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Abstract—As advanced computing and communication technologies penetrate every aspect of our life, we have witnessed the
persistent growth of open systems where entities interact with one another without prior knowledge or experiences. Trust becomes an
important metric in such open systems. This paper presents a dependable trust management scheme - GroupTrust, and a working
system to support GroupTrust. It makes three original contributions. First, we identify a set of vulnerabilities that are common in existing
reputation based trust models. We show that reputation trust built solely on direct experiences or by combining direct experiences with
uniform trust propagation can be vulnerable. Second, we develop GroupTrust, a dependable trust management scheme to provide
reliable trust management in the presence of dishonest ratings, malicious camouflage, and malicious collusive behaviors. The
GroupTrust scheme is novel in two aspects: (i) we develop a pairwise similarity based feedback credibility to enhance the resilience of
trust computation in the presence of dishonest ratings; (ii) we propose to propagate trust based on a Susceptible-Infected-Recovered
(SIR) model, which defines trust propagation threshold to control how trust should be propagated. Finally, we evaluate the effectiveness
of GroupTrust against four threat models using both simulated and real world datasets. Our experimental results show that feedback
credibility based local trust computation can effectively constrain strategically malicious participants from taking advantages of their
dishonest ratings. SIR-based trust propagation control enables safe trust propagation and blocks irrational trust propagation. We show
that GroupTrust scheme significantly outperforms other trust models in terms of both performance and attack resilience in the presence
of dishonest feedbacks, sparse feedbacks, and strategically malicious participants against four representative threat models.

Index Terms—Trust propagation, trust and reputation management, decentralized computing network, open systems
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1 INTRODUCTION

R EPUTATION and trust are critical capability for man-
aging services and interactions among networked en-

tities in large-scale open systems [1], ranging from cloud
data centers, decentralized computing networks, such as
supply-chain management systems, social networks, mobile
networks, online communities, scientific or professional net-
works, and Internet of Things (IoT) applications. A common
characteristics shared by these networked computing sys-
tems is the fact that entities may interact with one another
without prior experience or knowledge in order to obtain
services or accomplish certain tasks. Reputation based trust
management has been used as an effective service selection
criterion in many real world systems, represented by Ama-
zon, eBay, Twitter, to name a few [2], [3].

Although existing reputation based trust models vary in
how they establish trust, most of them build trust based
on their transactional experiences or direct interactions be-
tween participants of a network. Thus, the reputation based
trust can be seen as a network-wide trust measure obtained
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by collecting and integrating the experiences that each par-
ticipant has had with other members through interactions
or transactions [4]. Such trust measurement can help par-
ticipants to better manage their transactions by encourag-
ing trustworthy behavior, and protecting good participants
from dishonest and possibly malicious participants [5], [6].

Trust and reputation management have been an active
research area over the last decade. Most of the trust and
reputation computational models are developed by utilizing
formal methods, such as contextual or similarity based
computation [4], [7], fuzzy logic theory [8], Bayesian net-
work [9], subjective logic [10] and social cognitive methods
[11]. EigenTrust [5] is one of the most popular reputation
based trust models, which utilizes the eigenvector based
propagation kernel [5] to compute trust such that the trust
of a participant is based on two factors: (i) the feedback
ratings of other participants with whom this participant has
had transactions in the past, and (ii) the eigenvector of this
participant in the rating network of participants, aiming
at addressing the problem of sparse networks in terms of
direct feedback rating based referrals. The eigenvector based
trust propagation [5] enables the trust establishment of a
participant by combining direct experiences measured by
feedback ratings and indirect experiences obtained through
its k-hop neighbors in the rating network, also referred
to its circle of ”friends” within the k-hop neighborhoods.
Although the eigenvector based trust model [5] can scale the
trust computation to large-scale networks, it fails to function
dependably in the presence of strategically collusive and
dishonest participants.

In this paper we present GroupTrust, a dependable trust
management scheme, and a working system to support
GroupTrust. Our proposed trust protocol is effective with
two novel features: (1) feedback credibility weighted local
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(direct) trust and (2) controlled trust propagation kernel
based on Susceptible-Infected-Recovered (SIR) model. Con-
cretely, the good participants are grouped together accord-
ing to the SIR based trust propagation kernel with feedback
credibility based aggregate trust as the control knob to
constrain the trust of good participants to be propagated
only to the group of good participants who have similar
trust and feedback rating behavior. Thus, the concept of
group of participants with similar trust and feedback rating
behavior is essential and critical to the development of the
GroupTrust model and protocols. We show that GroupTrust
model is dependable for managing reputation and trust in
large-scale networks that are sparse because a large number
of participants typically only interact with a small number
of other participants. By dependable, we mean that (i)
the reputation trust of a good participant should remain
to be reliable in the presence of dishonest or malicious
participants, (ii) new participants should be able to build
their reputation over time, and (iii) the reputation trust of
a malicious participant should be dropped sharply once
he is found to be dishonest or misbehave, for example, by
providing inauthentic contents or bad services.

This paper makes three original contributions. First, we
identify a set of vulnerabilities that are common in existing
reputation based trust models. We show that reputation
trust built solely on direct experiences or by combining
direct experiences with uniform trust propagation may still
be vulnerable. Second, we develop GroupTrust to provide
reliable trust management in the presence of dishonest rat-
ings, malicious camouflage, malicious collusive behaviors.
GroupTrust is original in two aspects: (i) we develop a
pairwise similarity based feedback credibility to enhance the
resilience of trust computation in the presence of dishonest
ratings; and (ii) we introduce a SIR model based trust prop-
agation control mechanism, which defines trust propagation
threshold in order to determine how trust should be prop-
agated. We evaluate the effectiveness of GroupTrust against
four threat models using both simulated and real world
datasets. We show that our feedback credibility based local
trust computation can effectively constrain strategically ma-
licious participants and the impact of their dishonest ratings.
Our SIR-based trust propagation control encourages safe
trust propagation and blocks irrational trust propagation.
We also show that GroupTrust significantly outperforms
existing trust models with respect to both performance and
attack resilience in the presence of dishonest feedbacks,
sparse feedbacks, and strategically malicious participants.

2 OVERVIEW AND PROBLEM STATEMENT

This section briefly describes the reference trust model and
the threat models used to compute the trust and compare
different trust models in terms of their strength and weak-
ness in terms of performance and attack resilience.

2.1 Reference Trust Model

In a large-scale trust enabled network system of n partic-
ipants, participants interact with one another to provide
services and consume services with one another. Upon the
completion of a transaction between a pair of participants,

the consumer of the service will rate the provider of the
service in terms of its transaction quality, denoted by tr(i, j).
Each participant i in the network can only rate another
member j if it has an actual transaction with participant
j, such as purchased a product or downloaded a music file
from j. The rating scheme can be either binary [5], [7] or
multi-scale [12]. For example, with binary rating model, i
can give j the positive feedback rating by setting tr(i, j)=1
or negative by setting tr(i, j)=-1. By default, tr(i, j)=0 for i,
j =1, ..., n, and it implies that i has never had any transaction
with j. We denote this transaction based local trust from
participant i to another participant j by sij , such that
sij =

∑
tr(i, j), i.e., the sum of individual feedback ratings.

For binary rating scheme, this is equivalent to the differ-
ence between satisfactory and unsatisfactory transactions
that participant i has received from participant j, namely
sij = sat(i, j)−unsat(i, j). An obvious problem of using sij
as the trust value that i gives to j is the risk of dishonest or
malicious raters, namely, dishonest or malicious participants
may give arbitrarily high local trust values to malicious
participants, and arbitrarily low local trust values to good
participants. A common way to alleviate this problem [2],
[3], [4], [5], [7], [8] is to use the normalized local trust value
that i has over j, denoted by cij , such that sij is normalized
by the satisfactory score from all the participants in the
network with whom i has had direct transactions:

cij = max(sij , 0)/
∑

kmax(sik, 0)if
∑

kmax(sik, 0) ̸= 0
cij = pj otherwise

(1)

P={pj} is the set of pre-trusted participants, pj=1/|P | for
j∈P and pj=0 otherwise, serving as the central authority of
the system. The size of P is relatively small compared to the
network size of n and is a system configuration parameter.
The use of pre-trusted participants helps bootstrap the trust
system initially [5]. Based on local trust cij (i, j=1, ..., n),
we can construct a local trust network for the n participants
such that two participants, i, j∈[1, n] and i ̸=j, have a direct
edge if there is a local trust relationship defined by cij(>0).
For very large n, this trust network may be very sparse:
for many participants, it may have transactions with only
a few participants, thus cij=0 for most j∈[1, n]. In this
scenario, it will be very hard for i to select the right service
providers based on its local trust relationship with only a
few entities. This motivates the reference model for trust
computation should include both local trust computation
and trust propagation.

