
Shared Memory Optimization in Virtualized Cloud

Qi Zhang and Ling Liu
Georgia Institute of Technology, Atlanta, Georgia, USA

{qzhang90, lingliu}@cc.gatech.edu

Abstract—Shared memory management is widely recognized
as an optimization technique in the virtualized cloud. Most
current shared memory techniques allocate shared memory
resources from guest VMs based on pre-defined system con-
figurations. Such static management of shared memory not
only increases the VM memory pressure, but also limits the
flexibility to balance the shared memory resources across
multiple VMs running on a single host. In this paper, we
present a dynamic shared memory management framework
which enables multiple VMs to dynamically access the shared
memory resource according to their demands. We illustrate our
system design through two case studies: one aims at improving
the performance of inter-domain communication while the
other aims at improving VM memory swapping efficiency. We
demonstrate that the dynamic shared memory mechanism not
only improves the utilization of shared memory resources but
also significantly enhances the performance of VM applications.
Our experimental results show that by using dynamic shared
memory management, we can improve the performance of
inter-VM communication by up to 45 times, while mitigating
the VM memory swapping overhead by up to 58%.

Keywords-Shared memory, resource management, virtualiza-
tion.

I. INTRODUCTION

Shared memory technique, originally introduced for op-
timizing inter process communication, is gaining increas-
ing attraction as a kernel-level optimization technique for
efficient executions of virtual machines (VMs) in virtu-
alized cloud and data centers. For example, instead of
communicating through the host OS or hypervisor, shared
memory channel established between co-located VMs may
enable network packets to be transmitted from one VM to
the other without the involvement of the host OS or the
hypervisor coordination [11–13, 15, 17]. By shortening the
inter-VM communication path through shared memory, we
can significantly enhance the communication performance
for both TCP and UDP workloads. Another example is to
utilize shared memory between VMs to achieve efficient
VM memory swapping. Concretely, when a VM is under
high memory pressure and needs to swap some pages out,
instead of swapping pages to disk, pages can be swapped
to the other VM’s memory which is shared to this VM.
Despite the benefits of shared memory in virtualized cloud,
most of current shared memory optimizations allocate shared
memory resources from guest VMs at system configuration
time. Such static management of shared memory not only
increases the VM memory pressure in the presence of

memory intensive workloads, but also significantly limits the
flexibility to balance the shared memory resources across
multiple VMs running on a single host, especially when
the shared memory demands from different VMs vary from
workload to workload. Challenges still exist in terms of how
to manage the shared memory resource in a more efficient
manner while enabling the applications in VMs to keep
being benefited from the shared memory technique.

Problems in static management of shared memory.
Most of the existing shared memory methods deployed in
a virtualized cloud statically allocate the shared memory
between a pair of communicating VMs [6]. This rigid
management of shared memory suffers from the inflexibility
in the presence of highly skewed memory intensive workload
distribution across multiple co-located VMs. Therefore, the
static shared memory management in virtualized cloud may
result in either resource waste or VM performance degrada-
tion. In the inter domain communication cases, for instance,
when a sender VM tries to forward some network packets
to its co-located receiver VM, it will allocate a piece of
memory from its own main memory as the communication
channel with the co-located receiver VM in order to avoid
the involvement of host or hypervisor during the packets
transmission. However, the size of this shared memory
cannot be adaptively adjusted based on the intensity of the
network traffics. If the size of the allocated shared memory
is much larger than the workloads’ actual requirement, the
under utilized shared memory resource will be wasted. On
the other hand, if the allocated shared memory is insufficient
to meet the workload demands, the performance of the
application running on the VMs will be affected [17].

Balance of shared memory across VMs. Another prob-
lem inherent in many current shared memory management
schemes is related to the system software stack where the
shared memory should be allocated. Existing shared memory
mechanisms in virtualized cloud typically provide allocation
of shared memory from guest VMs. In other words, a VM
needs to spare some of its own memory resource in order
to provide shared memory with other VMs. This guest
VM based shared memory allocation, although improves
the communication performance by using shared memory,
may cause performance degradation for memory intensive
applications running on the VMs due to frequent memory
page swapping activities caused by insufficient working
memory with respect to the application.

