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Abstract. With the proliferation of graph based applications, such as
social network management and Web structure mining, update-intensive
graph databases have become an important component of today’s data
management platforms. Several techniques have been recently proposed
to exploit locality on both data organization and computational model
in graph databases. However, little investigation has been conducted
on bu↵er management of graph databases. To the best of our knowl-
edge, current bu↵er managers of graph databases su↵er performance loss
caused by unnecessary random I/O access. To solve this problem, we
develop a novel batch replacement policy for bu↵er management. This
policy enables us to maximally exploit sequential I/O to improve the per-
formance of graph database. To enable the policy, we devise a segment
tree based bu↵er manager to e�ciently maintains optimal replacement
plan. Extensive experiments on real-world and synthetic datasets demon-
strate the superiority of our method.

Keywords: batch replacement, bu↵er manager, graph database, data
manipulation, graph algorithm

1 Introduction

The rapid growth of graph data fosters a market of specialized graph databases
such as Neo4j [9], Titan [10] and DEX [19]. To meet the needs of various graph
based applications [11, 12, 14, 26–28, 34], these disk-based graph databases o↵er
both database functionality such as insert/delete/update and analytical graph
algorithms such as PageRank computation [6]. The evolving social network and
the nature of some graph algorithms require graph databases to be update-
friendly and update-e�cient. For instance, to maintain a social network, each
time a new friendship / connection establishes, a link connecting the pair of users
should be inserted into the graph to reflect the change. In PageRank computa-
tion, the ranking score of every vertex needs to be updated in each iteration.
This paper focuses on such update-intensive applications.

To support large scale graph databases, existing research work has mainly in-
vestigated the data organization and computational models. To achieve e�cient
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data organization, the associated edges of each vertex are normal stored together.
For example, in social networks, the friends of a user are usually stored in con-
tinuous data pages [9]. As a result, frequent requests such as “return the friends
of a specific user” in Facebook or Twitter [15] can benefit from low latency of
sequential I/O. As to computational model, the dominant vertex-centric [18] or
edge-centric [24] processing models partition a graph based on vertices or edges,
and treat each partition as a unit of computation. They can also benefit from
sequential I/O.

Although existing graph databases widely adopt I/O e�cient data organiza-
tion and computational models, they rarely consider bu↵er replacement policies.
In fact, they still adopt variants of Least Recently Used (LRU) or Least Fre-
quently Used (LFU) policies [7, 20], which evict one bu↵er page at a time and
thus to some degree cancel out the e↵ects of the specialized data organization
and computational models. Figure 1 illustrates such a scenario. After the inser-
tion of some new friends of user u, the data pages containing u’s information,
bu1 , bu2 and bu3 , will be cached in the bu↵er. Note that bu1 , bu2 and bu3 should
be continuously located on disk. When a query such as “return the friend list of
user v” is issued, the bu↵er manager requires to read in a new set of continuously
located data pages, v1, v2 and v3, which contain the friends of the user v. As
the bu↵er is currently full, the bu↵er manager decides to evict bu1 , bu2 and bu3

to make room for the incoming data pages. Following the existing replacement
policy, the system will first seek to the position of u1 to evict bu1 and then seek
to the position of v1 to read in a new page. Iteratively, the systme will perform
6 random I/Os according to the order marked by the arrows in Figure 1. This is
ine�cient. If we can evict bu1 , bu2 and bu3 in a batch, and read in v1, v2 and v3
in a batch, we only need to perform two random disk seeks, and the other I/Os
can be performed sequentially. Thus, such batch replacement can save 4 out of
6 random I/Os.

In this paper, we propose a batch replacement bu↵er manager for update-
intensive graph databases. To the best of our knowledge, it is the first bu↵er
replacement policy that exploits sequential I/O to speed up graph databases.
Our design considers the following aspects: 1) the bu↵er manager should provide
an unchanged interface to other layers of the graph database; 2) it should figure
out the optimal replacement plan each time it needs to replace bu↵ered pages;
3) it should minimize computational and memory overhead. To address these
challenges, we first define the optimal replacement plan as the criteria to evict
pages via sequential I/O. Then, we propose a segment tree based structure to
organize bu↵ered pages and to e�ciently generate the optimal replacement plan.
To evaluate the performance of our batch replacement bu↵er manager, we tried
it on both real-world and synthetic datasets using typical workloads of database
manipulation and graph algorithms. The experiment results show that 1) the
batch replacement policy is able to achieve significant performance improvement
by exploiting sequential I/O and 2) it is practical for graph databases.

The contributions of this paper are threefold:
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Fig. 1. An illustrative example for the e↵ect of existing bu↵er manager and batch
replacement in terms of random access, where the dashed arrow indicates the additional
random access performed by existing bu↵er managers.

