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Abstract—Scheduling real-time workflows running in the
Cloud often need to deal with uncertain task execution times and
minimize uncertainty propagation during the workflow runtime.
Efficient scheduling approaches can minimize the operational
cost of Cloud providers and provide higher guarantee of the
quality of services (QoSs) for Cloud consumers. However, most
of the existing workflow scheduling approaches is designed for
the individual workflow runtime environments that are deter-
ministic. Such static workflow schedulers are inadequate for
multiple and dynamic workflows, each with possibly uncertain
task execution times. In this paper, we address the problem
of minimizing uncertainty propagation in real-time workflow
scheduling. We first introduce an uncertainty-aware scheduling
architecture to mitigate the impact of uncertainty factors on
the quality of workflow schedules. Then we present a dynamic
workflow scheduling algorithm (PRS) that can dynamically
exploit proactive and reactive scheduling methods. Finally, we
conduct extensive experiments using real-world workflow traces
and our experimental results show that PRS outperforms two
representative scheduling algorithms in terms of costs (up to
60%), resource utilization (up to 40%) and deviation (up to 70 %).

I. INTRODUCTION

Cloud computing has become a new paradigm in distributed
computing. In this paradigm, cloud providers delivery on-
demand services (e.g., application, platforms and computing
resources) to customers in a “pay-as-you-go” model [1]. From
the customers’ perspective, the cloud model is cost-effective
because customers pay for their actual usage without upfront
costs, and scalable because customers can access unlimited
resources on demand. Due to its advantages, cloud computing
has been increasingly adopted in many areas, such as banking,
e-commerce, retail industry, and academy [2]. Notably, the
applications in these fields usually comprise many inter-related
computing and data transfer tasks [2]. As the precedence
constraints among tasks in these applications, a large number
of idle time slots between tasks will be left on virtual machines
(VMs), which often leads to a non-negligible number of poorly
utilized VMs [3]. In addition, the low resource usage in cloud
platforms also wastes tremendous costs, and the improvement
in resource usage for large companies (like Animoto) can be
translated to significant cost savings [4].

Effective and efficient scheduling algorithms show promis-
ing ways to solve the above problems for the cloud platforms.
Up to now, considerable work has been devoted to scheduling
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workflows for cloud platforms. However, the majority of these
existing scheduling approaches are based on the accuracy of
the information about task execution times and communication
times among tasks. In real cloud computing environments,
task execution times usually cannot be reliably estimated, and
the actual values are available only after tasks have been
completed. This may be contributed to the following two
reasons. Firstly, tasks usually contain conditional instructions
under different inputs [5]. This can be interpreted that tasks
in parallel applications may contain multiple choice and
conditional statements, which will lead to different program
branches and loops. Different branches or loops make the
task computation with large differences, which will leads
directly to the same task in the face of different data input
may also lead to different task execution times. Secondly, the
VMs’ performance in clouds varies over the time. This can
be contributed to the following fact. With the advanced virtu-
alization technology (e.g., Xen and VMware), multiple VMs
can simultaneously share the same hardware resources (e.g.,
CPU, I/O, network, etc.) of a physical host. Such resource
sharing may cause the performance of VMs subjecting to
considerable uncertainties mainly due to resource interference
between VMs [6], [7].

Motivation. Due to the dynamic and uncertain nature of
cloud computing environments, numerous schedule disruptions
(e.g., variation of task execution time, variation of VM per-
formance, arrival of new workflows, etc.) may occur and the
pre-computed baseline schedule may not be executed strictly
or effective as expected in real execution. Unfortunately, the
vast majority of researches did not consider these dynamic
and uncertain factors, which may leave a large gap between the
real execution behavior and the behavior initially expected. To
address this issue, we study how to control the impact of un-
certainties on scheduling results, and how to improve resource
utilization for VMs and reduce cost for cloud providers, while
guaranteeing the timing requirements of these workflows.

Contributions. The key contributions of this work are:

o An uncertainty-aware architecture for scheduling dynam-

ic workflows in the cloud environments.

e A novel algorithm named PRS that combines proactive

with reactive scheduling methods for scheduling real-time
workflows.



o The experimental verification of the proposed PRS algo-
rithm based on real-world workflow traces.