By trust propagation, even if cij=0, we can establish
an indirect trust from participant i to participant j if j
is reachable through k-hop graph traversal. We call the
set of nodes reachable from i within k-hop the circle of
”friends” of i. We can compute the indirect trust cij by the
weighted summation of ciq and cqj in an iterative fashion,
i.e., cij =

∑
q ciq · cqj .

Let n denote the total number of participants in the
system, we can define C as the matrix [cij ] with n rows
and n columns. Let t⃗(k+1) denote the global trust vector of
size n to be computed at the (k + 1)th round of iterations,
0<k<n. We define t⃗(k+1) = (1 − a)CT t⃗k + ap⃗, where a is
the random probability that a participant trusts none but
pre-trusted participants with probability 0.1 in the network,
and p⃗ denotes the initial trust vector where only pre-trusted
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participants have non-zero trust values, and each is set to
1/|P |. We denote each element of the trust vector t⃗(k+1), by
t
(k+1)
i , we transform the above matrix form as follows:

t
(k+1)
i = (1− α)(c1it

(k)
1 + · · ·+ cnit

(k)
n ) + αpi (2)

This formula shows that the reputation trust of participant i
can be computed by aggregating the local trust values that i
has received from all other participants in the system.

2.2 Trust-enabled Service Selection
By establishing and maintaining trust evaluation in a net-
worked system, it enables participants to utilize the trust
scores to select the right participant as its service provider.
Two most commonly adopted trust-based service selection
schemes are deterministic and probabilistic methods. The
deterministic algorithm always chooses the participant with
the highest trust score among those who respond to its
service request as the provider of its request. However, this
method can easily overload the participant with the highest
trust value. The probabilistic algorithm addresses this prob-
lem by choosing a participant i as the provider according
to the trust based probability, computed by ti/

∑R
j=1 tj ,

ensuring that a participant with higher trust score will have
higher probability to be selected as service provider. To
overcome the problem of cold start with new members, we
augment the above trust based service selection scheme by
introducing different refinements. For example, by setting
some default probability [5], say 10%, the system can se-
lect randomly from those participants whose trust scores
are zero as the service provider (e.g., download source).
This refined selection method provides some opportunity
for new participants to build their reputation trust in the
system while preventing the system from overloading those
participants with high trust scores.

2.3 Threat Models
One way to evaluate the effectiveness of trust models is
to measure its resilience to different attack strategies used
by malicious participants. We below describe the four most
widely used threat models, introduced initially in [5] and
used by many in reputation trust literature [7], [8], [12].

Threat Model A (Independently Malicious). Malicious
participants are independent and simply provide bad ser-
vices, e.g. upload inauthentic files, and dishonest feedback
ratings, without colluding with other malicious participants.

Threat Model B (Chain of Malicious Collectives). Mali-
cious participants collude with each other and determinis-
tically give one another high local trust value. This results
in a malicious chain with everyone in the chain having mu-
tual high local trust values (say 1.0). Malicious participants
always provide bad service (such as inauthentic file) when
selected as a service provider (such as a download source).

Threat Model C (Malicious Collectives with Camou-
flage). Malicious participants provide good services in f%
of all cases when selected as service providers in order to
obtain high local trust values from good participants and
at the same time, these camouflage malicious participants
always provide dishonest feedbacks to good participants.

Threat Model D (Malicious Spies). Malicious partici-
pants are strategically organized into two groups: the group

      
                                       (a) Threat Model A                                                         (b) Threat Model B 

      
                                   (c) Threat Model C                                                           (d) Threat Model D 

Fig. 1. EigenTrust performance in Threat Models A, B, C and D.

of malicious spies, called type D participants, who act as
good participants in providing services to increase their
global trust and use the trust they obtain to boost the trust of
another group of malicious collective (type B) participants
who always provide bad services and dishonest ratings.

2.4 Problem Definition
To gain a better understanding of the potential vulnerabili-
ties of existing trust models, we evaluate the reference trust
model against the above four attack models using the same
setup as the one reported in EigenTrust [5], such that the
total number of participants in Threat Models A and B are 63
(3 pre-trusted participants), wherein the ratios of malicious
participants are set as 0, 10%, 20%, 30%, 40%, 50%, 60% and
70%. For Threat Model C, the disguise, good and pre-trusted
participants are 20, 50 and 3 respectively. The evaluation
is focused on measuring the resilience of the trust models
under varying camouflage percentage f% under a constant
ratio of malicious participants at 27%. For Threat Model D,
the malicious participants (type B and type D with different
combinations), good and pre-trusted participants are 40, 60
and 3 correspondingly. The evaluation of trust models under
Threat Model D is performed by varying the ratio of type
D and type B malicious participants under a constant ratio
of malicious participants at 39%. Fig. 1 shows the results,
which are consistent to those reported in EigenTrust [5]. We
make three observations: (i) the reference trust model works
effectively compared to Non-Trust scenario under Threat
Models A and B with up to 70% malicious participants,
but it performs poorly against Threat Models C and D even
when the number of malicious participants is small, such as
about 27% and 39% respectively in Fig. 1(c) and (d). This is
because the malicious participants provide no good services,
and consequently fail to get positive feedback ratings under
Threat Models A and B. (ii) Under Threat Model C, the
effectiveness of reference trust model deteriorates very fast
as the camouflage percentage f increases. When f is 50%
or higher, even with one third of malicious participants,
the malicious camouflage participants can gain positive
feedback ratings from other participants and get high global
trust score while providing dishonest feedback ratings on
other participants (bad ratings for good participants and
good ratings for malicious participants). Not surprisingly,
when f>50%, the reference trust model has high fraction of
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bad services, and performs worse than Non-Trust systems.
(iii) Similarly, under Threat Model D, as the number of
malicious spies (type D) increases by 25% of the total ma-
licious group, the reference trust model starts deteriorating
and when the malicious spies are up to 62.5% of the total
malicious colluding group, the reference trust model is no
longer effective.

In the subsequent sections, we identify two root causes
of the above problems from the facets of feedback credibility
and trust propagation kernel.

2.4.1 Feedback Credibility
Compared to many existing trust models that establish
trust solely based on direct experiences [1], [2], [4], [6],
[8], the reference trust model, represented by EigenTrust,
can effectively address the problem of sparseness in trust
networks. However, as shown in Fig. 1 (c)-(d), the reference
trust model is inherently vulnerable when there exist par-
ticipants that are strategically malicious and dishonest. One
root cause of such vulnerability lies in the assumption that
good participants always exhibit trustworthy behaviors for
both transaction services and feedback ratings, and on the
contrary, bad participants are always bad in providing both
bad services (e.g., inauthentic contents) and dishonest in
providing ratings. Clearly, this assumption is unrealistic and
leads the reference trust model and EigenTrust vulnerable
to malicious behaviors under Threat Models C and D. We
argue that transaction behavior and rating behavior may
not always be consistent even for good participants. For
instance, a participant may provide good services at all
times but may occasionally give dishonest feedback rat-
ing about another participant’s service due to jealousy or
competition related motives, even though it had received
satisfactory services from the other participant [4]. On the
other hand, malicious participants may strategically provide
good services in f% of all cases when selected as service
providers, but are dishonest in feedback ratings by giving
bad ratings to all good participants but good ratings to
bad participants (Threat Model C). Alternatively, malicious
participants may exhibit spy behavior (type D) by providing
good services at all times but give dishonest ratings to their
malicious collusive (type B) participants (Threat Model D).

2.4.2 Controlled Trust Propagation
Another root cause for the reference trust model being
vulnerable under Threat Models C and D is due to its
adoption of a uniform eigenvector propagation kernel. By
employing the uniform propagation kernel, trust of good
participants can be easily manipulated and misused by
dishonest participants to raise their trust scores.