– We show the importance of exploiting sequential I/O in bu↵er management
of graph databases.

– We propose a batch bu↵er replacement policy. Based on it, we define the op-
timal replacement plan and devise a segment tree based structure to manage
bu↵ered data pages and e�ciently maintain the optimal plan.

– We conduct extensive experiments on real-world and synthetic datasets to
verify the e↵ectiveness of the batch replacement policy.

2 Related Work

Our work builds upon the existing techniques of graph databases, especially their
data organization and computational models.

2.1 Data Organization

Conventionally, graph organization is built on top of the relational (a.k.a., SQL)
storage and graphs are stored as triplets [5, 25]. In other words, each edge e
directed from a vertex u to a vertex v in the graph is transformed into a triplet
hu, e, vi. However, it is known that RDBMS organization is not good at an-
swering traversal types of graph queries [30]. Considering the locality of data
manipulation, such as queries like “return the friends of a specific user”, it is
more e�cient to pack in-edges and out-edges of the same vertex in two lists and
store them together [32, 22]. This has been adopted by most disk-based graph
databases such as Neo4j. Therefore, we also assume such graph specific data
organization.

2.2 Computational Model

Recently, a general iterative framework is adopted to process various graph al-
gorithms such as PageRank and Shortest Path Computation. In the framework,
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every vertex and edge in the graph is associated with a value and at each itera-
tion, the value on a vertex or an edge is updated in vertex-centric or edge-centric
model.

Vertex-centric model. Vertex-centric model is explored by initial works such
as GraphLab [16] and Pregel [18]. In vertex-centric model, each vertex and its
associated edges are regarded as a unit of computation so that if the main
memory can hold any single vertex and its associated edges, only sequential I/O
for loading data and updating results is required for each computation unit.
To improve scalability, MOCgraph further reduces the memory footprint using
message online computing [33].

Edge-centric model. Because a single vertex in real-world graph data, such as
a celebrity, may be associated with so many edges that they cannot fit in main
memory, edge-centric model is proposed [24, 14]. Edge-centric model partitions
edges into disjoint sets and each set and its associated vertices form the unit of
computation. In this way, each set can be hold in main memory to avoid random
I/O access [34, 35, 13].

There is a significant body of work on distributed graph databases [23, 8, 29].
As our work focuses on speeding up a disk-based graph database on a single
machine, our research is orthogonal and complementary to them.

2.3 Bu↵er Manager on Database

Existing bu↵er managers in graph databases usually adopt the variants of the
LRU/LFU policy to reduce disk I/O. Neo4j adopts the LRU policy [9] while
TurboGraph [13] maintains frequently used pages in memory. These works follow
the same paradigm – when the bu↵er manager requires to read in a new page
and the bu↵er gets overflow, only one bu↵ered data page is evicted at a time.
As a result, it introduces unnecessary random I/Os. To deal with this drawback,
one recent work has proposed to remove bu↵er managers [17]. Besides, there are
also alternative approaches which utilize index structures such as log structured
merge tree [21] or fractal tree [3] to handle update-intensive workload. Both
index structures process updates in a key range in a batch. However, as the
physical pages of a key range may not be located consecutively on disk, random
I/O still cannot be avoided completely.

In this paper, we aim to leverage sequential I/O by evicting bu↵ered pages
in a batch way rather following the existing paradigm which repeats evicting
and reading one page at a time. Thus, our approach can benefit from the data
organization and computational models for graph databases.

3 Batch Replacement Bu↵er Manager

In this section, we first present the problem definition for our batch replacement
bu↵er manager. Then, we present the structure and algorithms of the proposed
bu↵er manager.
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3.1 Problem Formulation

As we have shown in Figure 1 in Section 1, it is ine�cient to follow the existing
paradigm of bu↵er manager, which evicts only one bu↵ered data page at a time.
In this paper, we extend the single page based replacement plan to the one that
considers a set of pages. Thus, the new definition of replacement plan subsumes
that of the existing bu↵er managers.

Definition 1. Replacement Plan. When the bu↵er manager gets overflow, a
replacement plan is a set of bu↵ered data pages that will be evicted before the
bu↵er manager performs any subsequent read operation.

For example, the ideal replacement plan in Figure 1 is {bu1 , bu2 , bu3}.
Observing that evicting continuous bu↵ered dirty data pages can maximize

sequential I/O, the ideal batch replacement plan is to evict the longest sequence
of such data pages.