The outline of this paper is organized as follows. Section 2
briefly presents the related work. Section 3 gives an overview
of the scheduling architecture and the problem formulation,
followed by detailing the scheduling algorithm in Section 4.
In section 5, we present the experimental results and analysis.
Section 6 concludes this paper.

II. RELATED WORK

Workflow is one of the most typical applications in distribut-
ed computing, and workflow scheduling has drawn intensive
interests in the recent years. So far, a large number of workflow
scheduling algorithms have been developed.

Among the existing workflow scheduling approaches, they
can be divided into three categories: list-based, cluster-based,
meta-heuristic-based. For instance, Durillo et al. proposed
a list-based workflow scheduling heuristic (denoted as MO-
HEFT) to make tradeoff between makespan and energy con-
sumption [8]. Lee et al. proposed two scheduling solutions
that firstly stretch out the schedule to preserve makespan, and
then compact the output schedule to minimize resource usage
[3]. There is a large body of work in designing workflow
scheduling approaches, based on task. For example, Abrishami
et al. proposed a scheduling algorithm, named PCP, for utility
grids to achieve both minimizing a workflow’s execution cost
and guaranteeing the workflow’s deadline [4]. Abrishami et
al. then extend their previous algorithm (i.e., PCP) to design
two new algorithms, i.e., IC-PCP and IC-PCPD2, for cloud
environment [9]. In addition, meta-heuristics have become
another active ways to solve the workflow scheduling prob-
lems. For instance, Xu et al. applied a genetic algorithm (GA)
to assign a priority to each subtask while using a heuristic
approach to map taks to processors [10]. Zhu et al. proposed
an Evolutionary Multi-objective Optimization-based algorithm
to solve this workflow scheduling problem on cloud platform
[11]. However, the above existing approaches are designed
for a single workflow, and neglected the uncertainties of
task execution times and the dynamic nature of workflow
applications in cloud environments.

There also exist some work investigating the workflow
scheduling strategies under stochastic computing environ-
ments. Calheiros et al. proposed an algorithm to replicate
workflow tasks, such that mitigating the effects of resources’
varied performance on workflows’ deadlines [12]. Tang et al.
developed a stochastic heuristic to minimize the makespan
for workflow [5]. Zheng et al. proposed an approach, based
on a Monte Carlo method, to cope with the uncertainties in
task execution times [13]. Rodriguez et al. focused on the
performance variation of VMs, the presented an algorithm,
based on Particle Swarm Optimization (PSO), to minimize
the overall workflow execution cost while meeting its deadline
constraint [14]. However, these approaches are designed for a
single workflow, and are not appropriate for dynamic cloud
environments, where multiple workflows will be submitted
from time to time.

III. MODELING AND PROBLEM FORMULATION

In this section, we firstly give the model of virtual machines
(VMs) and workflows, and then propose an uncertainty-aware
scheduling architecture for a cloud platform. After that, we
form our scheduling problem.

A. Virtual machine modeling

The cloud platforms often provide abundant virtual ma-
chines of many types, denoted as S = {s1,82, -+, 8} [14].
Each VM type s, has a specific configuration and a price
associated with it. The configuration of VM type differs with
respect to CPU performance, memory, storage, network and
OS. Each s, has a price Price(s,,) associated with it, charged
on an unit time basis. The time duration is rounded to the next
full hour, e.g., 5.1 hours is rounded to 6 hours. We utilize the
symbol vm;* to denote the k-th VM with type s,,.

In cloud environments, VMs may locate in different data
centers, and the underlying network topology among VMs
is complex and heterogeneous. Without loss of generality,
the parameter [i; is utilized to represent the communication

bandwidth between VM vm;* and VM vmfi‘. To simplify the
problem, the network congestion will be ignored in this study,
which is similar to [14].