Recall Formula (2) in section 2.1, if two participants i
and j have no prior transaction experiences, but they are
reachable by graph traversal in the rating network, then the
reference trust model will be able to establish trust between
participants i and j through iterative trust computation. The
number of hops in the shortest path from i to j defines the
number of iteration rounds we need to compute the trust
that participant i has over participant j, denoted by tij .
The eigenvector based trust models utilize power iteration
to compute the reputation value for each participant based
on the normalized local trust matrix C (recall Formula (2)

(a) 100 out of 1000 Participants          (b) 100 out of 4000 Participant 

   (c) 100 out of 7000 Participants         (d) 100 out of 10000 Participants
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Fig. 2. Density/Distribution of feedback rating network connectivity.

in section 2.1). A large number of iteration rounds can
guarantee the computation stability since it converges to the
left principle eigenvector of local trust matrix C.

Fig. 2 shows that as the size of the network increases, the
rating based local trust network (100 nodes) becomes fairly
sparse with more isolated participants in the real world
network Epinions [7]. Thus, the systems that rely solely
on direct trust using rating based transaction experience
will not be effective as many low-degree participants who
know little about most members of the service network
will not be able to use experience based trust measures to
select a service in large-scale sparse networks. One way to
build trust among participants with no prior experiences
is to use trust propagation. The most widely used trust
propagation model is based on uniform propagation kernel,
first introduced in EigenTrust [5].

By uniform trust propagation, the trust of a participant
is uniformly propagated first to all its neighbors, then to
neighbors of its neighbors, eventually to everyone in its
neighbor circle of k-hops. This uniform trust propagation
model works well when there are no malicious collectives
with camouflage or spy behavior, as the number of iteration
rounds increases, the trust scores of malicious participants
may be increased, and the trust scores of good participants
may be manipulated, which may lead to the increase of
the fraction of bad services. Consider Threat Model C, with
higher percentage of camouflage f , malicious participants
can obtain more positive feedback ratings from good par-
ticipants, gain higher trust, and boost the trust scores of all
malicious participants in the chain of trust propagation. As
the number of iteration rounds increases, the malicious col-
lectives continue to obtain higher trust scores. At the same
time, the trust scores of good participants may drop con-
tinuously due to increased amount of dishonest feedback
ratings by malicious collectives. Similar observations can
be made under Threat Model D. Another issue with trust
propagation is the need to determine the right convergence
condition (e.g., the number of iterations) such that all or a
majority of the participants can receive trust scores via trust
propagation when the algorithm converges.

2.4.3 Overview of Solution Approach
We have analyzed and identified the two main root causes
that lead to the serious vulnerability of all existing expe-
rience based trust models and uniform trust propagation
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models, represented by EigenTrust, under Threat Models
C and D. We argue that a dependable trust management
scheme should be attack resilient in the presence of Threat
Models C and D. We propose to mitigate such vulnerabilities
by developing GroupTrust with a suite of attack resilient
methods with two unique features. First, we argue that a
participant’s local trust value should be computed by taking
into account both its transaction based reputation (rating by
experiences) and its feedback credibility. This will enable us
to detect malicious participants prior to trust propagation.
Concretely, GroupTrust adapts the pairwise feedback rating
similarity [4] to define the relative rating credibility of a
participant with respect to another participant. If i has
higher rating similarity to j, showing that they have similar
feedback rating behaviors, then the feedback credibility of
participant i with respect to participant j is high. Instead
of computing local trust based solely on direct experiences
via normalized feedback ratings as shown in Formula (1),
GroupTrust weights the normalized rating score from one
participant to another with their rating similarity based
feedback credibility.

The second novel feature of GroupTrust is to introduce
conditional trust propagation to control when and how
much the trust score of a participant can be propagated
to its neighbors. Concretely, we define the propagation
threshold by introducing two control parameters: transmit
probability and recovered rate, which simulate the dynamics
in trust behavior. This enables us to control the amount
of trust propagating from good participants to bad partic-
ipants through early detection of malicious behaviors and
just-in-time termination of mischievous trust propagation.
Although a system-wide trust propagation threshold is
straightforward, we argue that it is vulnerable for mali-
cious manipulation. Thus we use a pairwise threshold in
GroupTrust. If participant i has high pairwise similarity
with participant j, then the transmit probability from partic-
ipant i to participant j is high, and when this transmission
probability is above the recovered rate, then the trust prop-
agation from participant i to participant j is permitted. Oth-
erwise, the trust propagation from participants i to j will be
blocked at the current propagation iteration. Furthermore,
in GroupTrust we utilize the recovered rate to gain better
control not only on when but also how much participant
i will propagate its trust to participant j. Our experiments
show that GroupTrust powered by these two novel features
outperforms existing trust mechanisms and highly resilient
against malicious manipulations and attacks.

3 GROUPTRUST: A DEPENDABLE TRUST MODEL

In this section, we present the design of GroupTrust. We
enhance the dependability of GroupTrust against attacks in
both trust computation and trust propagation process.

3.1 Similarity based Local Trust Computation

In GroupTrust we compute local trust that a participant
i places on another participant j in three steps. First, we
aggregate satisfactory and unsatisfactory ratings by sum-
marization. Second, we normalize the aggregated rating
by incorporating the total amount of transactions between

two participants as the denominator. In the third step, we
compute the local trust from participant i to participant j by
weighting the normalized aggregate rating by their pairwise
rating similarity based feedback credibility.

Normalized Rating Aggregation. Computing local trust
based solely on the difference between the number of
satisfactory transactions and the number of unsatisfactory
transactions may suffer from a number of vulnerabilities.
Consider the following three scenarios: (1) participant i
has 10,000 satisfactory and 9,980 unsatisfactory transactions
with j1; (2) participant i has 100 satisfactory and 80 unsat-
isfactory transactions with participant j2; (3) participant i
has 20 satisfactory and 0 unsatisfactory transactions with
j3. Clearly by the formula sij = sat(i, j) − unsat(i, j), we
have that sij1 = sij2 = sij3 = 20, namely, their local trust
values are equal. However, if we look at the percentage of
satisfactory transactions, then the perceived local trust of
j2 would be much better than that of j1 because j2 has
11% transactions rated satisfactory compared to only 0.1%
satisfactory transactions by j1. In addition, establishing trust
by relying on only the percentage of satisfactory transactions
may be vulnerable since adversary may easily subvert the
system by simply performing a small number of good
transactions to gain high trust value, such as j3. It is also
intuitive that j1 has performed significantly larger number
of good transactions than j3. Thus, the simple sum based
rating comparison is unreliable for local trust computation.
A root cause for such problems is the lack of consideration
on the number of factors that may play a role in the local
trust computation, such as the total number of transactions,
the percentage of unsatisfactory transactions, to name a
few. In addition, GroupTrust uses a system defined error
bound θ to reflect that good participants may perform bad
with probability θ due to some unintentional reasons, e.g.,
unreliable data readings resulting from the cooling problem
or compromises. In our experiments we set θ=5%. We de-
fine the satisfactory rating score that participant i gives to
participant j, denoted by sij , as follows:

sij =

{
sat(i,j)

sat(i,j)+unsat(i,j)+1
unsat(i,j)

sat(i,j)+unsat(i,j)+1 ≤ θ
1
2

otherwise
(3)

Given that participant i may have different satisfactory
scores for different participants j and some may have nega-
tive values, we further normalize the aggregate rating score
sij , denoted by rij or r(i, j) by using the sum of the ratings
that participant i has received from all other participants as
the denominator and ensuring that rij is nonnegative:

rij =

{
max(sij ,0)∑
j max(sij ,0)

if
∑

j max(sij , 0) ̸= 0

pj otherwise
(4)

where pj represents the set P of pre-trusted participants of
the network, pj=1/|P | for j∈P and pj=0 otherwise.

Feedback Rating Credibility. In GroupTrust we adapt
the concept of feedback rating credibility [4] in our local
trust computation model. The use of feedback credibility
measure is motivated based on three observations: (i) Two
good participants may give very similar feedback ratings to
the common set of participants with which they have had
interactions or transactions in the past. (ii) Two malicious
participants, on the other hand, may give very similar
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feedback ratings to the common set of (good or malicious)
participants with which they have had transactions. (iii) On
the contrary, a good participant and a malicious participant
will most likely give very different feedback ratings to the
same set of participants whom they have interacted with.
Thus, in GroupTrust, we adopt the concept of feedback
rating credibility [4] as a trust behavior indicator to differ-
entiate good participants from dishonest participants.

In the remaining of this subsection, we first describe
how we compute the pairwise rating similarity, then we
introduce the similarity based rating credibility measure. We
compute local trust value of participant i by combining the
weighted rating scores participant i gives to other partici-
pants j (j=1, ..., i-1, i+1, ..., n) with the rating credibility
(rcij) from i to j as the weight to each rating score rij .