In this paper we address the above mentioned problems
by promoting a dynamic shared memory management frame-
work for improving virtual machine execution efficiency in
virtualized cloud. Our framework has a number of unique
features. First, we advocate to slice the shared memory re-
gion allocated to each guest VM into small memory chunks
and utilizing the demand paging concept such that shared
memory is allocated one chunk at a time. Second, instead of
allocating shared memory from inside of each guest VM, we
advocate the host-based (or hypervisor-level) shared memory
allocation scheme, aiming at increasing the flexibility of
allocating and de-allocating shared memory across multiple
co-located VMs according to their changing demands. Both
techniques enable the flexible sharing and well-balanced
management of shared memory resources across VMs on a
single host. Thus, the utilization of shared memory resources
can be significantly improved by just in time allocation of the
shared memory to the VMs that need it. At the same time,
by pooling the shared memory resources and managing them
at the host OS or hypervisor, shared memory for each guest
VM can be enlarged or shrank on demand with minimal
performance overhead. To evaluate the effectiveness of our
dynamic shared memory management design, we develop
two prototype systems MemPipe and MemFlex to show how
we use dynamic shared memory management mechanism
to improve the inter-VM communication performance and
mitigate the performance interference introduced by VM
memory swap respectively. Our experimental evaluation
results using these two prototype systems demonstrate that
our dynamic shared memory management framework can
significantly improve the execution performance of applica-
tions running on VMs, while achieving efficient utilization
of shared memory resources.

II. RELATED WORK

The shared memory techniques have been adopted in
distributed systems and virtualized cloud and data cen-
ters. TreadMarks [5] proposed a distributed shared memory
system enables to processes running on different physical
nodes to access a globally shared virtual memory address.
Similarly, [10] presents the research effort for building an
elastic operating system for datacenter. The main idea is
to eliminate the boundaries among the physical nodes in the
same cluster, and enable the process running on one machine
to access the memory resources on the other machines. In
addition, a new file system was designed in [8] to promote
the disk I/O throughput by phase change memory. Efforts for
improving network I/O performance, such as [17] [11] [12],
and [13] have also been made to accelerate the inter-VM
communication performance by establishing shared memory
channel among communicating VMs. In the context of VM
memory swapping, [4] addressed the double paging problem
in virtualized cloud by introducing cooperative memory
swapping between the host and the VMs. [18] swaps the VM

memory memory to another remote VM through network
virtualization, in order to alleviate the performance impact
brought by VM memory swapping in a oversubscribed
virtualized cloud. Although swapping through network can
be much slower than through shared memory, it can be a
viable alternative when disk I/O bandwidth is significantly
worse than the network I/O bandwidth.

To the best of our knowledge, this paper is the first
effort on desigining and implementing a dynamic shared
memory management framework, for improving virtual ma-
chine execution efficiency by optimizing both inter-VM
communication performance and VM memory swapping
performance.

III. DYNAMIC MANAGEMENT OF SHARED MEMORY

In this section, we describe the design of our dynamic
shared memory management framework. In the first two
subsections, we introduce guest-VM based and host-OS
or hypervisor based shared memory allocation methods.
We will describe the shared memory allocation mechanism
within a guest-VM using the grant table, a commonly
used kernel interface for memory sharing in virtualization
platforms. We also discuss the limitation of grant table based
shared memory management, and describe a host-based
dynamic shared memory mechanism that we have designed
and implemented. In the next two subsections, we present
two case studies: inter domain network communication and
virtual machine memory swapping, to demonstrate the ben-
efit of our host-based dynamic shared memory management
for virtualized cloud.

A. Shared Memory Allocation in Guest VMs

The Grant table mechanism is widely used in virtualiza-
tion platforms, such as Xen [6], to enable memory pages
being shared between VMs running on the same physical
machine. In Xen, each VM is initialized with a set of pages
shared with the hypervisor, and the grant table of each VM
is located in these shared pages. The entries in the grant
table are used to locate shared memory pages between two
VMs. For instance, if VM1 wants to share one of its memory
page P1 with VM2, it first fills in one of the entries in its
grant table with the property values such as the page frame
to be shared, the destination VM, the access permissions of
the page, and so forth. Then, VM1 transmits the reference
of the grant table entry to VM2. Upon receiving the shared
memory reference, VM2 uses it to map the granted page
frame into its own memory address space, for example
by calling HYPERVISOR grant table op() with parameter
NTTABOP map grant ref in Xen. After performing the
memory access on the shared page frame, VM2 unmaps
the granted page to free the shared memory page frame,
for example, by calling HYPERVISOR grant table op() but
with the parameter GNTTABOP unmap grant ref in Xen.
Finally, VM1 removes the entry from the grant table such

that the specific page frame allocated as shared memory
region is exclusively owned by VM1 again.

Although the grant table mechanism provides generic
interfaces for convenient memory sharing between VMs,
it suffers from a number of limitations. For example, the
shared memory is allocated statically. Thus, allocating a
large shared memory region may waste memory resources
that are needed by other applications running on the same
guest VMs. On the other hand, allocating a too small shared
memory region may degrade the performance when it is
insufficient to satisfy the demands from workloads.