B. Modeling Workflows with Uncertain Task Execution Times

In cloud environment, the workflows are continuously sub-
mitted by customers, and these workflows can be denoted as
W = {wy,ws,...,wy}. For a certain workflow application
w; € W, it can be modeled as w; = {a;,d;, G;}, where
a;,d; and (G; represent the arrival time, the deadline and
the structure of workflow w;, respectively. The structure G;
for a certain workflow w; can be formally expressed as a
directed acyclic graph (DAG), ie., G; = (T;, E;), where
T; = {ti1,ti2, ..., L7, } represents the task set in workflow
w;. Additionally, E/; C T; x T; represents a set of directed arcs
between tasks. An edge e;j € E; of the form (t;p, t,;) exists if
there is a precedence constraint between task ¢;, and task ¢;;,
where ?;;, is an immediate predecessor of task ¢;; and the task
ti; is an immediate successor of task t;,. The weight w(e},;),
that assigned to edge e,,;, represents the size of data that needs
to be transferred. As a task may have many predecessors and
successors, we let the pred(t;;) and succ(t;;) implies the set
of all the immediate predecessors and successors of task ;;.

Notably, the main difference between uncertain scheduling
and deterministic scheduling is that task execution times
are random or deterministic. As the network performance is
beyond our scope, the communication times between tasks
are assumed to be deterministic. Besides, the task execution
times are interpreted as random variables, and assumed to be
independent and normal distributions [5].

C. Scheduling architecture

In this paper, we design an uncertainty-aware scheduling
architecture for a cloud platform, as shown in Fig. 1. The plat-
form consists of three layers: user layer, scheduling layer and
resource layer. In cloud environment, users will dynamically



submit their workflow applications to the service provider.
The scheduling layer is responsible for generating task-to-
VM mappings, according to certain objectives and predicted
resource performance. The resource layer consists of large-
scale heterogeneous VMs, and these VMs can be scaled up
and down dynamically.
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Fig. 1. The Uncertainty-Aware Scheduling Architecture
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As a study of scheduling algorithm is our primary concern
here, we focus on the scheduling layer, which consists of a
task pool (TP), a schedulability analyser, a resource controller,
and a task controller. The TP accommodates most of the
waiting tasks, and the schedulability analyzer is responsible
for producing the blue print of scaling up/down the computing
resources and the mappings of waiting tasks in TP to VMs.
The blue print of computing resources adjustments includes
when to add/delete the number of different type VMs, and the
resource controller will conduct them. In addition, the task
controller will dynamically allocate waiting tasks from TP to
corresponding VMs according to the task-to-VM mappings.

The unique features in this scheduling architecture are that
most of waiting tasks are waiting in the TP instead of waiting
on the VMs directly, and only the tasks, which have been
mapped to VMs, are allowed to wait on each VM. The benefits
of this scheduling architecture are summarized as follows.

o It can prohibit propagation of uncertainties throughout
the schedule. Since only the scheduled tasks are allowed
to wait on VMs, the uncertainty of the executing task
can only transfer to the waiting tasks on the same VM.
When the executing task is completed, its uncertainty
does not exist, and the subsequent waiting tasks on that
VM will not be affected by the task finished. Therefore,
this architecture can prohibit propagation of uncertainties.

o It is convenient for the system to reoptimize its schedule
when new workflows arrive by fully using all information
available at that time.

o This design allows each task waiting on VMs to start as
soon as its preceding task has finished, so the possible
execution delay for a new task is removed.

o This design enables overlapping of communications and
computations. When a VM is executing a task, it can
simultaneously receive another tasks as waiting tasks. By
doing so, communications and computations are efficient-
ly overlapped to save time.

D. Problem formulations

The assignment variable z;;j is utilized to reflect the
mapping relationship between task ¢;; and VM vm;*. It is

S u

1 if ¢;; is assigned to vm,*, otherwise 0, i.e.,

Su

T 1, if t; is assigned to vm,*,
Uk = 0, otherwise.

Definition 1. The index of the VM where task ¢;; is assigned
to is defined as r(¢;;). For instance, if task ¢12 in workflow
wy is assigned to VM vmg?, then r(t;;)=8.