Pairwise Feedback Similarity. In a network of n par-
ticipants, each participant i has a rating vector of size n,
denoted by <ri1, ri2, ..., rin>. To compute the similarity
between two rating vectors of participants i and j, we use
Weighted Euclidean Distance (WED) based method, which
captures the degree of variation or ”dispersion” in the
historical feedback ratings given by the participants i and
j. The larger the dispersion is, the smaller their similarity
will be. Thus the feedback based similarity between two
participants i and j can be defined as follows:

sim(i, j) = 1−
√ ∑

q∈cm(i,j)

w(i,j,q) · (r(i, q)− r(j, q))2 if|cm(i, j)| ̸= 0

0 otherwise

(5)

where cm(i, j) denotes the subset of the common partici-
pants that have had interactions with both i and j, r(i, q)
denotes the aggregate rating score that i gives to q, and
w(i,j,q) denotes the contribution weight of participant q on
the similarity measure sim(i, j) defined by the normalized
standard deviation of r(i, q) and r(j, q) over their mean,
defined by Avg(i, j, q), as follows:

e(i,j,q) =
√

(r(i,q)−Avg(i,j,q))2+(r(j,q)−Avg(i,j,q))2

2

Avg(i, j, q) = r(i,q)+r(j,q)
2

w(i,j,q) =

{ e(i,j,q)∑
m

e(i,j,m)
if

∑
m
e(i,j,m) ̸= 0

0 otherwise

(6)

For feedback similarity computation, we use the WED
instead of traditional Euclidean Distance (ED) (w(i,j,1) =
· · · = w(i,j,|cm(i,j)|) = 1/|cm(i, j)|) [4], [12]. This is because
some strategically malicious participants may be dishonest
in feedback ratings while providing good services at f%
of time (camouflage). These types of malicious participants
behave the same as good participants in performing trans-
actions (services), however, unlike good participants, these
strategically malicious participants expose themselves in
providing dishonest ratings: give bad ratings to good partic-
ipants and good ratings to the collusive chain and collective
of bad participants, as described in Threat Models C and D.
We use the rating similarity as an effective countermeasure
to define the pairwise rating credibility and use this rating
credibility to amplify the pairwise dissimilarity.

We use an example to illustrate the rationality of WED
based similarity. Assume the feedback rating vectors of
participants i and j are <0.10, 0.30, 0.02, 0.05> and <0.01,

0.05, 0.05, 0.85>. The traditional ED based similarity is 0.578,
while WED based similarity is 0.328. Based on the analysis
on the two vectors, we observe that i and j should be
dissimilar. This is captured by our rating similarity measure.

Computing Similarity based Feedback Rating Credi-
bility. Using the pairwise rating credibility to weight the
local trust computation in GroupTrust, we can constrain
the malicious participants who have received high feedback
ratings not to misuse their high rating scores by using the
pairwise rating credibility as the weight to the local trust
computation. We below utilize the exponent to define the
pairwise similarity based rating credibility:

rcij = e(1−1/sim(i,j)) (7)

This formula indicates that the feedback rating credibility is
exponentially constrained such that the rating credibility is
high when the pairwise similarity is high, and vice versa.

Let cfij denote the rating credibility weighted local trust
value that participant i has placed on participant j. We can
compute cfij as follows:

cfij = rcij · rij = e(1−1/sim(i,j)) · rij (8)

This rating credibility weighted local trust computation
ensures that a participant has high local trust value only
if this participant has received both high rating credibility
(rcij) and high transaction ratings (rij) simultaneously.

Given that good participant i and malicious participant
j are largely dissimilar in their feedback rating behavior,
even if the bad participants have high feedback ratings rij
by strategically behaving with camouflage or spying, their
rating credibility (rcij) is relatively small. By Formula (8),
the weighted local trust cfij will be much smaller than rij .

In summary, by using similarity based rating credibility
as a weight to the aggregate transaction rating score, the
GroupTrust model can effectively reduce the role of positive
ratings that malicious participants have received from good
participants by means of camouflage or malicious spies.
This countermeasure is effective because using the pairwise
similarity based rating credibility as a weight to the aggre-
gate rating score, the local trust computation can effectively
capture the sharp difference between good participants and
malicious participants in both transaction based ratings they
give to other participants and the feedback ratings that they
have received from others. Thus, our GroupTrust model
is significantly more effective and more dependable than
EigenTrust [5] and many other existing trust models under
the Threat Models C and D while performing equally well
under simple attacks such as Threat Models A and B.

3.2 Controlled Trust Propagation

Although we can restrain malicious participants from gain-
ing high local trust by using feedback rating credibility, we
cannot completely block the trust propagation from good
participants to malicious participants using the uniform
trust propagation kernel. Therefore, the second novelty of
our GroupTrust is to introduce a controlled trust propaga-
tion scheme. The main idea is based on the wide consensus
that in most collaborative systems participants often do not
have the same response to the same stimuli or trust scores.
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To reflect such dynamics, an ideal trust model should sup-
port differential trust propagation for different participants
and for the same participant at different iteration rounds.
In GroupTrust, we adapt the Susceptible-Infected-Recovered
(SIR) propagation model to control when and how much
a participant propagates trust to another participant.

Susceptible-Infected-Recovered based Trust Propaga-
tion. The SIR model can be seen as an epidemic prediction
model, which has been studied and applied in several
scientific fields [13], [14], [15], [16]. In an SIR model, each
participant in an interactional community can be either
susceptible (S) or infected (I): a susceptible participant can
become infected when in contact with another infected par-
ticipant, and it can also heal itself with a certain probability
of being recovered (R) and becomes susceptible once again.
Thus, one can learn how infection spreads along the direct
edges of a network over time.

In GroupTrust, we model the controlled trust propa-
gation process as a dynamic SIR process in which we
model the dynamic propagation states of participants by
following the Susceptible-Infected-Recovered based propa-
gation model, aiming at breaking the static assumption of
uniform trust propagation in which participants with the
same trust score will propagate their trust to their neighbors
regardless of the states of their neighbors, e.g., whether they
are good or bad and have similar or dissimilar transac-
tion/interaction behavior or rating behavior. By utilizing
the SIR model, we can capture the dynamics of interac-
tion/transaction/rating behavior of different participants
by two states, S and I, with recovered probability to control
the state transition. For example, a participant can exhibit
different propagation behavior at different rounds of trust
propagation iterations by using the SIR model. Different
participants with the same trust score may have different
propagation decisions based on their own transition state
and their neighbors’ transition state for trust propagation.

Concretely, we define a discrete contact-based process
with two states, S and I. We use susceptible (S) state to refer
to the scenario where (1) participants with state S can receive
trust propagation from its in-edge neighbors that are in state
I, though they cannot propagate their trust scores to their
neighbors; and (2) participants in state I can propagate their
trust scores to their out-edge neighbors that have state S,
though they cannot receive trust from its in-edge neighbors
until their state becomes S again. Recall the SIR model in
[13], the participants with state I are infected and thus can
cause its neighbor participants with state S to be infected
but do nothing to its neighbors that are already infected
(in state I). Also at each time step, an infected participant
makes a number of trials to transmit the infection to its
neighbors with probability β per unit time, and at same time
this infected participant can heal itself and be recovered at
rate µ and get back to the susceptible state. The probability
that a participant contacts another participant represents the
strength to transmit infection. It is differential to different
pairs of connected participants. Using the same analogy,
in GroupTrust, we set contact probability from participant
i to participant j by the normalized aggregate rating rij .
Theoretically, a threshold exists in the SIR model [13], which
determines whether an infection will eventually become
either prevalent or extinct. GroupTrust aims to figure out

such a threshold to control trust propagation, therefore
we propose an SIR-based threshold control mechanism to
determine when and how much a participant propagates
trust to another participant. We use state I to refer to those
participants that are able to propagate trust to their out-edge
neighbors and participants with state I may have probability
to stop their trust propagation by changing their state from
I to S. This dynamic state transition during the iterative
trust propagation process allows us to learn how the trust
(infection) spreads along the direct edges of the rating
network over time. Thus, we can compute the trust score
of a participant at the (k+1)th round of iterations in the trust
propagation process by the discrete-time probability that a
participant is infected (i.e., receiving trust propagation) at
the (k+1)th round of iterations:

t(k+1)(i) = (1− h(k)(i)) · (1− t(k)(i)) + (1− µ) · t(k)(i)
+ µ · (1− h(k)(i)) · t(k)(i) (9)

where h(k)(i) denotes the probability that participant i is
not be infected by any of its neighboring participant(s).

h(k)(i) =
N∏
j=1

(1− β · rji · t(k)(j)) (10)

Formula (9) shows three considerations: (i) participant i
is susceptible (1-t(k)(i)) and infected (1-h(k)(i)) by at least
one neighboring participant; (ii) participant i is in infected
state and has not recovered; (iii) participant i is in infected
state and recovers µ · t(k)(i), but re-infected by at least one
neighbor participant (1-h(k)(i)). It assumes the most general
case where recovery and infection occur concurrently.

