandra, Google
BigTable, Amazon DynamoDB, just to name a few. In this
paper, our description is based on HBase, an open-source
key-value store (or wide column store) originally derived
from BigTable, because it is widely used by many big data
applications. However, we believe that our spatial index is
applicable to other key-value stores similarly because we
use only keys for our index without modifying the internal
structure of HBase.

2.4 Related Work
We classify existing spatial query processing techniques

using distributed computing frameworks into two cate-
gories, based on their query types. The first category
handles high selectivity queries, such as selection queries
and kNN queries, in which only a small portion of spatial
objects are returned as the result of spatial query process-
ing. A few techniques have been proposed to process the
high selectivity queries in HDFS [5, 6]. They are utilizing
popular spatial indices such as an R-tree and its variants.
The second category handles low selectivity queries which
usually require at least one full scan of each dataset. One
of the most representative low selectivity spatial queries
is k nearest neighbor join (kNN join) which is to find,
for each object in a dataset A, its k nearest neighbors in
another dataset B. Several techniques have been proposed
to process the kNN (or similar) joins using the MapReduce
framework [7, 11, 4, 12].

3. SPATIAL QUERY PROCESSING
A spatial object basically includes its geometry and can

have any additional information about the object, such as
its name, address and phone number. In terms of the ge-
ometry, our spatial index supports most of generally used
geometries including points, lines, rectangles, curves and
polygons. Given a spatial object to be stored and indexed
by our spatial index, we first calculate a set of minimum
bounding boxes (i.e., geohash codes), called minimum geo-
hash set, which fully cover the geometry of the spatial ob-
ject. To prevent generating too many fine-grained bounding
boxes to cover the geometry and thus increasing the over-
head of managing the spatial object, we set the maximum
number of bounding boxes for each geometry to 10 in the
first prototype of our spatial index. The maximum number
of bounding boxes for each geometry can be configured for
different applications. Also, all the geohash codes included

in a minimum geohash set have the same length and thus
represent the same precision.

Similar to other indexing techniques such as R-trees, the
query processing based on our spatial index basically con-
sists of two main steps: filter step and refinement step.
Given a spatial query Q, in the filter step, we find candidate
spatial objects, which may satisfy the query condition of Q,
by pruning non-qualifying spatial objects. In the refinement
step, we examine each candidate spatial object to determine
whether the object is actually satisfying the query condi-
tion of Q. We define the precision of query processing for
Q as the ratio of actual spatial objects satisfying the query
condition of Q to all evaluated candidate spatial objects.

To develop our spatial index on top of HBase, we propose
to utilize HBase row keys to indicate the geohash codes for
stored spatial objects. Specifically, given a spatial object SO
to be stored and indexed by our spatial index, for each geo-
hash code in its minimum geohash set minGeohash(SO),
we store the spatial object in the HBase row having the
geohash code as its row key. We use an uniquely assigned
identifier for the object as its column name (qualifier). We
allow replication of spatial objects in multiple HBase rows
for efficient processing of spatial queries as we will explain
below. For example, if the minimum geohash set of a spa-
tial object is {“dn5bpsby”, “dn5bpsbv”}, we store the spatial
object in two HBase rows whose keys are “dn5bpsby” and
“dn5bpsbv”. Note that our replication of spatial objects is
not related to the data block replication of underlying HDFS
for its fault-tolerance.

According to the definition of the geohash, longer geo-
hash codes will be generated for smaller geometries. If there
are many spatial objects associated with a tiny geometry, a
huge number of HBase rows having a long row key may be
created to store the objects and each row will likely include
only a few spatial objects. Since too many HBase rows can
aggravate the performance of our spatial query processing,
we need to control the number of HBase rows. To limit
the number of HBase rows, we utilize the hierarchical fea-
ture of the geohash codes. By setting the maximum length
of geohash codes (i.e., length of HBase row keys), we can
store those spatial objects associated with a tiny geometry
in HBase rows representing a bigger rectangle and thus re-
duce the number of HBase rows.