Since the execution time of a task is a random variable,
we utilize its o quantile to approximate it when scheduling
workflows. The symbol et is utilized to denote the o
quantile of the execution time of task ¢;; on VM vm;*. In
addition, symbols pst;; and pft;;, are utilized to denote
the predicted start time and the predicted finish time of task
ti; on VM vm;*, respectively. The predicted start time pst;; .
can be calculated as follows:

(D

max

pstijr = max{pftir,
tipEpred(t;;

){pftip,r(tip) + tt;]}}
2)

where pft; , represents the predicted finish time of task ¢;,
which is the currently last task on VM vm;*; r(t;,) represents
the index of the VM that task ¢;, is assigned to; and tt;j
represents the transfer time of the data dependency e),;.

Apparently, the predicted finish time pft;; 5 of task ¢;; on
VM vm;* can be written as

Pftij e = pstijr + et k- €)]

After all the tasks in w; are scheduled, w;’s predicted finish
time pft; in the baseline schedule is defined as:

pft; = tfleaz’i {pftijrwt- )

After tasks have been finished, their real start times, exe-
cution times and finish times will be available. The symbols
T8ty ks TStijk and 7 ft;; ), are used to denote the real start
time, the real execution time and the real finish time of task #;;
on VM vm;", respectively. For example, the execution time of
task t17 on VM vm3?® is assumed to be et11 o ~ N(120,10?)s
and the 0.9 quantile of ety1 2 is 6t(1)f2 = 132.8 s before
scheduling; the real finish time r f¢;; » may be 135s after task
t11 has been finished on VM vm3?. Thus, the real finish time
of workflow w; is defined as

Tftl = o ea%(i{rftijwr(tij)}’ (5)

Under uncertain scheduling environments, it is the real
finish time r ft; of workflow w; that determines whether its
timing requirement has been guaranteed or not. So we have
the following constraint:

max {rfti; )} < di Yw; € W. (6)
ti; €T;
Due to precedence constraints (data dependencies exist

between tasks) in a workflow, a task can be executed only



after all its predecessor tasks are completed. This constraint is
shown as following:
r.ftip,r(tip) + tt;)j < rstijk, VG;)j ISR @)
Subjecting to aforementioned constraints, as specified in
formula (6) and (7), the primary optimization objective is to
minimize total cost for executing the workflow set W, i.e.,

[V M|
Minimize Z Price(vmi*) - tpy, . (3)
k=1

where |V M| denotes the total number of VMs utilized to
execute the workflow set W, and tpj is the working time
periods of VM vm;".

Apart from the total cost, resource utilization is also an
important metric to evaluate the performance of a cloud
platform. Thus, we also focus on maximizing the average
resource utilization of VMs, which can be represented as

follows.
|V M| |V M|

Maximize »  (wty)/ Y (tty), 9)
k=1 k=1

where wt and tt represent the working time and the total
active time (including working and idle time) of VM vm;*
during executing the workflow set W.

Another objective needed to be optimized under uncertain
computing environments is to minimize the deviation cost
function [15], defined as the average of weighted sum of
the absolute deviations between the predicted finish time of
workflows in the baseline schedule and their realized finish
time during actual schedule execution, which can be described
as follows:

1 m
inimize — Zw (Inf rftil) (10)

i=1

where w; represents the marginal cost of time deviation
between the predicted and actual finish time.

IV. ALGORITHM DESIGN

In this paper, we propose a heuristic that incorporates both
the proactive and the reactive scheduling methods, to obtain
a sub-optimal schedule with much cheaper computational
overhead. The proactive scheduling is used to build baseline
schedules based on redundancy, where « quantiles of task
execution times are utilized when making schedule decisions.
The reactive scheduling is dynamically triggered to generate
proactive baseline schedules in order to account for various
disruptions during the course of executions.

We treat the following two events as disruptions: (1) new
workflow arrive; (2) a VM finishes a task. These two disrup-
tions take place discretionarily and arbitrarily; if any of the
disruptions occurs, the corresponding reactive scheduling will
be triggered.

A. Ranking tasks with uncertain execution times

An important issue in workflow scheduling is how to rank
the tasks. In this paper, all the tasks in the task pool will be
ranked by their predicted latest start time plst;;. The plst;;
for each task ¢;; is defined as the latest time, after which task
starts its execution, such that the predicted finish time p ft; of
workflow w; will be more than its deadline d;.

