
Hybrid-LSH for Spatio-Textual Similarity
Queries

Mingdong Zhu1, Derong Shen1, Ling Liu2, and Ge Yu1

1 Northeastern University, China,
mingdongzhu@hotmail.com, {shenderong, yuge}@ise.neu.edu.cn

2 Georgia Institute of Technology, USA,
lingliu@cc.gatech.edu

Abstract. Locality Sensitive Hashing (LSH) is a popular method for
high dimensional indexing and search over large datasets. However, little
efforts have put forward to utilizing LSH in mobile applications for
processing spatio-textual similarity queries, such as find nearby shopping
centers that have a top ranked hair salon. In this paper, we present
hybrid-LSH, a new LSH method for indexing data objects according to
both their spatial location and their keyword similarity. Our hybrid-
LSH approach has two salient features: First our hybrid-LSH carefully
combines the spatial location based LSH and textual similarity based
LSH to ensure the correctness of the spatial and textual similarity based
NN queries. Second, we present an adaptive query-processing model to
address the fixed range problem of traditional LSH and to handle queries
with varying ranges effectively. Extensive experiments conducted on both
synthetic and real datasets validate the efficiency of our hybrid LSH
method.

Keywords: similarity query, hybrid LSH, spatio-textual query

1 Introduction

Location-based services have become more and more prevalent and have
attracted significant attentions from both industry and academic community.
Apple has an application to locate frequently used software; Yelp finds nearby
restaurants of interest; and Facebook and FourSquare offers its members the
capability to find his or her nearby (local) friends or points of interest.

One obvious way [1] to combine spatial distance and textual similarity
is to use a spatial index to a spatial partition of the large dataset, which
is most relevant to the spatial location of the query issuer, and for the
given partition a string index is used to filter out those irrelevant objects
by keywords matching and then rank the results using a hybrid ranking
function that can combine spatial distance and textual similarity [2–4]. Spatio-
textual data ordinarily are high-dimensional. For example, a typical microblog
with location has 2 coordinates and some keywords, say 100, then the whole
microblog, simultaneously considering location and text, contains 2×100=200

II

features(dimensions). Due to the curse of dimensionality, many traditional
methods are not efficient. It’s known that locality sensitive hashing(LSH) is
a good method for similarity queries on high-dimensional data. However, none
of previous work, to the best of our knowledge, has explored the feasibility of
utilizing LSH for processing spatio-textual similarity queries. We argue that
LSH is an attractive alternative method for processing spatio-textual similarity
queries: First, LSH-based methods have no hierarchical structure, thus are easy
to be maintained and scaled. Second, LSH can be directly used to hash spatially
and textually similar objects to the same buckets, which can be obtained with
less I/O cost.

In this paper, we design hybrid-LSH to process spatio-textual similarity
queries, and the method treats spatial information and textual content of an
object as a whole, rather than builds indices separately and combines two sets
of query results when there is a query. The first challenge is how to design the
hybrid-LSH such that hash buckets are conducted by considering spatial and
textual similarity simultaneously. For each object, one hash value that reflects
both spatial information and textual content considered as a whole, should
be generated. The second challenge is how to make the hybrid LSH adaptive
to spatio-textual similarity queries with different similarity ranges efficiently,
because for LSH based methods their sensitive radii are fixed and it’s difficult
to answer queries with varying ranges.

To address these challenges, we propose a hybrid-LSH structure which
considers both spatial and textual similarity, so that it is with high probability
that spatially and textually similar objects are stored in the same bucket and
can be found with one disk I/O. Then we present adaptive algorithms for queries
with varying ranges. In addition, the hybrid-LSH’s effectiveness and algorithms’
accuracy are guaranteed by theoretical analysis. To summarize, we make the
following contributions.

– By simultaneously considering spatial and textual similarity, we propose a
hybrid-LSH and prove its theory features.

– To process query with varying ranges on the hybrid-LSH, we provide
adaptive algorithms to process the query.

– We conduct extensive experiments on real and synthetic datasets in a
distributed environment. Experimental results confirm the scalability and
effectiveness of our approach.