B. Shared Memory Allocation in Host/Hypervisor

An alternative way to establish shared memory across
multiple co-located VMs in virtualized platform is to al-
locate a global memory region from the host. This shared
memory region is dynamically managed such that each VM
is allowed to access the shared memory based on its work-
load requirements. Unlike the grant table service provided by
the guest OS kernel, there is no existing interface allowing
VMs to dynamically and proportionally access the memory
region allocated by the host in a shared manner. Therefore,
we first discuss how to establish the shared memory among
host and VMs. Then, we illustrate our dynamic shared
memory management framework by using two concrete
case studies: inter domain communication optimization and
virtual machine memory swapping optimization.

Shared	
 memory	
 ini-ator	

Virtual	
 PCI	
 device	
 Virtual	
 PCI	
 device	
 Virtual	
 PCI	
 device	

APPs	
 APPs	
 APPs	

mmap	
 mmap	
 mmap	

ioremap	

Host	
 allocated	
 shared	
 memory	

VM	
 VM	
 VM	

Device	
 driver	
 Device	
 driver	

ioremap	
 ioremap	

Device	
 driver	

Figure 1. Host allocated dynamic shared memory

As shown in Figure 1, the host based shared memory
allocation is achieved through PCI device I/O memory
remap. A shared memory initiator is created on the host,
which is responsible for allocating a piece of memory region
via shm open() from the host OS. shm open() creates and
opens a new POSIX shared memory object, and returns the
handler of the shared memory object, which can be used by
other processes to map into their own address spaces. At the
same time, a virtual PCI device is created and assigned to
each guest VM. After the shared memory object is created,
the PCI device creates a BAR (Base Address Register) in its
configuration space to hold the object. It is worth noting that,

in order to allow BAR to point to a memory region larger
than 1GB, the PCI BASE ADDRESS MEM TYPE 64 bit
must be set when the BAR of the virtual PCI device is
registered. In addition to the virtual PCI device, each guest
VM is assigned to a PCI device driver. The driver maps
the memory region indicated by the BAR of the virtual PCI
device into the guest VM’s kernel address space by invoking
ioremap cache(), which returns the kernel virtual address of
the shared memory region after being mapped. Although it is
quite possible that these kernel virtual addresses are different
in different VMs, as long as the mapping is successful, the
VMs are able to access the same memory region allocated
from the host. Therefore, when multiple co-located VMs
map the host memory region into their kernel address spaces
simultaneously, the memory region allocated from the host
becomes the shared memory among these guest VMs.

In addition to establishing a host allocated global shared
memory among guest VMs, dynamic shared memory man-
agement is another key challenge that should be addressed in
order to better capitalize on the potential benefits of shared
memory in virtualized cloud. In the next two subsections, we
present the key techniques for designing a dynamic shared
memory management framework through two case studies
and discuss why dynamic shared memory management is
essential in virtualized cloud.

C. Case study: Inter Domain Communication

Network I/O workloads among VMs are dominating in
most of the virtualized cloud today. For example, many
big data processing frameworks such, as MapRedce [9] and
Spark [2], require intermediate data to be shuffled around
the worker nodes. The shuffle phase often becomes the
bottleneck of the whole big data processing job due to the
massive network I/Os among VMs [3]. Efforts such as using
infiniband and RDMA (Remote Direct Memory Access) [14]
have been made to improve the network performance among
physical machines. While shared memory mechanisms are
proposed to accelerate the communication efficiency among
co-located VMs [11–13, 17]. However, an inherent problem
that exists in most of the existing shared memory inter-
VM communication systems is the inflexibility of shared
memory management, which usually results in unbalanced
shared memory resource utilization and degradation of the
inter-VM communication performance.

Concretely, the first problem inherent in most shared
memory inter-VM communication systems is the static
shared memory management. Namely, the size of shared
memory channel used for co-located VM communication
is set at the system configuration time and fixed once it is
initialized. The second problem is about what is the right
size of shared memory. Since the network I/O workloads
in VMs vary from time to time, it is unreasonable to use a
fixed size shared memory channel for co-located inter-VM
communication. Furthermore, even if the network workloads

in the VMs are stable, it is difficult to decide the appropriate
shared memory size that will be required by the workloads
prior to their execution. Thus, the size of shared memory
in existing methods is often arbitrarily decided without
systematic guidance.

Therefore, we argue that the shared memory channel
for inter-VM communication needs to be managed in a
dynamic and workload adaptive manner to achieve both
efficient memory resource utilization and high inter-VM
communication performance [19]. The host based shared
memory allocation provides a good opportunity to achieve
flexible shared memory management in a virtualized cloud.