Definition 2. The plst;; for task t;; is recursively defined

as following.
){plstis — tth } — metg;, otherwise.

plst;; = { :
7
(11

where succ(t;;) represents the set of immediate successors of
task #;;; met?j denotes the minimum of « quantile of #;;’s
execution time.

Based on definition 2, the predicted least finish time pl f1;;
for task t;; can be calculated as

d; —metd, if succ(ti;) = 9,
min
tis Esuce(ti;

plfti; = plstij + met;. (12)

B. Scheduling algorithm

Definition 3. Ready task: a task is ready if it has not any
predecessors, i.e., pred(tij) = @; or all of its predecessors
have been mapped to VMs and at least one of its predecessors
has been completed.

With regard to the traditional scheduling schemes, once a
new workflow arrives, all its tasks are mapped and dispatched
immediately to the local queues of VMs or hosts. Unlike
them, our approach puts most of waiting tasks in the task
pool, and only ready tasks will be scheduled and dispatched
to VMs. Over the actual execution of the cloud platform, new
mappings for the waiting tasks in task pool will be generated
continually. The PRS performs the following operations when
a new workflow arrives, as shown in Algorithm 1.

Algorithm 1 PRS - On the arrival of new workflows

1: taskPool + 0;

2: for each new workflow w; arrives do

3:  Calculate plst;; and plft;; for each task ¢;; in w; according
to formula (11) and (12).

4 readyT'asks < get all the ready tasks in workflow w;;

5 Sort readyT asks by tasks’ ranks in an increasing order;

6:  for each ready task t;; € readyTasks do

7: Schedule task t;; by function ScheduleReadyTask();

8.

9

0:

end for
Add all the non-ready tasks in w; into set taskPool;

1 : end for

When a new workflow w,; arrives, algorithm PRS will
calculate the predicted least start/finish time (i.e., plst;; and
plft;;) for each task in workflow w; (Line 3). After that, all
the ready tasks in this workflow w; are selected and sorted
by their plst;; in a non-descending order (Lines 4-5). Then,
these ready tasks, starting from the first task, will be scheduled
to VMs by the function ScheduleReadyTask() (Lines 6-8).
Additionally, all the non-ready tasks in this new workflow w;
will be added into taskPool (Line 9).



Since the finish time of a task on a VM is random, we regard
the completion of a task by a VM as a sudden event. When
this sudden event occurs, if there exist waiting tasks on the
VM, the first waiting task starts to execute immediately if all
the predecessors of the first waiting task have been completed.
In addition, when a task has been completed, its successors
may become ready, and the algorithm PRS will be triggered to
schedule these ready tasks to VMs. When a task, denoted as
15, is finished by a VM, denoted as va’“, the algorithm PRS
performs the following operations, as shown in Algorithm 2.

Algorithm 2 PRS - On a task completion by a VM

1: if there exist waiting tasks on VM vm;* then
2 Starts to execute the first waiting task on VM vmzu;
3: end if

4: readyTasks < 0;

5: for t;s € succ(ti;) do
6.

7

8

if task t;s is ready then
readyTasks + (readyTasks Ut;s);
: end if
9: end for
10: taskPool < (taskPool — readyT asks);
11: Sort readyT asks by their ranks plst;; in an increasing order;
12: for each ready task ¢;; € readyTasks do
13:  Schedule task ¢;; by function ScheduleReadyTask();
14: end for

Su

As shown in algorithm 2, when VM vm;* completes its ex-
ecuting task, if its waiting task wtky, is not empty, this waiting
task will be executed immediately (Lines 1-3). Then, task ¢;;’s
successors that become ready will be selected (Lines 4-9), and
these ready tasks will be removed from taskPool (Line 10).
And algorithm PRS sorts the ready tasks by their predicted
least start times plst;; (Line 11). After that, the ready tasks
are scheduled to VMs by function ScheduleReadyTask().