2 OVERVIEW

Reference Model. Both the object model and the query model are defined with
spatial location information and textual content consisting of keyword tokens.
We assume that the spatial information and the textual content of objects are
independent.

Formally, let P denote the universe of discourse, namely the set of spatial
objects. Each object p ∈ P is defined as a two-element tuple (loc, tok), where

III

p.loc is the spatial location information of object p and p.tok is a set of tokens
which represent the textual description of p. In order to compute spatio-textual
similarity between two objects, say p1 and p2, we define a spatio-textual distance
metric that combines spatial and textual similary through a weight parameter
α, as shown in Eqn. 1.

DistST(p1, p2) = α ∗DistS(p1, p2) + (1− α) ∗DistT(p1, p2) (1)

DistS(p1, p2) =
dist(p1.loc, p2.loc)

dmax− dmin
(2)

DistT(p1, p2) = 1− (p1.tok ∩ p2.tok)

(p1.tok ∪ p2.tok)
(3)

We use the normalized Euclidean distance of objects p1, p2 ∈ P , denoted as
dist(p1.loc, p2.loc), to compute the spatial distance DistS, as shown in Eqn.2.
dmax and dmin in Eqn.2 denote the maximum and minimum distance for
pairs of objects in P . We use Jaccard distance [5] to measure the distance
of textual similarity as shown in Eqn.3. Note that our hybrid LSH method
is generic and independent of the specific distance functions used and thus
can incorporate other spatial distance function and textual similarity distance
function. For simplicity, B(q,D) denotes object set {o ∈ P |DistS(o.loc, q.loc) ≤
D}, similarly, B(q,R)={o ∈ P |DistT (o.tok, q.tok) ≤ R}, and B(q,D,R)=
{o ∈ P | DistS(o, q) ≤ D and DistT (o, q) ≤ R }.

Given that spatial location based similarity is defined based on Euclidean
distance and textual similarity is defined based on Jaccard distance, [6] and
[7] describe the construction of an LSH family for Euclidean distance and the
construction of an LSH family for Jaccard distance respectively.

Because the traditional (R, c)-NN problem [6, 8] just adapts to objects with
single data type. we extend the (R, c)-NN problem to (D,R, c)-NN for spatio-
textual objects, which return an object o ∈ B(q, cD, cR) if there exists an object
o∗ ∈ B(q,D,R).

Related Work. There are many studies on spatial textual similarity query
processing [2, 3, 9]. A good survey of techniques can be found in [10]. Generally
they can be classified into two categories: tree-like style and grid style.
Specifically for tree-like style, [2] proposes a new hybrid index structure Inverted
File Quad-tree (IQ-tree) to manage a stream of Boolean range continuous(BRC)
queries on a stream of incoming. [11] proposes a new indexing framework for
processing the location-aware text retrieval query. [3] proposes a hybrid indexing
structures called Intersection-Union-R tree (IUR-tree) and an efficient approach
that take into account the fusion of location proximity and document similarity.
For grid style, this category of indices combines a grid index with a text index
(e.g., the inverted file). For example, [4] proposes a spatio-textual similarity
search method (SEAL), which is a filter-and-verification framework.

IV

3 Hybrid-LSH

In this section, we introduce the construction of hybrid-LSH. Concretely, each
object o ∈ P consists of spatial information s and textual content t. Assume
that the following three parameters are provided: the spatial range d, the
textual similarity range r, and the approximation factor c > 1. The hybrid
LSH construction algorithm works as follows: For s we can find (d, cd, sp1, sp2)-
sensitive LSH family, denoted by sH, for Euclidean distance (recall Section 2),
while for t we can obtain (r, cr, tp1, tp2)-sensitive LSH family, denoted by tH,
for Jaccard distance (recall Section 2). We combine the two hash families. In
particular, let k1 and k2 denote the number of hash functions generated in sH
and tH respectively. We define an LSH function family G= g: S → U (k1+k2) with
k1 + k2 hash functions such that g(o)={sh1(o),· · ·,shk1(o), th1(o), · · ·, thk2(o)},
where thi ∈tH and shi ∈sH. Let L be an integer, we choose L functions g1,· · ·, gL
from G independently and uniformly at random. During preprocessing, we store
an indicator of object o in the bucket gi(o) for i=1,· · · , L. We define the spatial
component as gs(o), i.e., gs(o)={sh1(o), · · ·,shk1(o)} and the textual component
as gt(o), i.e., gt(o)={th1(o), · · · , thk2(o)}. Fig.1 is an illustration of hybrid-LSH.