To execute spatial queries for the stored and indexed spa-
tial objects in HBase, we utilize the properties of the geo-
hash codes to find only relevant HBase rows and thus re-
duce the search space considerably. Let us assume that a
spatial query Q with its search geometry QG is given. We
first calculate the minimum geohash set of Q which fully
cover QG. If the query is containing(search geometry), we
select only those HBase rows whose row key is a prefix of
one of the geohash codes in the minimum geohash set. This
is because those spatial objects which contain the search
geometry should have at least the same or larger rectan-
gles than the search geometry. As we explained above, a
geohash code representing a rectangle is a prefix of those
geohash codes representing the sub-rectangles of the rect-
angle. Therefore, we can efficiently select candidate HBase
rows which may store spatial objects containing the search
geometry, using the prefix match. Specifically, to find can-
didate HBase rows, we scan all possible prefixes for each
geohash code in the minimum geohash set. For example, for
a geohash code “dn5b” included in the minimum geohash



set, we scan for key “d”, “dn”, “dn5” and “dn5b”. Finally, for
each candidate HBase row, we read all spatial objects stored
in the row and return those spatial objects which actually
contain the search geometry.

If the query is containedIn(search geometry), an intuitive
approach is to select only those HBase rows whose row key
includes one of the geohash codes, included in the minimum
geohash set, as its prefix because containedIn is the con-
verse of containing. However, we need to take into account
that we set the maximum length of geohash codes to prevent
generating too many small HBase rows. For example, let us
assume that the minimum geohash set of a spatial object is
{“dn5bpsby”} and the spatial object is stored in a HBase row
whose row key is “dn5bp” because the maximum length of
geohash codes is 5. Also, assume that a containedIn(search
geometry) query in which the minimum geohash set of the
search geometry is {“dn5bpsb”} is given and the search ge-
ometry actually contains the spatial object. Based on the
intuitive approach, we cannot select the HBase row “dn5bp”
because “dn5bp” does not include “dn5bpsb” as its prefix.
To tackle this problem, we also apply the maximum length
to the geohash codes included in the minimum geohash set
of the spatial query (from “dn5bpsb” to “dn5bp” in the pre-
vious example) and then use the intuitive approach. When
we select candidate HBase rows whose row key includes one
of the geohash codes, included in the minimum geohash set
of the spatial query, as its prefix, we utilize a range scan
of HBase for each geohash code. Specifically, for each geo-
hash code included in the minimum geohas set, we execute
a range scan whose start row is the geohash code and end
row is the lexicographically next geohash code, having the
same length, to access all HBase rows whose row key has
the geohash code as its prefix. For example, for a geohash
code “dn5b”, we execute a range scan from “dn5b” to “dn5c”.
For each selected HBase row, we read the stored spatial ob-
jects in the row and return those spatial objects which are
actually contained in the search geometry.

If the query is intersects(search geometry), we consider
both prefix cases when we select candidate HBase rows. This
is because, if there is any intersecting region between the
search geometry and the geometry of a spatial object, both
geometries should have a rectangle(s) (i.e., geohash code)
which includes the intersecting region and any two differ-
ent rectangles including the same region should have their
hierarchy (i.e., one is the sub-rectangle of the other) ac-
cording to the definition of the geohash codes. Since we do
not know which geometry has a bigger rectangle covering
the intersecting region until we evaluate the spatial object,
we select those HBase rows, as candidate rows, whose row
key is a prefix of one of the geohash codes included in the
minimum geohash set of the spatial query or includes one
of the geohash codes as its prefix. For each selected HBase
row, we read the stored spatial objects in the row and return
those spatial objects which are actually intersecting with the
search geometry.

For a withinDistance(search geometry, distance) query,
we first calculate the minimum geohash set which covers
the extended geometry computed by adding the distance to
the search geometry. Then, similar to the intersects query
processing, we select those HBase rows, as candidate rows,
whose row key is a prefix of one of the geohash codes in-
cluded in the minimum geohash set or includes one of the
geohash codes as its prefix. For each selected HBase row, we
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Figure 1: Query Processing Time

read the stored spatial objects in the row and return those
spatial objects which are actually within the distance from
the the search geometry.

4. EXPERIMENTAL EVALUATION
For evaluation of our spatial index on top of HBase, we

use HBase (Version 0.96) and Hadoop (Version 1.0.4) run-
ning on Java 1.6.0, installed on a cluster of 11 physical ma-
chines (one master machine) on Emulab [10]: each has 12GB
RAM, one 2.4 GHz 64-bit quad core Xeon E5530 processor
and two 7200 rpm SATA disks (500GB and 250GB). We
run HBase RegionServers on the same machines as DataN-
odes and a ZooKeeper ensemble of 3 machines. For each
setting and each query, our spatial query processing time
indicates the fastest time after running five cold runs to re-
move any possible bias posed by OS and/or network activity.
We use GeoLife GPS Trajectories (GeoLife in short) [13] and
San Francisco taxi cab traces (SFTaxi in short) [9] for our
experiments. GeoLife and SFTaxi contain 24,876,977 and
11,219,955 GPS point records respectively.