Threshold of Trust Propagation. As mentioned above,
given the transmit probability β and the recovered rate µ, a
critical threshold τ exists. In the SIR model, this threshold
τ determines whether an infection will eventually become
either prevalent or extinct. In GroupTrust this τ controls the
tendency of trust diffusion such either: (i) the trust dies out;
or (ii) the trust becomes prevalent over time. From Formula
(9), we can see two critical constants play an important role
in propagating trust: transmit probability β and recovered
rate µ. The former encourages the propagation from one
participant to another participant; and the latter inversely
tries to block this propagation. Next we deeply conduct a
formal study on how these two variables affect the trust
propagation in theory. We first define the threshold τ .

Definition. The threshold τ is such a value that: i) if
β
µ < τ , then the trust in the entire network gradually dies
out over time, this implies that the trust scores for all the
participants will tend to be zero; ii) if β

µ > τ , then the trust
gradually becomes prevalent, this means the trust will tend
to be stable as the number of iteration rounds increases.

Upon this definition, we prove the following theorems.
Theorem 1. In GroupTrust, the critical threshold τ is:

τ =
1

λ1,R
= 1 (11)

where λ1,R is the maximum eigenvalue of contact probabil-
ity matrix R.

We below provide theorems and proofs on the necessity
and sufficiency of this threshold. This formal analysis is
inspired by [16] with some revision since the network in
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[16] is undirected and the rating network in GroupTrust is
directed, some properties that are hold for undirected graph
may not be adequate for the directed graph.

Theorem 2 (Necessity of Threshold). To guarantee the
trust of each participant tends to be zero, the transmit
probability must be less than recovered rate, i.e., β<µ.

Proof. We have defined the SIR-based Trust as:

t(k+1)(i) = (1− h(k)(i)) · (1− t(k)(i)) + (1− µ) · t(k)(i)
+ µ · (1− h(k)(i)) · t(k)(i)
= 1− (1− t(k)(i)) · h(k)(i)− µ · t(k)(i) · h(k)(i)

(12)

Alternatively, we can formulate Formula (12) using a
matrix form: −→

T (k+1) = F (
−→
T (k)) (13)

Thus, we have:

Fi(
−→
T (k)) = 1− (1− t(k)(i)) · h(k)(i)− µ · t(k)(i) · h(k)(i)

= 1−
N∏
j

(1− β · rji · t(k)(j))

+ t(k)(i) ·
N∏
j

(1− β · rji · t(k)(j))

− µ · t(k)(i) ·
N∏
j

(1− β · rji · t(k)(j))

(14)

If
−→
T (k)=

−→
0 for all the participants, the

−→
T (k+1) will be−→

0 , and trust will die out, thus
−→
T (k)=

−→
0 is a fixed point

of system. Nevertheless, the question is whether the fixed
point

−→
T (k)=

−→
0 is asymptotically stable. If stable, the trust

will decline to zero and finally die out; if not, then the trust
will become prevalent. Utilizing the following lemma, we
can capture the critical threshold.

Lemma (Asymptotic Stability). The entire network is
asymptotically stable at

−→
T (k)=

−→
0 if the eigenvalues of

∇F (−→0 ), where [∇F (−→0 )]ij = ∂Fi

∂tj
|−→
T =

−→
0

, are less than 1 in
the absolute value.

From formula (14), we have:

[∇F (−→0 )]ij =
{
βrji forj ̸= i
1− µ forj = i

(15)

equivalently, ∇F (−→0 ) = βRT + (1- µ)I (I : identity matrix).
Next, we call ∇F (−→0 ) as system matrix and define it as:

S = ∇F (−→0 ) = βRT + (1− µ)I (16)

Based on the proof of Lemma 2 in [16], we can know
that contact probability matrix R and system matrix S have
same eigenvectors, and eigenvalues are related:

λi,S = 1− µ+ βλi,R ∀i (17)

Hence, referring to the stability constraint above, the
system is asymptotically stable when

|λi,S | < 1 ∀i (18)

For the further proof, we present Perron-Frobenius the-
orem [17], [18] as follows: a nonnegative matrix M ∈ Rn×n

has an eigenvalue λp that is real and nonnegative with asso-
ciated nonnegative left and right eigenvectors, and all other
eigenvalues are smaller than or equal to λp in modulus.

According to this Perron-Frobenius theorem, as the con-
tact probability matrix R is a nonnegative, its maximum

eigenvalue λ1,R will be nonnegative and greater than or
equal other eigenvalues in modulus:

λ1,R = |λ1,R| ≥ |λi,R| ∀i (19)

Since 0≤ 1- µ≤1 and 0≤ β ≤1, the maximum eigenvalue
of system matrix S:

λ1,S = |λ1,S | = |1− µ+ βλ1,R| ≥ |λi,S | ∀i (20)

Keeping the stability constraint in formula (18), we make
the maximum eigenvalue λ1,S less than 1:

1− µ+ βλi,R < 1 (21)

Thus, the trust will become stable eventually and dies
out over time when β

µ<
1

λ1,R
, and the threshold is τ= 1

λ1,R
.

Let M (mij ≥ 0) be n×n nonnegative matrix without

zero row, ϕi(M) =
n∑

k=1

mik and φj(M) =
n∑

k=1

mkj denote

the sums of ith row and jth column. Then the maximum
eigenvalue γ of matrix M is subject to the constraint [18]:

min
i
ϕi(M) ≤ γ ≤ max

i
ϕi(M) (22)

In GroupTrust, the contact probability matrix R is a
stochastic matrix, namely the sum of each row is 1, thus 1≤
γ ≤1, this indicates the maximum eigenvalue γ of contact
probability matrix R is 1. Thus we prove that the critical
threshold is τ= 1

λ1,R
=1. This implies the trust will become

prevalent when β>µ, or dies out when β<µ.
Theorem 3 (Sufficiency of Threshold). If β

µ<τ=1, then
the trust will tend to be zero gradually, irrespective the
initial trust score of each participant.

Proof. Since parameters β, rij and t(k)(i) are nonnega-
tive and less than 1, we have:

h(k)(i) =
N∏
j=1

(1− β · rji · t(k)(j))

≥ 1− β ·
N∑
j=1

rji · t(k)(j)
(23)

For each participant i=1, ..., n,

t(k+1)(i) = 1− (1− t(k)(i)) · h(k)(i)− µ · t(k)(i) · h(k)(i)
1− t(k+1)(i) = (1− t(k)(i)) · h(k)(i) + µ · t(k)(i) · h(k)(i)

= (1− (1− µ)t(k)(i)) · h(k)(i)

≥ (1− (1− µ) · t(k)(i))× (1− β ·
N∑
j=1

rji · t(k)(j))

≥ 1− (1− µ) · t(k)(i)− β ·
N∑
j=1

rji · t(k)(j)

(24)

t(k+1)(i) ≤ (1− µ) · t(k)(i) + β ·
N∑
j=1

rji · t(k)(j) (25)

By utilizing the system matrix S, we can rewrite the
formula (25) in a vector form:

−→
T (k+1) ≤ S

−→
T (k) ≤ S2−→T (t−1) ≤ · · · ≤ S(k+1)−→T (0) (26)

Because the initial trust is irrespective, we assume the
initial trust of system participants as:

−→
T (0) = ψ1

→
x1 +ψ2

→
x2 + · · ·+ ψn

→
xn (27)
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where
→
xi (i=1,..., n) are the eigenvectors corresponding to

the eigenvalues λi,S(i=1, ..., n), and ψ1>0. The eigenvector
corresponding to maximum eigenvalue 1 of stochastic ma-
trix is (1, ..., 1)T . As we know, the contact probability matrix
R and system matrix S have same eigenvector, thus one of
its eigenvectors is (1, ..., 1) as well, this guarantees that the
initial trust scores are not zero.