o (s , t)

sh1 · · · shk1
th1 · · · thk2

g1

sh
′

1
· · · sh

′

k1
th

′

1
· · · th

′

k2
gL

·
·
·

Fig. 1. An illustration of hybrid-LSH

Intuitively, hybrid-LSH is composed by k1 hash values from (d, cd, sp1, sp2)-
sensitive LSH and k2 hash values from (r, cr, tp1, tp2)-sensitive LSH. Thus,
hybrid-LSH is defined as (d, r, c, {sp1, tp1}, {sp2, tp2})-sensitive hybrid-LSH.
Because sp1, sp2, tp1 and tp2 are determined by d, r and c, (d, r, c, {sp1, tp1},
{sp2, tp2})-sensitive is simplified as (d, r, c)-sensitive hybrid-LSH when no con-
fusion occurs.

Base on hybrid-LSH, in order to process a (D,R, c)-NN query with query
object q, simplified as query q, we first generate L hash value of q, i.e., g1(q), · · ·,
gL(q), then search corresponding buckets of the hash values and randomly check
C ∗L objects in the buckets where C is a constant number. Let o1, · · · , oC∗L be
the checked objects. For any oi, if DistS(oi, q) < cD and DistT(oi, q) < cR, then
we return YES and oi, otherwise we return NO. Because there are probably lots
of objects in all the buckets, it saves lots of computation to only check constant
number of objects.

To ensure the correctness of the algorithm, the parameters k1, k2 and L are
chosen so as to ensure the following properties hold with constant probability:

V

P1 If there exists object o such that DistS(o, q) < D and DistT (o, q) < R,
denoted as B(q,D,R), then gi(o)=gi(q) for some i = 1, · · · , L.

P2 The total number of collisions of q with the number of objects, which do not
belong to B(q, cD, cR), is less than 3L.

P1 ensures objects who satisfy the query at least collide once for the L hash
values. P2 ensures if there is object who satisfies the query algorithm can find
the object after checking 3L objects.

Theorem 1. setting k1 = logsp2
(1 −

√
1− 1

n), k2 = logtp2
(1 −

√
1− 1

n) and

L = (1 −
√
1− 1

n)
−(logsp2

sp1+logtp2
tp1) guarantees that properties P1 and P2

hold with constant probability.

Proof. Let P1 hold with probability p1 and P2 hold with p2. Without loss of
generality, assume that there is an object o∗ which satisfies DistS(o∗.loc, q.loc) <

D and DistT(o∗.tok, q.tok) < R. Set k1 = logsp2
(1−

√
1− 1

n) and k2 = logtp2
(1−√

1− 1
n). Use P(A) to denote the probability of event A. P(g(o′)=g(q) &

o′ ∈ (P− B(q, cD)∩B(q, cR)) (denoted as Pa) is not larger than P (gs(o
′)=gs(q)

& o′ ∈ (P−B(q, cD)) | gt(o′) = gt(q) & o′ ∈ (P−B(q, cR)) (denoted as Pb).
Pb = 1− (1− spk1

2)(1− tpk2
2) = 1

n . so Pa < 1
n , and then the expected number of

objects allocated for gi which don’t satisfy the query condition is less than 1.5.
The expected number of the objects for all gi doesn’t exceed 1.5L, According
to the Markov inequality, the probability that this number exceed 3L is less
than 1