Definition 2. Optimal Batch Replacement Plan. Given a set of bu↵ered pages
with positions on the disk as S = {p1, p2, ..., pn}, the optimal batch replacement
plan is a subset P ✓ S satisfying the following two conditions:

1) pages in P are continuous in disk, namely, there are n� 1 pairs of pi and
pj in P, such that pi ! pj or pj ! pi, where pi ! pj means that pj is the
successor data block in disk to pi.

2) any other subset P 0 ✓ S satisfying Condition 1 contains less data pages
than P, namely, |P 0| < |P|.

For example, in Figure 1, the optimal batch replacement plan is {pb1 , pb2 , pb3}.
Although its subset such as {pb1 , pb2} satisfy the first condition, they violate the
second condition and are not the optimal batch replacement plan.

3.2 Overview

We would like a bu↵er manager to change its replacement policy to the optimal
batch replacement plan. However, we also prefer the change is transparent to
other components of a graph database. We identify three properties the batch
replacement bu↵er manager should possess: 1) transparency requires to export
the same interface to other layers in a graph database; 2) e↵ectiveness requires
to identify the exact optimal replacement plan and 3) e�ciency requires to
minimize the computation and space cost of bu↵er manager.

When a data page is being updated, if it is surrounded by a number of
continuous bu↵ered dirty pages, batch replacement may evict such an active
page and cause thrashing. Therefore, we use a “using” component to keep track
of such active data pages to avoid them from being evicted. Although our batch
replacement bu↵er manager is designed for update-intensive applications, we also
need to ensure transparency for mixed workloads of read and write. Therefore,
we use a “clear” component to keep track of unchanged data pages.

Besides the above-mentioned two components, the core component for our
batch replacement bu↵er manager store all dirty data pages that can be evicted.
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Figure 2 shows the transitions of a data page among the three components.
Whenever the bu↵er manager reads a data page, it is inserted into the “using”
component and only when the data page is unpinned and all queries referring to
it terminate, it will be moved to the “clear” component or the core component,
depending on if it has been updated. When the bu↵er overflows, the bu↵ered
data pages in the “clear” component will be evicted first. When the “clear”
component is empty, the batch replacement plans will be used.

Fig. 2. The three components for Batch Replacement Bu↵er Manager.

To obtain an optimal replacement plan, the most straightforward approach is
to sort all bu↵ered data pages based on their positions in disk and then scan the
sorted page list to find the longest continuous sequence. As shown in Algorithm 1,
once we meet a continuous data page, we increase the length of the continuous
page list (Line 7-10) and once the continuous data pages terminate, we update
the replacement plan (Line 11-13). Although simple, this baseline algorithm is
expensive, as it needs to sort and scan all bu↵ered data pages.

3.3 Segment Tree based Bu↵er Manager

To avoid sorting and scanning, we adopt a segment tree based structure that
maintains the bu↵ered data pages that are continuous in disk 1. In this way,
each insertion routine actually amortizes the time for sorting and scanning.

To amortize the overhead of sorting, we represent each set of continuous
data pages as an interval [a, b], which indicates that these data pages start at
the position a and end at the position b on disk. Note that such an interval
represents individual data pages and continuous data pages in a unified way
– the interval of an individual data page at position a on disk will be [a, a].
To avoid the overhead of scanning, we associate each interval with its interval
length, on which the priority of eviction is based. In other words, the interval
with the largest interval length will be chosen as the optimal replacement plan.

1 For continence, the term “bu↵er manager” refers to the core component in the rest
of the paper.
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Algorithm 1 Trivial Algorithm

Require: S = {p1, p2, ..., pn}, the set of all bu↵ered pages free to evict
Ensure: P, the optimal replacement plan
1: Compute the list L by sorting pages in S in increasing order of positions in disk
2: P = ;
3: lenP = 0
4: P 0 = {L[0]}
5: lenP0 = 1
6: for i = 1 to n� 1 do

7: if L[i� 1] ! L[i] then
8: lenP0 ++
9: P 0 = P 0 [ {L[i]}
10: else

11: if lenP0
> lenP then

12: P = P 0

13: lenP = lenP0

14: Return P 0

As Figure 3 illustrates, a segment tree is a balanced binary tree of height
O(log n), using O(n) space. It can support indexing of intervals with logarith-
mic computational complexity for insertion, deletion and querying [4]. Such a
segment tree has the following 2 properties: 1) a key value is associated with
each internal node. The intervals in its left branch end with positions no more
than the key value and the intervals in its right branch start with positions larger
than the key value; 2) an interval is associated with each internal node; it records
the longest interval among all the intervals of its descendants.

For example, given the root node associated with the key value 14 and the
interval [5, 11], we know that: the interval [17, 19] must be in its right branch
because it starts at 17 which is larger than 14 (Property 1); the associated
interval [5, 11] is the longest interval in the bu↵er and its length is 7 (Property
2). In the figure, the interval [14, 14] actually represents an individual data page
at the position 14 on disk.