Figure 2. Shared memory organization

We propose a dynamic shared memory management
framework with three novel features: (1) Partitioning the
shared memory resource into smaller memory chunks; (2)
Employing the on demand principle to allocate each guest
VM shared memory chunks proportional to its workload de-
mands; and (3) Flexible management of free shared memory
chunks to provide demand-utility balanced shared memory
allocation. Figure 2 describes some details about how the
memory region allocated from the host is dynamically shared
by multiple VMs. First, we organize the shared memory
region in terms of small memory chunks, the size of each
chunk can be specified in the configuration file. Each shared
memory chunk serves as the basic unit in dynamic shared
memory allocation and de-allocation operations. Second,
each shared memory channel between a sender VM and a
co-located receiver VM is initialized with a single shared
memory chunk. Additional memory chunks will be added
to the shared memory channel proportionally to the demand
of the network workloads between the two VMs. Memory
chunks belonging to the same shared memory channel
are organized into a linked list. Meanwhile, all the free
chunks, which do not belong to any allocated shared memory
channel, are also organized into a linked list of free chunks.

An important goal for dynamic shared memory manage-
ment is to enable multiple shared memory channels for
different pairs of inter-VM communication co-exist in the
same host memory region, such that the dynamic expanding

and shrinking of one shared memory channel does not affect
the allocation and de-allocation of other shared memory
channels. We introduce three metadata structures: free shm,
shm descriptor, and chunk descriptor.

The first metadata structure free shm is a global metadata,
which locates in the very beginning of the shared memory
and is accessed by all the VMs that using the shared memory
channel. The second metadata structure is shm descriptor,
which records the metadata for each single shared memory
channel. The key properties in this metadata are two pairs
of pointers. The first pair is front, back, which points to
the beginning and the end of the area where the data
packets are occupied. The values of front and back are in
terms of the offset in the global allocated shared memory
region. Given that the shared memory region is organized
in memory chunks, it is quite possible that the packet size
is not aligned with the chunk size. Therefore, the second
pair of pointers, front mdata and back mdata are used to
specify the two memory chunks in which the front and the
back are located respectively. The third metadata structure
is chunk descriptor, which maintains the metadata of each
single memory chunk. It contains prev and next, which act
as the pointers to link different memory chunks into a list.

Each shared memory channel is initialized with a single
memory chunk. Based on the workload demands, each VM
can require more allocations of shared memory chunks for
its shared memory channel. Thus the size of different shared
memory channels may vary based on the workload demands
from each of the guest VMs. We achieve this dynamic
allocation by creating a separate thread, which monitors the
utilization of each shared memory channel and dynamically
adjusts the channel capacity.

The process of setting up a shared memory channel
involves three handshakes. Specifically, when a sender VM
(e.g. VM1) wants to send a packets to its co-located receiver
VM (e.g., VM2), a channel create message is generated by
VM1 and sent to VM2. Upon receiving this message, VM2
initialize a shared memory channel from the host allocated
memory region, and sends a create ACK message, which
includes the handler of the newly initialized shared memory
channel, back to VM1. After receiving the create ACK,
VM1 extract the shared memory channel handler from it
and connects itself to the channel. Then, VM1 sends a create
FIN message to VM2 to confirm that it has been successfully
connected to the shared memory channel. From this point
on, VM1 is able to deliver packets to VM2 through the
established shared memory channel.

D. Case Study: Virtual Machine Memory Swapping

Virtual machine memory swapping is another case study
that we have performed in terms of implementing and
testing the shared memory management framework to show
the benefits of dynamic shared memory management in
virtualized cloud.

It is widely recognized that the number of concurrently
running VMs on a single host machine depends on the
capacity of hardware resources and the efficiency of hard-
ware overcommitment technologies. In order to increase the
density of VMs on the host platform, lots of efforts have
been made on developing innovative schedulers for CPU to
provide more adaptive CPU resources sharing among VMs.
However, memory resource remains to be the bottleneck in
virtualized environment. Unlike CPU, which can be shared
by time slicing, memory resource is shared by space slicing
and moving memory pages from one VM to another is
relatively expensive.

Balloon driver [16] is a commonly used approach to
enable memory resource overcommitment in virtualized
cloud. However, ballooning driver is not a panacea. For
instance, it may not move memory fast enough to satisfy
the memory requirement of some VM, since VM memory
swapping could be triggered while balloon driver is moving
the memory across guest VMs. Another issue is the double
paging problem, which is caused by the uncooperative
swapping activities between the guest OSs and the host
OS. The unnecessary disk I/O introduced by double paging
problem could seriously affect the execution performance of
guest VMs.

We argue that utilizing shared memory in the host can
be an attractive system optimization for mitigating the VM
performance degradation brought by VM memory swapping,
while alleviating the double paging problem. From VM
perspective, if there is spare host memory, then the capability
of utilizing the host memory as swap area instead of disk
would always be more efficient because the access speed
of disk is usually about five magnitudes slower than that of
memory [20].