2 . so P2 follows. The probability of g(o∗)=g(q) is sp1
k1 ∗ tp1

k2=(1 −√
1− 1

n)
logsp2

sp1+logtp2
tp1 . By setting L = (1 −

√
1− 1

n)
−(logtp2

tp1+logsp2
sp1),

the probability that all gi(o
∗) ̸=gi(q) is less than 1

e . so the P1 holds with the
probability 1-1e > 1

2 . ⊓⊔

4 Adaptive (D,R, c)-NN Query Processing with
Hybrid-LSH

This section focuses on describing how to split a (D,R, c)-NN query into multiple
subqueries with smaller query ranges such that each subquery can be processed
directly using our hybrid LSH index. Recall Section 3, we show the structure of
(d, r, c)-sensitive hybrid-LSH. For (D,R, c)-NN queries where D ≥ d and R ≥ r,
we need to decompose each (D,R, c)-NN query into multiple subqueries with
spatial range d and textual range r.

4.1 Adaptive (D,R, c)-NN Query Processing

Let d < D and r < R, and we build a hybrid-LSH with sufficiently small d and
r so that ranges from query are bigger than them. The intent of the adaptive
(D,R, c)-NN query method is to transform an original query into several queries

VI

with small query range which can be processed by the constructed hybrid-LSH.
Then we give a formal definition of the transform as follows.

Definition 1. (LSH query transform) LSH query transform is based on a single
type (r1, r2, p1, p2)-sensitive LSH. If a query (R, c)-NN can be transformed into a
query set S which contains several queries based on (r1, r2, p1, p2)-sensitive LSH,
where r1 < R, r2 < cR, and S satisfies the following two properties, then S is a
(r1, r2, p1, p2)-sensitive LSH query transform of q.

P1 the area or content which is covered by R in q is contained by the area or
content which is covered by r1 in S.

P2 the area or content which is covered by r2 in S is contained by the area or
content which is covered by cR in q.

Then we show the effect of LSH query transform in Lemma 1, compared with
the original query.

Lemma 1. If there is an answer for a (R, c)-NN query, then a (r1, r2, p1, p2)-
sensitive LSH query transform of the (R, c)-NN query can return a c-approximate
answer with constant probability.

Proof. Set QT be a LSH query transformation of a (R, c)-NN query q, where
QT = {qti|0 < i < |QT |}. If there is an object o∗ ∈B(q,R), according to P1
in definition 1, then o∗ locate in the query range of at least one query in QT ,
say qti. In addition, the objects which are outside of B(q, cR), denoted as O, are
outside of B(qti, r). According to property 2 of LSH (R, c)-NN query in the [8],
the number of collisions of sti and O is less than C ∗ L, So after checking C ∗ L
objects sti can return a c-approximate answer with constant probability. Then
Lemma 1 follows. ⊓⊔

According to Theorem 1 we can use a LSH query transform to processing
queries with varying ranges. However it is nontrivial to construct LSH query
transform for spatial information or textual content. Now we present the
LSH query transform methods for spatial information and textual content
respectively.

For spatial information, it is similar with a disk covering problem to find
a LSH query transform. To the best of our knowledge, optimal solutions of
disk covering problems are only available for limited situations. We try to give
a general algorithm and show it is a 3-approximate optimal method. Given a
(d, cd, p1, p2)-sensitive LSH and a (D, c)-NN query with centre coordinate p =
(px, py), where d < D, we use several squares with sides

√
2d to cover the area of

B(p,D), as shown in figure 2. The number of squares is ⌈ 2D2

d2 ⌉. Then the (D, c)-
NN queries from central points of the squares is a LSH query transformation,
denoted as ST = {sti}. Note that because d < D, ST is easy to satisfy the
condition that the coverage of all queries in ST with radii cd is contained by the
circle with radius cD of query q. According to the area formula, the low bound

of optimal method is ⌈D2

d2 ⌉. So it is easy to get an corollary in the following.

VII

Corollary 1. There is a constant c which makes ST a LSH query transforma-
tion of query q, and the LSH query transformation is a 3-approximate optimal
method.