We first present spatial query processing performance us-
ing our index on top of HBase running on HDFS. As our
baseline approach, we store the spatial objects using their
latitude (or longitude) as a row key of HBase (i.e., one di-
mensional index). We choose this approach as our base-
line because it can be also implemented without modifying
HBase and, similar to our spatial index, HBase range scans
can be utilized for fair comparisons. For example, given a
containedIn query, we use the leftmost and rightmost lati-
tudes (or longitudes) of the query geometry as the start and
end row keys of a HBase range scan respectively.

We implement a Hadoop MapReduce job to efficiently
store the spatial objects in HBase. Also, we represent each
geohash code as a binary array, instead of a string, to effi-
ciently handle geohash codes. By default, we empirically
choose 40 bits as the maximum length of geohash codes
because we think that value strikes a balance between the
number of rows and the number of columns of each row.
2,608,848, 4,744,257 and 4,886,185 HBase rows are generated
to store the spatial objects using our index, the latitude-
based baseline approach and longitude-based baseline ap-
proach respectively.

In this paper, we report the results of withinDistance
and containedIn queries. We generate 300 withinDistance
queries by randomly selecting a point in the datasets and
using a distance of 10m, 100m or 1km. This generation
process guarantees that we get at least one point record as
the output of each query execution. We also generate 100
containedIn queries by randomly selecting two points in the
datasets and using them as the lower-left and upper-right
points of a rectangle.
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For brevity, we first categorize the queries based on their
selectivity and then compare our query processing perfor-
mance with that of the baseline approach using the ratio of
their query processing times where we set our query process-
ing time to 1, as shown in Fig. 1. The query processing with
our spatial index is more than one order of magnitude faster
than both the latitude-based and longitude-based baseline
approaches, on average, for those withinDistance queries
which select less than 10,000 records, as shown in Fig. 1(a).
As we decrease the selectivity of queries, the performance
gain of our spatial index also drops because retrieving a large
number of rows for query evaluation is inevitable. However,
the query processing with our spatial index is still 30% faster
than the latitude-based baseline approach, on average, for
those withinDistance queries which select more than 1 mil-
lion records. For containedIn queries, even though our query
processing is still more than one order of magnitude faster
than the latitude-based baseline approach for queries having
high selectivity as shown in Fig. 1(b), its performance gain
is generally smaller than that for withinDistance queries.
This is primarily because containedIn queries usually cover
a wider region than withinDistance queries and thus the
pruning power of the baseline approaches is higher for con-
tainedIn queries. Specifically, the average precisions (i.e.,
the ratio of true positives to all evaluated candidate spa-
tial objects) of the latitude-based baseline approach are 8%
and 12% for withinDistance queries and containedIn queries
respectively.

Fig. 2 shows the query processing results using different
distances for the same query point of a withinDistance query.
The query processing time understandably increases as we
enlarge the query region because more HBase rows are ac-
cessed and thus more candidate records are evaluated for
query processing.

Finally, we compare the pruning power of our spatial in-
dex with that of an R-tree-based index. We use an open
source R-tree implementation [3] for this evaluation. We
want to emphasize that the focus of this paper is on the

scalable and lightweight spatial index which can be easily
applied to existing systems without modifying their internal
implementation. Outperforming the pruning power of R-
tree-based indices is not the purpose of this paper because
R-tree-based indices maintain expensive data structures and
mostly require internal and complicated modification of the
storage systems. Nevertheless, the precision results in Fig. 3
show that our index has one order of magnitude higher pre-
cision than the R-tree-based index for those queries having
very high selectivity (selecting less than 10 records). Our
spatial index demonstrates relatively consistent precision for
different selectivity levels while the R-tree-based index has
higher precision for less selective queries.

5. CONCLUSION
In this paper we have proposed efficient and scalable spa-

tial indexing techniques for big data stored in distributed
storage systems. Based on a hierarchical spatial data struc-
ture, called geohash, we have presented how we develop a
lightweight spatial index for big data stored in a distributed
file system, especially on top of HBase.
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