Free	
 shared	
 	

memory	
 page	
 pools	

Pool1(VM1)	

Pool2(VM2)	

Pool3(VM3)	

Shared	
 memory	
 region	

Swap	
 Redirector	

(SR)	

VM’s	
 local	
 memory	

Shared	
 memory	

region	
 Memory	

VM1	
 kernel	
 VM2	
 kernel	
 	
 VM3	
 kernel	

Host	
 kernel	

acAve	
 page	
 inacAve	
 page	
 idle	
 page	

SR	
 SR	

Memory	

Figure 3. VM memory swapping via dynamic shared memory

Figure 3 gives a sketch of VM memory swapping through
shared memory. First, a memory region is allocated in the
host as the VM swapping area. Also, the memory pages
in the shared memory region are partitioned into multiple
pools, and each pool is assigned to a VM as its swap parti-
tion. Second, this globally allocated host memory region is

mapped to the guest kernel space of each VM. Similar to the
shared memory design for the inter domain communication
optimization case, the shared memory pages belonging to
the same pool are organized into a linked list, and each
pool is initialized with a preconfigured size. A hash table
is maintained to record the VM id and its corresponding
pool address. Each VM needs to refer to this hash table to
find where to swap their memory pages. A separate thread
is created to monitor the utilization of each shared memory
pool, and dynamically adjust the size of pools based on the
memory swapping traffics from the VMs. If all the pages
in a shared memory pool are used and no more free pages
in the globally allocated shared memory region is available,
the swapping traffics are automatically resort to the disk
partition.

By supporting shared memory swapping, we can replace
the disk I/O operations performed by conventional memory
swapping by the copy from VM memory to host shared
memory region, which significantly reduces the latency of
memory swapping operations and mitigates the performance
interference caused by VM memory swapping. Shared mem-
ory swapping has a number of advantages. First, it alleviates
the performance degradation of the applications running on
the same VM where frequent memory swapping occurs.
Second, it benefits the other co-located VMs that have
disk I/O intensive workloads, because the host disk I/O
bandwidth can be allocated to those VMs that are running
disk I/O intensive workloads. Third but not the least, shared
memory based approach improves the swapping efficiency
and mitigates the double paging problem. Thus, we argue
that shared memory based VM memory swapping can be an
attractive performance optimization mechanism when some
of the host memory is available and can be utilized as shared
memory region.

IV. IMPLEMENTATION

We implement our dynamic shared memory framework on
KVM platform, and build a set of interfaces for VM kernel
to access the shared memory region. For example, struct
shm area* shm init(size t size) and void shm exit(struct
shm area) are two interfaces for VM kernel to allocate and
destroy the shared memory region from the host. The return
value struct shm area* include the offset and the length
of the allocated shared memory. Access control is another
category of functionality that can be incorporated into our
system. Based on the dynamic shared memory management
interfaces, we build two proof-of-concept systems: Mem-
Pipe, which is a inter domain communication system, and
MemFlex, which is a shared memory swapping system.

V. EVALUATION

The evaluation is carried out in three steps. First, we mea-
sure the performance overhead of dynamic shared memory
management by comparing the performance of benchmarks

running under dynamic and static shared memory manage-
ment. Second, we evaluate how the performance of inter do-
main communication can be improved by utilizing dynamic
managed shared memory channels. Third, we demonstrate
the effectiveness of shared memory swapping.

Our experimental environment includes two physical ma-
chines. Each machine has a four core 2.4GHz Intel CPU,
4GB memory, and 500GB disk, and an Gigabit network
interface card. KVM 3.6 with QEMU 1.2.0 is installed in
the host machine, and Linux kernel 2.6.34.14 are used as
the operating system of both host and VMs. The benchmarks
used include: Netperf [1], Dacapo [7], MapReduce jobs, and
other network applications such as scope, wget, sftp, and etc.

A. Dynamic vs. Static Shared Memory Management

Compared with static shared memory management, in
which a single piece of shared memory is allocated to
the VM at the beginning of the shared memory channel
setup, dynamic shared memory management requires mem-
ory chunks to be added to and removed from the shared
memory channels based on the changing demands from
the VM workloads. In this set of experiments, we vary
the shared memory chunk size from 2KB to 256KB to
investigate how the benchmark performs in different chunk
sizes. The throughput of inter domain communication is used
as the performance metric.