Fig. 2. LSH query transform for spatial data

For textual content, given a (r, cr, p1, p2)-sensitive min-hash and a textual
(R, c)-NN query q, where R > r and there are TL tokens in q, in order to find
similar token sets by (r, cr, p1, p2)-sensitive LSH, we should consider two kinds
of objects: objects in which the number of tokens are smaller than q and objects
in which the number of tokens are bigger than q. For smaller objects, we should
get rid of some tokens in q to match them. For an integer m specified later, we
generate a query set which consists of all possible combinations of (TL − m)
tokens from tokens of q, which is denoted as DS. And for bigger objects, we
should add some wildcard tokens in q to mach them. For an integer w specified
later, we add w wildcard tokens to q. When q is hashed to a hash value, a
wildcard token is hashed to all possible hash values. In this way we get another
query set AS. Then by combining DS and AS we get a query set TT .

Let IN and UN be the size of intersection and union of two token sets,
respectively. When parametersm and w satisfy the formulae 4, 5 and 6, it ensures
that all similar objects of q are covered by the similar objects of query set TT ,
corresponding to P1 in definition 1. And when parameters m and w satisfy the
formula 7, 8 and 9, it ensures that all c approximate similar objects of query
set TT are covered by c approximate similar objects of q, corresponding to P2
in definition 1. By selecting the smallest m and w which satisfy the formula,
corollary 2 follows.

IN

UN
≥ 1−R. (4)

IN

UN −m
≥ 1− r (5)

IN + w

UN + w
≥ 1− r (6)

IN

UN
≤ 1− cR (7)

IN

UN −m
≤ 1− cr (8)

IN + w

UN + w
≤ 1− cr (9)

VIII

Corollary 2. when m = ⌈ R−r
(1−R)(1−r)TL⌉ and w = ⌈ R−r

(1−R)rTL⌉, where TL is

number of tokens in the query q, query set TT is a LSH query transformation
of query q.

Proof. Due to the limited space, the proof is omitted. ⊓⊔

Based on LSH query transform, the adaptive (D,R, c)-NN query algorithm
is straightforward. The idea of the algorithm is to decompose a query for hybrid
type data to queries for single type data, then generate LSH query transforms
of the queries, join the LSH query transforms of two types, and lastly process
the joined queries on hybrid-LSH. Specifically, for a (D,R, c)-NN query, it can
be seen as a join of two single type queries (D, c)-NN and (R, c)-NN. First
We find a (d, cd, sp1, sp2)-sensitive LSH query transform DT of (D, c)-NN and
a (r, cr, tp1, tp2)-sensitive LSH query transform RT of (R, c)-NN query. By
combining the set DT and RT in Cartesian product way, we generate a (d, r, c)-
sensitive hybrid-LSH query transform, denoted as DRT . At last we process the
DRT in the hybrid-LSH and return the query result.

Theorem 2. If there is an answer for a (D,R, c)-NN query, the adaptive
(D,R, c)-NN query algorithm can return a c-approximate answer with constant
probability.

Proof. The proof is straightfoward. ⊓⊔

4.2 Multiple Adaptive Hybrid-LSHs

Shown in Theorem 1, each query in LSH query transformation at most checks 3L
objects, so the number of buckets accessed by each query is directly proportional
to the number of queries. Hence, the number of queries in hybrid-LSH query
transformation is a direct indicator of query cost. The number of queries in
hybrid-LSH query transformation is:

QN ≤ (
2D2

d2
+ 1)(Cm

TL +Hw) (10)

According to Formula 10, when the query range is big, the query cost is very
high, so we propose the multiple adaptive hybrid-LSHs.

The intent of the multiple adaptive hybrid-LSHs is to build many adaptive
hybrid-LSHs to make the distance between queries and the closet adaptive
hybrid-LSH small, which can significantly reduce the cost of query.

Shown in Formula 10, QN is in direct proportion to D
d (spatially) and (R−r)

(textually). For (D,R, c)-NN queries where MinD ≤ D ≤ MaxD and MinR ≤
R ≤ MaxR, we build {di, rj , c}-sensitive adaptive hybrid-LSHs, where i, j are

integers, i ∈ (0, logb(
MaxD
MinD)), j ∈(0, MaxR−MinR

t), d1 = MinD,
dj+1

dj
= b, r1 =

MinR, ri+1 − ri = t, and b, t are the common ratio and difference respectively.