The predicted cost pc;; ;. of task ¢;; on va“ is defined as:

peij e = Price(vmi®) X (pftijr — prig). (13)

Su

where prt;, denotes the predicted time at which VM vm " is
available for task ¢;;.

The pseudo-code for function ScheduleReadyTask() is
shown in Algorithm 3.

Algorithm 3 Function ScheduleReadyTask()

1: minCost < +oo; targetVm < (;

2: for each VM vm;* the system do

3: Calculate the pft;;x and pc;;x as formula (3) and (13) for
task ¢;; on VM vm}“;

4:  if pftij e < plfti; && peiji < minCost then

5 targetVm < vmj*; minCost < pcij k;

6 end if

7: end for

8

9

0

1

. if targetVm | = () then

: Assign task t;; to the targetV M;

. else
Lease a new VM vm;* with the minimal pc;;,, while satis-
fying pftijr < plftis;

12: Assign task t;; to VM vm;“ after it has been initiated;

13: end if

TABLE I
THE CONFIGURATION AND PRICES FOR VMS.

Type | Name Price (in §) | CPUs | Factor(s;)
51 m1.small 0.02/hour 1 1.6
52 ml.Jarge 0.08/hour 4 1.4
S3 ml.xlarge 0.45/hour 8 1.4
S4 m?2.xlarge 0.66/hour 6.5 1.2
S5 m?2.2xlarge | 0.80/hour 13 1.0

In function ScheduleReadyTask(), as shown in Algorith-
m 3, we employ two policies to schedule a ready task to a
VM. In policy one, the initiated VM, which can finish this
task within its plft;; and yields the minimal predicted cost
pcij ke (Lines 4-6), is selected for this ready task (Lines 2-7).
If the first policy cannot find an applicable VM for this ready
task, the policy two will lease a new VM that generates the
minimal predicted cost pc;;, and can finish this task before
its pl ft;; (lines 10-13).

V. PERFORMANCE EVALUATION

Since there is no competitive algorithm, we choose to
compare algorithm PRS with the modified versions of two
previous algorithms: Stochastic Heterogeneous Earliest Finish
Time (SHEFT) [5] and Robustness Time Cost (RTC) [7].

SHEFT: this algorithm firstly compute each task’s priority,
which is the length of the stochastic critical path from the
task to the exit task. Then, the task with higher priority
will be preferentially scheduled to a machine with minimal
approximate finish time.

RTC: this algorithm consists of three phases. In the first
phase, all the tasks in a workflow are clustered into multiple
partial critical paths (PCPs). Then, an exhaustive solution set
for each PCP will be generated according to deadline and
budget constraints. After that, a feasible solution, which gives
priority to robustness, followed by time and finally cost, is
selected for each PCP.

As algorithm SHEFT and RTC are designed for a single
workflow, we enable them to be fit for dynamic workflows
by triggering it to schedule all the tasks in the workflow
immediately when a new workflow arrives.

A. Experimental setup

The CloudSim framework [16] is utilized to simulate the
cloud environment, and implement our algorithms within this
environment. We assume the cloud platform offer 6 different
types of VMs, and the number of VMs with each configuration
is infinite. Table I lists theses VMs’ configurations and prices,
which are borrowed from EC2 [17]. In addition, the charging
period of these VMs is 60 minutes. The bandwidth among
VMs is assumed to be 1 Gbps.

We make a workflow template set using four real-world sci-
entific workflows: Montage (astronomy), SIPHT (bioinformat-
ics), CyberShake (earthquake science), LIGO (gravitaltional
physics). There are a total of 12 elements in the workflow
template set, i.e., including three different sizes of these
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Fig. 2. The structure of four realistic scientific workflows.

workflows, which are small (around 30 tasks), medium (around
50 tasks) and large (around 100 tasks). The approximate
structure of a small instance of each workflow is shown in
Fig. 2 [2], [18].

To realize the dynamic nature of workflows in cloud envi-
ronments, the workflow templates are selected randomly after
a time interval and submitted to the scheduler. In addition, the
time interval between two consecutive workflows is a variable,
and let it follow Poisson distribution with 1/ = 100s.