Figure 4(a) shows the throughput measured by
TCP STREAM workload generated by Netperf. The
size of the messages in the workload is 8KB, and all
the throughput are measured under the circumstance of
dynamic shared memory management. We observe that
when the chunk size increases from 2KB to 8KB, the
achieved throughput slightly increases by 12.4% from
2728 Mbps to 3066 Mbps. However, the throughput does
not further increase when the chunk size is larger than
8KB. This indicates that when the memory chunks size is
smaller than 8KB, the high frequency of memory chunk
allocation and deallocation degrades the performance of the
benchmark. When the memory chunk size becomes no less
than 8KB, the frequency of memory chunk allocation and
deallocation during the workload execution becomes lower,
and its impact on the benchmark performances becomes
negligible.

2 K B 4 K B 8 K B 1 6 K B 3 2 K B 6 4 K B 1 2 8 K B 2 5 6 K B
0

1 0 0 0

2 0 0 0

3 0 0 0

Th
ro

ug
hp

ut(
Mb

ps
)

S i z e o f a s i n g l e s h a r e d m e m o r y c h u n k

(a) Performance vs. chunk size

6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 2 0 4 8 4 0 9 6 8 1 9 2 1 6 3 8 4
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0

Th
ro

ug
hp

ut(
Mb

ps
)

M e s s a g e s i z e (B y t e s)

 3 2 M s t a t i c s h a r e d m e m
 d y n a m i c s h a r e d m e m , c h u n k s i z e = 8 K B
 d y n a m i c s h a r e d m e m , c h u n k s i z e = 2 K B

(b) Static vs. dynamic shared mem

Figure 4. Performance overhead of shared memory management

A smaller chunk size enables more flexible shared mem-
ory management, while a larger chunk size introduces less
performance overhead. Results from Figure 4(a) give a hint
that 8KB may be a reasonable choice for the chunk size to
tradeoff between the flexibility and performance overhead.
However, the message size in the workload used in figure
4(a) is also 8KB, and we need to make sure whether
8KB chunk size also fits other workloads with different
message sizes. Therefore, we compare the performance of
workloads with different message size when they are running
under static and dynamic shared memory management. We
vary the message size of workloads from 64B to 16KB,
and allocate 32MB shared memory as the inter domain
communication channel in static scenario, which is big
enough to guarantee that no packets will be dropped due
to the insufficient shared memory channel space. Figure
4(b) shows that no matter for what message size, the
inter domain communication performance in dynamic shared
memory management case with 8KB chunk size is very
similar to those in static shared memory case. Therefore, we
choose 8KB as the chunk size in dynamic shared memory
management for the following experiments.

Figure 5. Allocated chunks vs. used chunks

B. Inter Domain Communication
This set of experiments uses MemPipe to show how

the shared memory resource is allocated with the varying
demand from the VM. We also demonstrate the inter domain
communication performance improvement by adopting the
dynamic managed shared memory channels.

Figure 5 illustrates the allocated and utilized shared mem-
ory resource under dynamic shared memory management
when a UDP STREAM workload is running between two
co-located VMs. The red line represents the number of
allocated shared memory chunks while the black line shows
the amount of actually used shared memory chunks over the
measurement period.

Table I displays the shared memory utilization when a
UDP STREAM workload generated by Netperf is running
between two co-located VMs. In static shared memory
allocation case, since it is hard to accurately infer an
appropriate size of shared shared memory for workloads of
different message sizes, we experimentally allocate 1MB as
the shared memory channel between the 2 VMs. While in
the dynamic case, the shared memory is allocated based on

Table I
COMPARISON OF SHARED MEMORY UTILIZATION, udp sender

msg size
(Byte) Static (Average values) Dynamic (Average values)

Allocated(KB) Used(KB) Util Throughput
(Mbps) Allocated(KB) Used(KB) Util Throughput

(Mbps)
64 1024 6 0.5% 128 14 6 45% 124
128 1024 11 1.0% 258 18 10 57% 246
256 1024 17 1.6% 503 26 17 66% 495
512 1024 31 3.0% 1005 42 31 73% 947
1024 1024 55 5.2% 1790 70 56 80% 1755
2048 1024 100 9.5% 2846 124 108 87% 2815
4096 1024 216 20.6% 4570 227 205 90% 4516
8192 1024 409 39.0% 5233 451 415 92% 5198

16384 1024 823 78.5% 6006 814 814 94% 5904

Table II
INTER VM COMM. PERFORMANCE MEASURED BY NETSURF

msg size Inter Machine Inter VM MemPipe
TCP STREAM

(Mbps)
1 KB 937 135 2579
4 KB 936 137 2818

UDP STREAM
(Mbps)

1 KB 932 58 1755
4 KB 950 99 4517

TCP RR
(#trans/sec)

1 KB 4845 2542 6265
4 KB 4040 1412 4421

UDP RR
(#trans/sec)

1 KB 4968 2589 6830
4 KB 4067 1468 6262

the demands of the UDP STREAM workload. There are
two observations from this table. First, since the workload
demand changes with difference message size, the static
shared memory allocation results in low resource utilization.
For example, when the message size is 64 bytes, only 0.5%
of shared memory has been used in static case. However,
dynamic shared memory mechanism can adaptively adjust
the shared memory size based on the workload demands, and
achieve a higher resource utilization, which is between 45%
and 94%. Second, by comparing the throughput in static
and dynamic cases, we find that dynamic shared memory
management leads to only up to 5.8% performance overhead.