IX

Corollary 3. Multiple adaptive hybrid-LSHs uses logb(
MaxD
MinD) ∗ MaxR−MinR

t
adaptive hybrid LSHs to process any (D,R, c)-NN query, where MinD < D <
MaxD and MinR < R <= MaxR, by hybrid-LSH query transformation with at
most (2b2+1)(Cm

TL+Hw), where m = t
(1−MaxR)2TL, w = t

(1−MinR)(MinR−t)TL.

Proof. Set multiple adaptive hybrid-LSH MAH={mahij | mahij is (di, rj , c)-
sensitive adaptive hybrid-LSH, 0 < i < logb

MaxR
MinR , 0 < j < MaxD−MinD

t }.
There is a query (qd, qr, c)-NN andmahk,s where k = argmin(0<i<logb

MaxR
MinR ,qd>di)

qd
di

and s = argmin(0<i<MaxD−MinD
t ,qr>rj)

(qr − rj). For the spatial part, qd
dk

<= b,

then (2D2

d2 + 1) ≤ 2b2 + 1. For the textual part, qr − rs ≤ t and qr > rs, so
qr−rs

(1−qr)(1−rs)
< t

(1−MaxR)2 , which is monotonically increasing function for qr,

and qr−rs
(1−qr)rs

< t
(1−MinR)(MinR−t) , which is monotonically decreasing function

for qr. So QN ≤ (2b2 + 1) ∗ (Cm
TL + Hw) where m = t

(1−MaxR)2TL, w =
t

(1−MinR)(MinR−t)TL. The Corollary follows. ⊓⊔

5 Experiments

Setup. In order to show scalability and maintainability, we built the adaptive
hybrid-LSH (HLSH), multiple adaptive hybrid-LSH(MHLSH), and implemented
the proposed (D,R, c)-NN in a distributed setting. For comparison, we also
implemented state-of-the-art method SEAL [4] and LSHDSS [12]. SEAL uses
hash based hybrid signature to process query, belongs to filter-and-verification
framework and is an exact method, so for (D,R, c)-NN queries we stop the
algorithm when one object which satisfies query condition is obtained. LSHDSS
is a LSH based distributed similarity search algorithm, however it is designed for
single data type, so we extended it to support Spatial-textual similarity query by
executing separately and combining intermediate result. In this paper we mainly
focus on high-dimensional spatio-textual data, so we compared with methods
with little global information which can be easy maintained in a distributed
setting when there are lots of updates, and due to expensive maintenance cost,
methods with tree structures or hierarchical structures were not considered in
our experiments.

Two datasets are used, The first one is a real dataset, which contains 0.5
million micro-blogs with location information collected from Sina microblog
website, denoted as MicroBlog. According to the rule of microblog, each message
must contain less than 140 characters and for MicroBlog, the longest meaningful
spatial distance is 30km. After deleting the stop words, the average number of
words of a message is 24, and in our experiments each word is taken as a token.
The other dataset is a synthetic dataset, denoted as SynSet. SynSet has 1 million
objects and objects’ tokens are chosen from a word set, and each object’s location
is generated from a square area of which the side length is 100km.

All experiments are implemented in Cassandra v1.2.6. The Cassandra cluster
consists of 10 machines with the same configuration: Intel(R) Core(TM) i7 Quad
870 @2.93GHz CPU and 8 GB RAM, and the same operating system: Ubuntu

X

10.04. To evaluate the performance of algorithms, we vary one parameter while
keeping the others fixed at their default values. We run 20 times for each test,
the average result of the query set is reported in the experiments.

Two performance measures are used: number of messages and accuracy. We
count the number of messages from sending one query to obtaining result. The
number of messages is an important indication of algorithm efficiency. Query
accuracy [6] is used to measure the quality of the results. Specifically, o∗ is the

actual result and o are the returned results, query accuracy is DistST(q,o)

DistST(q,o∗)
.