Thus, we have:
−→
T (k+1) ≤ S(k+1)−→T (0)

= ψ1 · S(k+1) · →
x1 +ψ2 · S(k+1) · →

x2
+ · · ·+ ψn · S(k+1) · →

xn

= ψ1 · λ
(k+1)

1,S · →
x1 +ψ2 · λ

(k+1)

2,S · →
x2

+ · · ·+ ψn · λ(k+1)
n,S · →

xn

= λ
(k+1)

1,S · (ψ1 ·
→
x1 +(

λ2,S

λ1,S
)(k+1) · ψ2 ·

→
x2

+ · · ·+ (
λn,S

λ1,S
)(k+1) · ψn · →

xn)

(28)

As we know, the maximum eigenvalue λ(k+1)
1,S is non-

negative, namely (1 − µ + βλ1,R)|λ1,R=1, and greater than
or equal to the absolute value of other eigenvalues. Since

λ1,S = 1− µ+ βλ1,R
< 1− µ+ β · µ

β
(λ1,R < µ

β )

< 1
(29)

λ
(k+1)

1,S
≈0 ⇒ S(k+1)−→T (0)=0, indicating the trust of entire

network decays exponentially and declines to zero over
time.

Global Trust Computation. By the above theoretical
analysis, we can see that trust established through SIR-
controlled propagation confronts two outcomes in the end,
either extinction or prevalence. In GroupTrust, we aim at
figuring out differential propagations for participants with
different transaction/interaction/rating behavior, namely,
enabling good participants to gain trust propagation with
high probability, blocking malicious participants to gain
trust propagation with low or zero probability.

In order to achieve this goal, we define a fined-grained
trust propagation threshold for each pair of connected par-
ticipants instead of the coarse-grained constant threshold.
We replace the system-wide constant transmit probability
and recovered rate in [13], [14], [15], [16] by two variables to
reflect the fact that different pairs of connected participants
may have different transmit probability and recovered rate.
Hence, we redefine the global trust computation formula as:

t(k+1) (i) = 1−
N∏
j

(1− βji · rji · t(k)(j))

+ t(k)(i) ·
N∏
j

(1− βji · rji · t(k)(j))

− µij · t(k)(i) ·
N∏
j

(1− βji · rji · t(k)(j))

(30)

In this formula, for each pair of connected participants,
we introduce pairwise transmit probability βij and recov-
ered rate µij . Based on Theorems 2 and 3, if transmit proba-
bility is bigger than recovered rate, the trust propagation is
permitted, otherwise blocked. We also observe that the good
participants are similar with other good participants, but
dissimilar with malicious participants. Therefore, we define

the pairwise transmit probability βij using the similarity
based rating credibility weighted local trust cfij , which
impels good participants to propagate trust to good par-
ticipants, constraining malicious participants from gaining
trust propagation by strategically malicious collusion. Given
that some strategically malicious participants may have a
positive similarity with good participants, such as camou-
flage participants in Threat Model C or spy participants
in Threat Model D, we utilize recovered rate to define
a pairwise propagation threshold to block malicious trust
propagation. In order to coordinate with the scope of trans-
mit probability, we define recovered rate in the range of [0,
1] by max-min method:

µij =
1/(1+esim(i,j))−1/(1+emax(sim(u,v)))

1/(1+emin(sim(u,v)))−1/(1+emax(sim(u,v)))
(31)

where max(sim(u, v)) is 1.0 and min(sim(u, v)) is 0.0. This
formula shows that the smaller the pairwise rating similarity
is, the higher the propagation threshold will be and vice
versa. The rating similarity between two participants i and
j is computed by how consistent their feedback ratings to
the common set of participants with which both have had
transactions in the past independently. The higher similarity
implies more consistency in their feedback ratings over the
common set of other participants. Thus, a smaller pairwise
similarity will lead to a higher propagation threshold µij

and vice versa. By using the similarity metric, we block
trust propagation between dissimilar participants to a large
extent, and promote trust propagation between participants
with similar trust and rating behavior.

In summary, the global trust computation consists of
two phases: the local trust computation and the controlled
trust propagation. GroupTrust is unique in two aspects.
First, its local trust computation enhances the existing rating
aggregation methods by incorporating pairwise feedback
rating credibility as the weight to the normalized aggregate
rating score. Second, its trust propagation enhances the
existing uniform trust propagation models, represented by
EigenTrust. By defining the propagation control threshold, it
allows GroupTrust to capture the dynamic trust propagation
behavior: (i) different participants with even the same local
trust value may have different propagation threshold, de-
pending whether connected participants share similar trans-
action/rating behavior; and (ii) each participant may have
different thresholds at different rounds of iteration during
trust propagation, depending on both its own propagation
threshold and the thresholds of its neighbors.

4 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments with
synthetic and real world datasets to evaluate the efficiency
and effectiveness of GroupTrust by comparing with Non-
Trust and four representative trust models, EigenTrust [5],
a recently developed trust propagation model, ServiceTrust
[12], feedback rating credibility weighted local trust with
uniform trust propagation, denoted by GroupTrust UP, and
the SIR controlled trust propagation with the simple aggre-
gate rating based local trust (see Formula (1)), denoted by
GroupTrust RLT. We use GroupTrust to refer to the trust
model powered by both rating credibility weighted local
trust and the SIR controlled trust propagation.
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TABLE 1
Experimental Configuration

Network Structure

number of total participants in Threat Models A, B, C and D 600, 600, 700, 1000
number of pre-trusted participants 30

number of initial neighbors of good, malicious and pre-trusted participants 2, 10 and 10
number of hops for query process 7

File Distribution

file distribution at good participants Zipf distribution over 200 distinct files
number of distinct files at good participant uniform random distribution

top % queries for most popular files pre-trusted participants respond to 5%
% file categories owned by good participants in Threat Model A, B and C 15%

% file categories owned by good participants in Threat Model D 10%
% file categories owned by malicious participants in Threat Model A, B, D 100%

% file categories owned by malicious participants in Threat Model C 55%

Participant Behavior
% download requests in which good participant returns inauthentic file 5%

downloads source selection method probabilistic algorithm
probability that participants with global trust score 0 are selected range [0-10%]

Fig. 3. Trust propagation threshold with different sets of transmit probabilities and recovered rates (log-log scales).

The TM/RM [19] simulator is an open-source program.
The main component of this TM/RM simulator is to sim-
ulate the peer-to-peer (P2P) transactional environment for
query answering services among participants such that the
need to create a working P2P file sharing system is avoided.
However, TM/RM does not provide the strategically ma-
licious attack models such as Threat Model C and Threat
Model D. Also it does not support for pairwise rating
similarity computation. Thus, we develop our simulator to
simulate Threat Models C and D, perform pairwise sim-
ilarity computation, and conduct SIR-related experiments
using the Epinions real dataset to compare different trust
propagation models. We adopt the same setting as that in
EigenTrust with respect to the total number of participants
used in the experiments for all four threat models, as shown
in Table 1 for the small scale experiments. We also extend the
small setup by using 10 times of the participants in the small
scale setting for good, bad and pre-trusted participants,
which results in 630 total number of participants in Threat
Models A and B, 200 disguise malicious participants, 500
good participants and 30 pre-trusted participants in Threat
Model C. For Threat Model D, 400 type B and type D
malicious participants, 600 good participants and 30 pre-
trusted participants.

4.1 Trust Propagation Threshold

In this section we verify the effect of the trust propagation
threshold using Epinions, a real world dataset. We conduct
our experiments using the Epinions network of 10,000 nodes
in which the contact probability between each pair of con-
nected participants is generated by Zipf distribution, and

the initial global trust for each participant is set to 0.5. With
this configuration, we perform GroupTrust with SIR based
trust propagation. Fig. 3 depicts the experimental results
in terms of different settings of transmit probabilities (0.1,
0.5 and 1.0) and recovered rates (0.1, 0.2, 0.3, 0.4, 0.5, 0.7,
0.9 and 1.0). We make four observations from this set of
experiments. (1) There is a clear separation for each setting
of β and µ, when β<µ, the number of participants with
non-zero global trust score goes to zero as the iteration
round increases. (2) As µ increases, it takes more number
of iteration rounds for the trust score approaching zero.
(3) When β>µ, the number of participants with non-zero
global trust tends to be a certain ratio, showing the property
that the global trust is becoming prevalent. (4) With fixed
β, as µ decreases, the difference between β and µ gets
bigger, and it takes less number of iteration rounds to reach
convergence for a large number of participants receiving
non-zero trust. This set of experiments verifies the effect of
trust propagation threshold.