Table II compares the performance of inter domain com-
munication in three cases: Inter Machine, which refers to
communication between two physical machines, Inter VM
and MemPipe, which represent the communication through-
put between two co-located VMs through native network
stack and dynamic managed shared memory channel re-
spectively. TCP STREAM, UDP STREAM, TCP RR, and
UDP RR workloads generated by Netperf are used in this
experiment. We find that no matter for which workload,
MemPipe always outperforms the other two cases. For
instance, when the message size is 4KB, the throughput of
TCP STREAM workload reaches 2818Mbps in MemPipe
case, which is 3.01 times and 20.60 times higher than
that in Inter Machine case and Inter VM case respectively.
Also, the performance gap between MemPipe and the other
two cases becomes bigger when the message size in the
streaming workload increases from 1KB to 4KB. Taking
UDP STREAM workload for an example, MemPipe out-
performs Inter Machine and Inter VM case 1.88 times and
30.26 times respectively when the message size is 1KB,
and the corresponding numbers grow up to 4.75 and 65.46
when the message size increases to 4KB. This is because

Table III
PERFORMANCE OF NETWORK APPS

scp wget vsftp-put vspft-get sftp-put spft-get
Baseline(MB/s) 12 11 14 15 17 18
MemPipe(MB/s) 22 35 26 27 33 33

Table IV
EXECUTION TIME OF DACAPO BENCHMARKS

eclipse h2 jython xalan total

VM1(ms) Baseline 214224 44408 17292 4555 280479
MemFlex 76922 24814 13045 3945 118726

VM2(ms) Baseline 168505 36390 14498 3952 223345
MemFlex 73147 12842 14013 3851 103853

communication with larger message size is more network
bounded while network workloads with smaller message
size is more CPU bounded, and network bounded workloads
can be benefited from communicating via dynamic shared
memory channel by shipping packets through a shorter path.

Besides using the benchmarks, we also measure the
performance of some widely used network applications by
using MemPipe. Table III shows that compare with the
Inter VM case, MemPipe improves the performance of these
applications from 1.80 times to 3.18 times. For example,
the throughput of vsftp-get has been improved 15MB/s to
27MB/s, while that of wget increases more than 3 times.

C. Shared Memory Based VM Memory Swapping

We evaluate the performance of MemFlex on two VMs
(i.e., VM1 and VM2) running on the same host, and work-
loads from Dacapo are executing sequentially on the two
VMs. Since some workloads from Dacapo, such as h2 and
eclipse, are memory intensive, while others, such as jython
and xalan, are CPU intensive. We vary the execution order
of workloads in different VMs to create a scenario in which
the memory demand changes from time to time in each VM.
Concretely, the workloads executing in VM1 are ordered as
following: jython → h2 → xalan → eclipse, while that in
VM2 are arranged as eclipse → xalan → jython → h2.

Table IV shows the execution time of each workload as
well as the total execution time of all the workloads from
the two VMs. We use baseline to denote the conventional
VM memory swap without turning on MemFlex. We make
several interesting observations. First, the total execution
time of the workloads in each VM has been improved by
52.34% and 57.67% via using MemFlex. Since the execution

of the workloads triggers VM memory swapping, which
is slow disk I/O operations in native system, however,
MemFlex takes the advantages of dynamic shared memory
to convert those disk I/O operations to memory copies,
which significant mitigates the performance overhead intro-
duced by VM memory swapping, thus improves the overall
performance of the workloads running in the VMs. Second,
we observe that the peak amount of swapped memory from
each VM is 1.5GB, which means if the two VM swaps
together, 3GB of shared memory are needed to accommodate
all the swapped data. However, the peak swapping demands
from the VMs do not appear at the same time even though
the total size of shared memory for swapping is configured
as 2GB. Therefore, the dynamic shared memory manage-
ment mechanism is able to handle this overcommitment by
flexibly moving the shared memory resources between the
two VMs. It is important to note that the shared memory
based VM memory swapping is only turned on when there
is sufficient host memory available. MemFlex resorts to
disk swapping when the total swapping area simultaneously
demanded by the co-located VMs exceeds to size of the host
shared memory region. Third, although memory intensive
workloads, such as h2 and eclipse, benefit most from shared
memory swapping, MemFlex incurs negligible performance
overhead for non-memory intensive workloads.