Effect of c. We first investigate the effect of the approximate ratio c on space
consumption and query accuracy. Table 1 shows the performance of adaptive
hybrid-LSH when c = 2 or c = 3. Because L is in direct proportion to dataset
size, and index size is in direct proportion to L, the index size of MicroBlog is
smaller than SynSet. As shown in table 1, the query accuracy of case c = 3 is a
bit bigger than the case that of case c = 2, but it is still good, while the number
of messages of case c = 3 is about 1

3 of that of case c = 2 . So it is worth trading
a little accuracy for much higher query efficiency.

Table 1. Effect of c

HLSH
c = 2 c = 3

messages accuracy index size messages accuracy index size

MicroBlog 608 1.52 1.18G 196 1.64 229M

SynSet 714 1.63 2.1G 216 1.72 575M

Performance of (D,R, c)-NN query. We now show the results obtained from
the (D,R, c)-NN query, Figures 3 show the number of messages and accuracy for
(1, 0.02)-NN, (1.5, 0.04)-NN, (2, 0.06)-NN, (2.5, 0.08)-NN and (3, 0.1)-NN queries
on MicroBlog and SynSet. Due to the limited space, in figures (1, 0.02)-NN,
(1.5, 0.04)-NN, (2, 0.06)-NN, (2.5, 0.08)-NN and (3, 0.1)-NN are denoted as NN1,
NN2, NN3, NN4 and NN5 respectively. As the distance and range increase,
the number of messages cost of HLSH and SEAL increase notably at first and
then decrease. When the distance and range increase for HLSH, some (D,R, c)-
NN queries LSH-transforms are generated, which result in the increasing of the
number of messages, and for SEAL, the efficiency of filtering of the algorithm
degrade and it needs check more inverted lists and candidates. However, from
(2.5, 0.08) the objects which satisfy the queries increase, in turn the algorithms
can terminate earlier and the number of disk accesses decreases. In contrast,
the number of messages of MHLSH is stable. The number of messages cost of
MHLSH is lower than that of SEAL, which is further lower than LSHDSS. From
Figures 3(b) and 3(d), the average accuracy of HLSH is best, and the accuracy
of MHLSH is better than that of SEAL.

Figures 4(a) and 4(b) illustrate the trends of number of messages and
accuracy of the methods in terms of data size on SynSet. As the dataset size
increases, the number of messages of SEAL increases fast, as well as that of

XI

 0

 150

 300

 450

 600

NN1 NN2 NN3 NN4 NN5

M
es

sa
ge

s

Query range

HLSH
MHLSH

SEAL
LSHDSS

(a) Messages vs.
(D,R):MicroBlog

 1.6

 1.8

 2

 2.2

 2.4

NN1 NN2 NN3 NN4 NN5

A
cc

ur
ac

y

Query range

(b) Accuracy vs.
(D,R):MicroBlog

 0

 150

 300

 450

 600

NN1 NN2 NN3 NN4 NN5

M
es

sa
ge

s

Query range

HLSH
MHLSH

SEAL
LSHDSS

(c) Messages vs.
(D,R):SynSet

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

NN1 NN2 NN3 NN4 NN5

A
cc

ur
ac

y

Query range

(d) Accuracy vs.
(D,R):SynSet

Fig. 3. (D,R, c)-NN with varying (D,R)(Figures share the same key.)

LSHDSS. The reason is that, the number of objects encountered in an inverted
list for SEAL is linearly proportional to the dataset size. As a result of two phases
of similarity query for LSHDSS, the algorithm is sensitive to the data size. Due
to the P2 of Theorem 1, HLSH and MHLSH are relatively stable with the data
size varying. The number of messages cost of MHLSH is still the lowest. Figure
4(b) shows that the accuracies of HLSH and MHLSH are better than those of
SEAL and LSHDSS, and HLSH is slightly better than MHLSH at the cost of
much more messages.