We have studied the impact of different pairings of β
and µ on the total number of participants with non-zero
trust. This study helps us understand how different β and
µ pairs may impact on the results of trust computation
of the participants. In GroupTrust, we define the transmit
probability βij for each pair of participants i and j, by
using the rating credibility weighted local trust cfij defined
in Formula (8), and recovered rate µij as the pairwise
propagation threshold, defined by Formula (31) in Section
3.2 on SIR controlled trust propagation. The value of β and
the value of µ are computed for each pair of participants in
all experiments reported in Section 4.2, 4.3, 4.4.
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4.2 Performance Comparison

We conduct four groups of experiments to compare Group-
Trust with Non-Trust, EigenTrust, ServiceTrust, Group-
Trust UP and GroupTrust RLT under the four threat mod-
els. We set the number of transactions as 10 times the
number of system participants, such that the total number
of participants in Threat Models A and B are 630 (30 pre-
trusted participants), wherein the ratios of malicious par-
ticipants are set as 0, 10%, 30%, 50% and 70%. For Threat
Model C, the disguise, good and pre-trusted participants
are 200, 500 and 30. The evaluation measures the resilience
of the trust models under varying camouflage percentage
f under a constant ratio of malicious participants at 27%.
For Threat Model D, the malicious participants (type B and
type D with different combinations), good and pre-trusted
participants are 400, 600 and 30. The evaluation of trust
models is performed by varying the ratio of type D and type
B malicious participants under a constant ratio of malicious
participants at 39%. Fig. 4 reports our experimental results.
We make two observations. First, we observe that all five
trust models offer the same level of effectiveness under
Threat Models A and B. Given that pre-trusted participants
have non-zero initial trust scores 1/|P | in EigenTrust, under
Threat Models A and B, the malicious participants can never
gain positive ratings from other participants because bad
participants have very dissimilar behavior in both transac-
tion and rating, thus their global trust scores are always zero
no matter whether Formula (2) or Formula (30) are used.

Second, we observe that GroupTrust, GroupTrust UP,
GroupTrust RLT and ServiceTrust significantly outperform
EigenTrust under Threat Models C and D, when bad par-
ticipants strategically cheat by providing good transaction
services at f% cases or by selecting certain bad partici-
pants as spy participants in both services and ratings. Con-
cretely, by comparing ServiceTrust and GroupTrust UP with
EigenTrust, we show that the use of feedback credibility
weighted local trust computation is effective in degradation
of the effect of malicious manipulation of feedback ratings
via strategically malicious camouflage or spying behavior.
Similarly, by comparing GroupTrust and GroupTrust RLT
with EigenTrust, we show the effectiveness of using the SIR-
based threshold controlled trust computation in minimizing

  
                       (a) Threat Model A                                                                       (b) Threat Model B

                                           
                        (c) Threat Model C                                                              (d) Threat Model D 

Fig. 4. Performance evaluation under Threat Models A, B, C and D.

or removing the effect of malicious manipulation.
To further understand the difference of GroupTrust

with GroupTrust UP, GroupTrust RLT and ServiceTrust, we
zoom in the comparison of these four models in the small
embedded figure in Fig. 4(c) to compare the controlled trust
propagation with the uniform trust propagation adopted in
GroupTrust UP and ServiceTrust. We observe that Group-
Trust outperforms both GroupTrust UP and ServiceTrust,
showing the effect of controlled trust propagation and the
role that the controlled propagation plays in trust estab-
lishment, maintenance and management. We also observe
that GroupTrust RLT has the same level of effectiveness
as GroupTrust, showing that SIR controlled propagation
model combined with the rating similarity based propaga-
tion threshold is by itself effective in countering the four
attack models, though GroupTrust provides more resilient
local trust computation and thus higher quality for trust
propagation and faster convergence rate.

4.3 Scalability Evaluation

This subsection evaluates the effectiveness of GroupTrust
in terms of its scalability with respect to different network
sizes. We have analyzed that one of the common weaknesses
of existing trust models [1], [2], [4], [5] is the poor perfor-
mance when the rating network is large and sparse.

The first set of experiments measures the effectiveness of
GroupTrust by comparing it with Non-Trust and four differ-
ent trust models, EigenTrust, ServiceTrust GroupTrust UP,
GroupTrust RLT with varying the network sizes, Fig. 5(a)
shows the results under Threat Model C in which the
percentage of malicious participants is 27%, the camouflage
probability f is 40%, and the number of transactions in each
network is set to be 10 times the number of participants.
Fig. 5(a) shows that as the network size increases, Group-
Trust scales well and the fraction of inauthentic downloads
remains consistently low. In contrast, EigenTrust not only
has much higher amount of inauthentic downloads for net-
works of different sizes but also the amount of inauthentic
downloads is increased gradually as the size of the rating
network increases and when the size of the network is at
1,000 nodes or higher, the fraction of inauthentic downloads
in EigenTrust is close to that of Non-Trust. This implies that
the trust model by employing normalized aggregate ratings
to compute local trust combined with uniform propagation
is inadequate for computing trust in the presence of strategi-
cally malicious participants. Due to the space constraint, we
omit the evaluation results for Threat Model D, as similar
results can be observed.

(a) Fraction of Inauthentic Downloads as the Network Size Increases              (b) Fraction of Inauthentic Downloads with Different Threat Models

Fig. 5. Evaluation on scalable and equal networks.
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The second set of experiments measures the performance
of the four attack models under the same network setting
with the total number of participants fixed at 600 good
participants, 400 malicious participants and 30 pre-trusted
participants. We set f = 40% in Threat Model C, and make
type B and type D equal in Threat Model D. Fig. 5(b)
shows the experimental results. As analyzed in Section 2.4,
the global trust scores of malicious participants are zero
in Threat Models A and B, and the fraction of inauthentic
downloads keeps no significant change with size of the
network. For Threat Model C, even as the ratio of disguise
participants becomes larger, there is no impact on Group-
Trust RLT and GroupTrust, thanks to the controlled trust
propagation. However, the fraction of inauthentic down-
loads increases as the ratio of malicious camouflage partici-
pants rises for all uniform propagation based trust models,
such as EigenTrust, ServiceTrust and GroupTrust UP. This
shows that the strategically malicious participants can do
more harm compared to those isolated and non-disguise
malicious participants.

4.4 Evaluation with Epinions Dataset

In this subsection, we evaluate the performance of Group-
Trust using the real world datasets Epinions [7]. We focus
our evaluation from the perspective of attack resilience un-
der Threat Models C and D and computation complexity. We
set the number of pre-trusted participants to 3% of system
nodes for all experiments reported in this section. Given that
pre-trusted participants serve as the central authority of the
system, we choose the 3% largest in/out-degree nodes as
the pre-trusted participants.

Attack Resilience. Given that the malicious participants
in Threat Models C and D can gain positive feedback ratings
through providing good services, we add some strategically
collusive participants to the Epinions dataset to evaluate
the effectiveness of GroupTrust. Concretely, we add 10, 30
and 50 malicious participants into the Epinions network,
organized by 100 regular nodes, and make these camouflage
participants form a chain with 1.0 feedback ratings over
each link as defined in Threat Model C. For Threat Model D,
we add 30 malicious participants organized in three cases:
10 type B and 20 type D, 15 type B and 15 type D, and
20 type B and 10 type D. In order to make these malicious
participants receive sufficient amount of feedback ratings,
we connect them to the top 10 highest degree participants in
the network. We set a range [0, 0.05] from which malicious
participants select feedback ratings, and a range [0.85, 1]
from which good participants select feedback ratings.

Fig. 6 shows the experimental results. The nota-
tion ”100G+30M” denotes the network organized by
100 good participants and 30 malicious participants,
”100G+10B+20D” denotes the network with 100 good par-
ticipants, 10 type B participants and 20 type D participants.
We make three interesting observations. First, Fig. 6 shows
that GroupTrust and GroupTrust RLT significantly outper-
form EigenTrust, ServiceTrust and GroupTrust UP, for vary-
ing camouflage percentage f under Threat Model C in Fig.
6(a), and for varying ratios of spy (type D) participants and
type B malicious participants in Fig. 6(b). This is primarily
due to the fact that GroupTrust and GroupTrust RLT use

                    
(a) Threat Model C 

(b) Threat Model D 

Fig. 6. Trust score and influence evaluation on malicious participants.