We assume the parameter bet;; represents the base execution
time of task ¢;;, which is corresponding to the task runtime in
the workflow trace [18]. The cumulative distribution function
(CDF in short) of task base execution times is depicted in
Fig. 3(a). In addition, Fig. 3(b) shows the CDF of data sizes
between tasks.

cl
coF

10° 10° 10'
Base Execution Time (s) Data Size (KB)

(@) (b)
Fig. 3. The features of workflows.

As there exist multiple VM types in a cloud platform, the
base execution times of a task (e.g., ¢;;) on different VM types
are not the same. We utilize parameter Factor(s,,) to describe
the above features, and the base execution times of task ¢;; on
different VM types is calculated as following.

bet;; i = bet;; - Factor(sy), (14)

where k is the symbol of the k-th VM, whose type is s,.

The execution time of each task is modelled as a normal
distribution (denoted as et;; ;, = N(y,6)), with the task base
execution time as the mean g and a relative task runtime
standard deviation §, which can be denoted as

= betiji;

. (15)
0 = bet;; 1, - variance,

TABLE I
PARAMETERS FOR SIMULATION STUDIES

Parameter Value (Fixed)-(Varied)
Workflow Count (10%)  (1.0)-(1.0,2.0,3.0,4.0,5.0)
deadlineBase (1.5)-(1.5,2.0,2.5,3.0,3.5)
timelnterval (s) (Poisson(1/A = 100))
variance (0.2)-(0.1,0.15,- - - ,0.40,0.45)

where variance denotes the variation in task execution times.
In this experiment, we calculate the realized execution time
for a task as follows.

ret;jr = rand_N (bet;; i, (bet; j - variance)Q), (16)

where rand_N (1, 6%) represents an random number generator
that generate values from the uniform distribution with a mean
value of bet;; ;. and standard deviation of (bet;; j, - variance).

Finally, we need to assign a deadline to each workflow.
To do this, fastest schedule is defined as scheduling each
workflow task on a fastest VM (i.e., m2.4xlarge), while all data
transmission times are considered to be zero. The parameter
M is defined as the makespan of the fastest schedule of a
workflow. In order to set deadlines for workflows, we define
the deadline factor deadlineBase, and we set the deadline of
a workflow as follows.

d; = a; + deadlineBase - M. (17)

The values of the parameters in the experiments are listed
in Table II. For each group of experimental settings, each
algorithm is tested 30 times independently. Then, we present
the average, minimum and maximum of experimental results,
in terms of cost as formula (8), resource utilization as formula
(9), deviation as formula (10).

B. Variance of task execution times

We conduct a group of experiments to observe the impact
of uncertainties in task execution times on the performance of
the three algorithms (see Fig. 4). We vary the variance value
from 0.10 to 0.45 with an increment of 0.05.

Fig. 4(a) shows that the total cost of the three algorithms
descends at different rate as the variance increases, and this
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trend is especially outstanding with SHEFT and RTC. This
is because that SHEFT and RTC do not employ any reactive
strategies to control the uncertain factors while executing base-
line schedule. Additionally, the cost of PRS on average is less
than SHEFT and RTC by 50.94% and 67.23%, respectively.
The above results demonstrate that algorithm PRS can reduce
the cost for cloud providers, regardless of the variance of task
execution times.

Fig. 4(b) reveals that the resource utilization of PRS stays
at a high level (round 71.17%), while that of SHEFT and
RTC on average are 46.19% and 45.62%, respectively. This is
due to a few reasons. Firstly, when the waiting tasks become
ready, these ready tasks will be dynamically scheduled to VMs
by PRS, such that the idle time slots in each VM can be
compressed and removed as possible. Secondly, for SHEFT
and RTC, the interval between tasks’ predicted finish times and
actual finish times becomes larger as the variance increases,
thus the time cushions wasted by them become larger, resulting
in lower resource utilization.

Fig. 4(c) shows that when the variance increases, the devi-
ation of PRS, SHEFT and RTC increases. This is because that
larger variance makes the difference between the predicted
and realized finish time of tasks becomes larger. Besides, the
deviation of PRS is, on average, (76.78%) lower than that of
RTC, since RTC does not control the propagation of uncertain-
ties among waiting tasks. The result in this experiment account
for that our method in this paper can alleviate the impact of
uncertainties on the baseline schedule.