Figures 4(c) and 4(d) show the performance of (D,R, c)-NN query with
different average number of tokens on SynSet. Obviously the number of tokens is
similar to the dimensionality in traditional databases. Generally LSH methods
are not sensitive to dimensionality, so it’s easy to explain that MHLSH and
LSHDSS are relatively not affected by the number of tokens. For HLSH, the
number of LSH transform queries increases when the number of tokens increases,
in result the number of messages of HLSH increases fast. For a fixed query
distance and query range, SEAL is in direct proportion to the number of tokens.
That’s why the number of messages for SEAL increases as the number of tokens
increases. Shown in Figure 4(d), the accuracy of HLSH is still the best and the
accuracy of MHLSH is better than that of SEAL and that of LSHDSS.

 0
 100
 200
 300
 400
 500
 600

20 40 60 80 100

M
es

sa
ge

s

Data size(M)

HLSH
MHLSH

SEAL
LSHDSS

(a) Messages vs. da-
ta size

 1

 1.2

 1.4

 1.6

 1.8

20 40 60 80 100

A
cc

ur
ac

y

Data size(M)

(b) Accuracy vs. da-
ta size

 0
 100
 200
 300
 400
 500

20 40 60 80 100

M
es

sa
ge

s

Number of Tokens

HLSH
MHLSH

SEAL
LSHDSS

(c) Messages vs. to-
ken number

 1

 1.2

 1.4

 1.6

 1.8

20 40 60 80 100

A
cc

ur
ac

y

Number of Tokens(M)

(d) Accuracy vs. to-
ken number

Fig. 4. (D,R, c)-NN on SynSet(Figures share the same key.)

XII

6 Conclusion

In this paper, we propose a hybrid-LSH scheme for the spatio-textual similarity
query. We devise efficient adaptive (D,R, c)-NN algorithm and approximate k-
NN method based on the hybrid-LSH scheme. Our theoretical studies show that
the algorithms can have a guarantee on query quality. Results of empirical studies
demonstrate that the paper’s proposal offers scalability and efficiency.
Acknowledgments.This work is supported by the National Basic Research
973 Program of China under Grant (2012CB316201) and the National Natural
Science Foundation of China under Grant (61472070). The first author is funded
by China Scholarship Council. The third author is partially supported by the
grants from NSF NetSE, SaTC, I/UCRC and Intel ICST on Cloud Computing.

References

1. Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lee, and Xufa
Wang. Ir-tree: An efficient index for geographic document search. IEEE Trans. on
Knowl. and Data Eng., 23(4):585–599, April 2011.

2. Lisi Chen, Gao Cong, and Xin Cao. An efficient query indexing mechanism for
filtering geo-textual data. In Proceedings of the 2013 international conference on
Management of data, pages 749–760. ACM, 2013.

3. Jiaheng Lu, Ying Lu, and Gao Cong. Reverse spatial and textual k nearest neighbor
search. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 349–360. ACM, 2011.

4. Ju Fan, Guoliang Li, Lizhu Zhou, Shanshan Chen, and Jun Hu. Seal: Spatio-textual
similarity search. Proceedings of the VLDB Endowment, 5(9):824–835, 2012.

5. Michael Levandowsky and David Winter. Distance between sets. Nature,
234(5323):34–35, 1971.

6. Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. Locality-sensitive hashing
scheme based on dynamic collision counting. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pages 541–552. ACM,
2012.

7. Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. Computer Networks and ISDN Systems,
29(8):1157–1166, 1997.

8. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
20th annual symposium on Computational geometry, pages 253–262. ACM, 2004.

9. Xin Cao, Lisi Chen, Gao Cong, and Xiaokui Xiao. Keyword-aware optimal route
search. Proceedings of the VLDB Endowment, 5(11):1136–1147, 2012.

10. Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. Spatial keyword
query processing: an experimental evaluation. In Proceedings of the 39th
international conference on VLDB, pages 217–228. VLDB Endowment, 2013.

11. Gao Cong, Christian S Jensen, and Dingming Wu. Efficient retrieval of the top-k
most relevant spatial web objects. Proceedings of the VLDB Endowment, 2(1):337–
348, 2009.

12. Parisa Haghani, Sebastian Michel, and Karl Aberer. Distributed similarity search
in high dimensions using locality sensitive hashing. In Proceedings of the 12th
International Conference on EDBT, pages 744–755. ACM, 2009.