SIR-based controlled trust propagation kernel, whereas the
other trust models are using the uniform propagation ker-
nel. Second, this set of experiments shows that GroupTrust
outperforms all other four models, with GroupTrust RLT
as the second best performer, while GroupTrust UP and
ServiceTrust have better performance than EigenTrust. This
is primarily due to the incorporation of feedback rating
credibility as weight in the local trust computation. Third,
the ratio of trust scores of malicious participants over the
trust scores of all participants goes up as the number of
malicious participants increases. This indicates the influence
of malicious participants on the whole network grows as the
number of colluding malicious participants increases.

Computation Complexity. In EigenTrust, the time com-
plexity mainly depends on the computation of global trust
scores for all participants. Given that for each participant,
its trust score is produced by aggregating the ratings it may
have from other n-1 participants, thus for n participants, the
complexity of computing trust is O(n2). In GroupTrust UP
and GroupTrust, for a participant, the SIR-controlled prop-
agation needs O(1) time to check whether a connected
participant can meet the trust propagation threshold. The
check will continue until all its connected participants are
checked, and the number of connected participants is no
more than n. Thus, for all the participants in the entire
network, the complexity is O(n2) as well. However, given
that some feedback rating credibility weighted local trust
can be zero when the pairwise similarities are zero, this
implies that some rating relationship links will not be used
during the trust propagation, therefore the time complex-
ity in ServiceTrust, GroupTrust UP and GroupTrust is less
than EigenTrust naturally. Moreover, GroupTrust uses a SIR-
controlled propagation kernel, for any pair of connected par-
ticipants, if their pairwise transmit probability is less than
their pairwise recovered rate, then the trust propagation will
be blocked as well. This further reduces the total number of
rating relationship edges used in the global trust computa-
tion of GroupTrust. Thus, the time complexity of GroupTrust
is lower than that of ServiceTrust and GroupTrust UP.

Fig. 7 shows the time complexity comparison using
Epinions dataset for GroupTrust, EigenTrust, ServiceTrust
and GroupTrust UP by varying network sizes and varying
the number of iteration rounds in terms of hops during the
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(a) Time Overhead from Viewpoint of Network Scale          

(b) Time Overhead from Viewpoint of Hop 

Fig. 7. Time overhead with varying network sizes and hop counts.

trust propagation. Fig. 7(a) shows that the time complexity
increases as the number of nodes increases from 6,000 to
10,000. Fig. 7(b) shows that the time complexity grows as the
propagation scope increases from 3 hops to 7 hops. In gen-
eral, EigenTrust incurs higher trust propagation overhead
than GroupTrust, ServiceTrust and GroupTrust UP, because
EigenTrust propagates trust to all connected neighbors for
each participant. In contrast, ServiceTrust, GroupTrust UP
and GroupTrust discard certain pairs of connected partic-
ipants through two types of filtering during trust propa-
gation: (1) we use pairwise feedback rating credibility as
weight to the normalized aggregate rating scores when com-
puting local trust, which filters out those rating relationships
that have zero local trust due to their zero similarity scores;
and (2) we use SIR-controlled trust propagation, which
filters out those pairs of participants in the rating network,
when their pairwise transmit probabilities are less than
their pairwise recovered rates. Thus the time complexities
of GroupTrust, ServiceTrust and GroupTrust UP are lower
than that of EigenTrust, and the time complexity of Group-
Trust is lower than that of ServiceTrust and GroupTrust UP,
because GroupTrust supports both filters, but ServiceTrust
and GroupTrust UP support the first filter.

To verify the above statement, we randomly select 5
participants to compute the trust propagation scale, namely,
from each of the chosen participants, how many other
participants to which its trust can be propagated within
7 hops, and the amount of performing trust propagations
under two sizes of Eopinions networks of 6,000 and 10,000
participants. The experimental results are the average value
of 5 participants (see Fig. 8). We can see that as the network
size grows, GroupTrust takes less time than EigenTrust,
ServiceTrust and GroupTrust UP because it cuts off the trust
propagation to malicious nodes through two stage filters,
whereas EigenTrust, ServiceTrust and GroupTrust UP uni-
formly propagates trust to all neighbors of each participant,
no matter whether the neighbors are good or malicious.

5 RELATED WORK

Trust and reputation have been studied by many. In the
simple eBay system [6], there are three discrete feedback
ratings: positive (1), negative (-1), and neutral (0). One par-
ticipant’s trust score is computed by only aggregating the

(a) Time Overhead from Viewpoint of Number of Nodes Receiving Trust          

(b) Time Overhead from Viewpoint of Count of Trust Propagation 

Fig. 8. Time overhead evaluation from viewpoints of number of nodes
receiving trust and count of trust propagation.

feedback ratings given by the small subset of participants
with whom it has direct transactions. Such direct experience
based trust system is easy to implement and fast to compute
trust, but it is vulnerable to malicious manipulations due to
the presence of dishonest or bad participants. PeerTrust [4]
is a classic peer-to-peer trust model, and utilizes pairwise
feedback similarity to define the credibility of a participant
and compute the trust score of this participant using its
credibility as a weight to its rating aggregate. GroupTrust is
inspired by PeerTrust’s similarity based weighting scheme
for the local trust computation.

Most of the trust propagation methods [3], [12] are in-
spired by EigenTrust [5], which uses the uniform trust prop-
agation kernel to address sparse ratings in large-scale net-
works. Though the uniform trust propagation model is more
effective than those models that compute trust solely based
on direct transactional experiences [2], [4], [8] in the pres-
ence of sparse ratings (Section 2), EigenTrust and its family
of trust models with uniform propagation are vulnerable
when there are strategically malicious participants, such as
those in Threat Models C and D. GroupTrust is developed
as a dependable trust management model for decentralized
computing systems. It has two main advantages over other
existing models: (i) it incorporates the pairwise similarity
based feedback credibility in trust computation; and (ii) it
allows trust propagation among only trusted participants
through SIR-based controlled trust propagation, which is
resilient against strategically malicious attacks in Threat
Models C and D. In comparison, PowerTrust [20] leverages
the power-law power nodes and look-ahead random walk
strategy to speed up the trust propagation, and utilizes the
multiple locality preserving hashing (LPH) to prevent mali-
cious participants from reporting wrong global reputation
scores. However, PowerTrust is vulnerable under Threat
Model C and Threat Model D because bad participants can
gain high trust scores through camouflage or malicious spy
nodes due to uniform propagation. Similarly, the RLM Trust
model [21] proposes a malicious feedback detection mech-
anism through hypothesis test technology, which evaluates
whether the deviation between the feedback reputation and
the predicted reputation is normal enough. If the deviation
exceeds a certain threshold, the feedback is identified as
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malicious, and the update of reputation and the prediction
variance are denied. Even though RLM can flag malicious
feedbacks, it is vulnerable to type D spy participants in
Threat Model D and camouflage participants in Threat
Model C due to the lack of propagation control in RLM.

The role of pre-trusted participants is critical in Group-
Trust. When new nodes join the system, they have no trust
relationship with existing nodes in the system. The pre-
trusted nodes can help new nodes to bootstrap their trust
with other existing nodes. However, some trust modes, such
as SORT [22], do not support the pre-trusted participants. In
these trust models, it is hard for new nodes to choose the
trustworthy nodes to interact with and it takes much longer
for new nodes to establish trust relationships with others in
the system.

6 CONCLUSION

We have presented the design of GroupTrust, a depend-
able trust management and trust propagation framework.
We showed analytically and experimentally that Group-
Trust was significantly more attack resilient than existing
representative trust models. We address the problems of
dishonest ratings and malicious manipulation of ratings
to gain high trust values by defining a rating credibility
weighted local trust. We address the problem of uniform
trust propagation by introducing the SIR-controlled trust
propagation kernel to prevent trust propagation from good
nodes to bad nodes. Extensive experiments using synthetic
and realistic datasets show that GroupTrust significantly
outperforms Non-Trust, EigenTrust, ServiceTrust, Group-
Trust UP, GroupTrust RLT in terms of time complexity and
attack resilience in the presence of dishonest and sparse
ratings and strategically malicious colluding participants.
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