C. Workflow deadlines

Fig. 5 shows the impacts of deadlines on the performance of
our proposed PRS as well as the existing algorithms - SHEFT
and RTC.

We observe from Fig. 5(a) that the cost of the three algo-
rithms descends slightly with the increase of deadlineBase
(i.e., workflw deadlines become looser). This can be inter-
preted that the deadlines of workflows are prolonged, making
workflows can be finished later within their timing constraints.
Consequently, more parallel tasks (i.e., there exists not depen-
dence constraints between these tasks) in a workflow can be
executed by the same VMs, such that less VMs being used.
In addition, Fig. 5(a) shows that PRS costs less than SHEFT
and RTC on average by 43.28% and 77.51%, respectively.
This experimental result indicates that the algorithm PRS,
incorporating both the proactive and the reactive strategies,
is efficient with saving cost for cloud providers.

From Fig. 5(b), we can see that when deadlineBase
increases, the resource utilizations of PRS, SHEFT and RTC
increase accordingly. This is due to the fact that as workflow
deadlines become longer, their makespan can be longer with-
out violating their deadlines, and more parallel tasks could
share the same resources, such that the idle time slots in
these resources can be compressed and reduced. Besides, the
resource utilization of PRS on average outperforms SHEFT
and RTC by 31.49% and 40.17%, respectively. It is not a
surprise that PRS has so high resource utilization (about
75.02%) since only the tasks that have become ready are
dynamically scheduled to VM, and the idle time slots could
be cut down as possible.

In Fig. 5(c), we can observe that when the deadlineBase
increases, the deviation of PRS and SHEFT increase visibly,
but that of RTC is almost constant. Besides, the deviation of
PRS outperforms SHEFT and RTC on average by 66.03% and
70.97%, respectively. The reason is that algorithm SHEFT and
RTC will schedule all the tasks in the workflows to VMs as
soon as workflows arrive, thus resulting in the accumulating
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Fig. 6. Performance impact of workflow count.
of uncertainties. The result in Fig. 5(c) demonstrates the effi- REFERENCES

ciency of our strategies in term of controlling the uncertainties
while scheduling.

D. Count of workflows

In this group of experiments, we study the impact of the
count of workflows on system performance. Fig. 6 illustrates
the experimental results of PRS, SHEFT and RTC when
the count of workflows varies from 1000 to 5000 with an
increment of 1000.

The first observation drawn from Fig. 6(a) is that, for all the
three algorithms, the total cost is improved with the increase of
workflow count. It is obvious that the more workflows need the
more VMs working longer, such that causing the more cost.
In addition, our findings show that PRS on average costs less
than SHEFT and RTC by 55.05% and 71.12%, respectively.

In Fig. 6(b), we can see that with the workflow count
increases, the resource utilization for algorithm PRS, SHEFT
and RTC are stable at 76.96%, 49.16% and 45.84%, respec-
tively. This experimental result shows that workflow count
has negligible impact on the resource utilization of cloud
platforms.

Fig. 6(c) shows that the deviation of PRS, SHEFT and
RTC are 0.0552, 0.1505 and 0.3082, respectively. This can
be attributed to that the increase of workflow count seldom
affects the baseline schedule. The reason for the low deviation
for PRS is that it includes a scheduling architecture that
can mitigate the impact of uncertainties on schedule and the
reactive strategies to cope with the uncertain events during
baseline execution.

VI. CONCLUSION

In this paper, we investigate how to reduce the cost and im-
prove the resource utilization for cloud platforms while guar-
anteeing the timing constraints for real-time workflows with
uncertain task execution times. We proposed an uncertainty-
aware scheduling architecture for a cloud platform, and de-
veloped a novel scheduling algorithm, namely PRS, to make
good trade-offs among cost, system’s resource utilization and
deviation. In addition, the extensive experiments conducted
using real-world workflow applications demonstrate that our
approach dominates the two baseline algorithms for all the
benchmarks.
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