VI. CONCLUSION

Shared memory is widely used in virtualized cloud to
mitigate the data accessing overhead and encouraging re-
source sharing among different VMs or between VMs and
the host. However, current shared memory design is static
and configured at compile time, which suffers from two
inherent problems. First, the static management of shared
memory cannot adaptive to the changing workloads and
often leads to poor resource utilization under skewed or
changing workloads. We have presented a dynamic shared
memory management framework and how it can be deployed
for improving inter-VM communication efficiency and VM
memory swapping efficiency. Our experimental evaluation
shows the effectiveness of our dynamic shared memory
management framework.

ACKNOWLEDGMENT

This material is based upon work partially supported by
the National Science Foundation under Grants IIS-0905493,
CNS-1115375, IIP-1230740 and a grant from Intel ISTC on
Cloud Computing.

REFERENCES
[1] Netperf. http://www.netperf.org/netperf/.
[2] Spark. https://spark.apache.org/.
[3] Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vi-

jaykumar. Shufflewatcher: Shuffle-aware scheduling in multi-tenant
mapreduce clusters. In Proceedings of the 2014 USENIX conference
on USENIX Annual Technical Conference, pages 1–12. USENIX
Association, 2014.

[4] Nadav Amit, Dan Tsafrir, and Assaf Schuster. Vswapper: A memory
swapper for virtualized environments. In Proceedings of the 19th
international conference on Architectural support for programming
languages and operating systems, pages 349–366. ACM, 2014.

[5] Cristiana Amza, Alan L Cox, Sandhya Dwarkadas, Pete Kele-
her, Honghui Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy
Zwaenepoel. Treadmarks: Shared memory computing on networks of
workstations. Computer, 29(2):18–28, 1996.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. ACM SIGOPS Operating Systems Review,
37(5):164–177, 2003.

[7] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M
Khang, Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z Guyer, et al. The dacapo
benchmarks: Java benchmarking development and analysis. In ACM
Sigplan Notices, volume 41, pages 169–190. ACM, 2006.

[8] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages
133–146. ACM, 2009.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[10] Amit Gupta, Ehab Ababneh, Richard Han, and Eric Keller. Towards
elastic operating systems. In Proceedings of the 14th USENIX con-
ference on Hot Topics in Operating Systems, pages 16–16. USENIX
Association, 2013.

[11] Wei Huang, Matthew J Koop, Qi Gao, and Dhabaleswar K Panda.
Virtual machine aware communication libraries for high performance
computing. In Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, page 9. ACM, 2007.

[12] Kangho Kim, Cheiyol Kim, Sung-In Jung, Hyun-Sup Shin, and Jin-
Soo Kim. Inter-domain socket communications supporting high
performance and full binary compatibility on xen. In Proceedings
of the fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, pages 11–20. ACM, 2008.

[13] Prashanth Radhakrishnan and Kiran Srinivasan. Mmnet: An efficient
inter-vm communication mechanism. Proc. of Xen Summit. Boston,
2008.

[14] M Wasi-ur Rahman, NS Islam, X Lu, J Jose, H Subramoni, H Wang,
and DK Panda. High-performance rdma-based design of hadoop
mapreduce over infiniband. In Proceedings of the IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing Workshops
and PhD Forum. IPDPSW, Washington, DC, USA, 2013.

[15] Yi Ren, Ling Liu, Qi Zhang, Qingbo Wu, Jie Wu, Jinzhu Kong,
Jianbo Guan, and Huadong Dai. Residency-aware virtual machine
communication optimization: Design choices and techniques. In 2013
IEEE 6th International Conference on Cloud Computing (CLOUD),
pages 823–830. IEEE, 2013.

[16] Carl A Waldspurger. Memory resource management in vmware esx
server. ACM SIGOPS Operating Systems Review, 36(SI):181–194,
2002.

[17] Jian Wang, Kwame-Lante Wright, and Kartik Gopalan. Xenloop: a
transparent high performance inter-vm network loopback. In Pro-
ceedings of the 17th international symposium on High performance
distributed computing, pages 109–118. ACM, 2008.

[18] Dan Williams, Hani Jamjoom, Yew-Huey Liu, and Hakim Weather-
spoon. Overdriver: Handling memory overload in an oversubscribed
cloud. In ACM SIGPLAN Notices, volume 46, pages 205–216. ACM,
2011.

[19] Qi Zhang and Ling Liu. Workload adaptive shared memory manage-
ment for high performance network i/o in virtualized cloud. In Tech
report. Georgia Tech, 2015-4-17.

[20] Qi Zhang, Ling Liu, Gong Su, and Arun Iyengar. Memflex: Flexible
and efficient memory resource management for high performance
virtual machine execution. In Tech report. Georgia Tech and IBM,
2015-2-3.