7 continuous 
buffered pages

Individual 
Buffered page

2 continuous 
buffered pages

3 continuous 
buffered pages

Fig. 3. An example segment tree, where
leaf node represents intervals and internal
node is associated with a key value and the
longest interval among its descendants.

8 continuous 
buffered pages

Individual 
Buffered page

2 continuous 
buffered pages

3 continuous 
buffered pages

Fig. 4. The example segment tree after the
page with position 12 at disk is inserted,
where the updated nodes are marked in
red.
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Algorithm 2 Bu↵er Insert Algorithm

Require: d, the page to be inserted into the bu↵er
tree, the segment tree organizing bu↵ered pages in the batch replacement

bu↵er manager
1: New Interval new = [d.pos, d.pos]
2: Predecessor interval p = tree.search(d.pos� 1)
3: Successor interval s = tree.search(d.pos+ 1)
4: if p exists then
5: new = [p.start, d.pos]
6: tree.delete(p)
7: update longest intervals along the path from root to p

8: if s exists then
9: new = [new.start, s.end]
10: tree.delete(s)
11: update longest intervals along the path from root to s

12: tree.insert(new)
13: update longest intervals along the path from root to new

The original segment tree is unable to maintain continuous data pages or the
longest interval. It is our proposed insertion algorithm that utilizes the segment
tree to maintain continuous data pages and the optimal replacement plan. The
main idea is twofold: 1) whenever a bu↵ered data page is inserted into the bu↵er
manager, if its predecessor interval or successor interval exists, the inserted data
page will extend the interval to a new longer interval and 2) whenever an interval
is updated, the longest intervals on the path percolated from the root down to
the interval itself will be updated. As Algorithm 2 illustrates, if the inserted
data page d is at position d.pos on disk, its predecessor interval should end with
d.pos � 1 and its successor interval should start with d.pos + 1 (Line 2-3). If
any one of the two intervals is found, it will be removed from the segment tree,
and the intervals maintained by each internal node on the path from the root
percolating to the interval will be updated (Line 7,11). Then, a new interval
combining the predecessor/successor interval and the inserted data page will
be inserted into the segment tree, and the longest intervals on the path from
the root to the new interval will also be updated (Line 12-13). In this way, an
insertion involves at most two queries, two deletions and one insertion on the
segment tree. Thus its time complexity is O(log n), where n denotes the number
of intervals and is normally less than the number of bu↵ered data pages.

For example, given the segment tree in Figure 3, if we want to insert a page
with position 12, we first find its predecessor interval [5, 11], and combine it with
the inserted page to form the new interval [5, 12]. Since no successor interval
starting with 12 + 1 = 13 is found in the segment tree, only the interval [5, 11]
is removed from the tree and the new interval is inserted. The longest intervals
are updated correspondingly as marked in red in Figure 4.

Since the segment tree maintains the longest interval at the root node, when-
ever the bu↵er overflows, we simply pick up the data pages corresponding to the
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longest interval as the optimal replacement plan. After the eviction, we can re-
move the corresponding interval and update the segment tree with amortized
and worst case time complexity of O(log n). This procedure is e�cient.

4 Experiment

In this section, we report experiment results on real-world and synthetic datasets.
We demonstrate the e↵ectiveness of our method on both database manipulation
and graph algorithm execution. We also analyze the properties of the proposed
batch replacement method.

4.1 Experimental Setting

Dataset. Two public real-world graph datasets were used, namely Live Jour-
nal [2] and Friendster [31]. Both datasets follow power-law distribution with
parameter ↵ ⇡ 1.4, while the Friendster dataset is much larger than the Live
Journal dataset. The parameter ↵ controls the skewness of the power-law distri-
bution, that is, with a small ↵ such as 0.5, all vertices have similar number of
edges, while with a large ↵ such as 1.5, a small number of vertices have much
more edges than others. The synthetic dataset is generated by LinkBench, the
graph database benchmark published by Facebook [1]. It is able to generate
graphs with power-law distribution under varying ↵. The detailed statistics are
shown in Table 1.

Table 1. Statistics of our datasets.

Dataset # Vertex # Edges Raw Size

Live Journal 4, 847, 571 68, 993, 773 2.3GB

Friendster 65, 608, 366 1, 806, 067, 135 150GB

LinkBench 106 ⇠ 107 108 ⇠ 109 5 ⇠ 60GB

Workload. The workloads included typical graph algorithms and database ma-
nipulation. Following [14, 23, 17, 35], we ran typical graph algorithms including
PageRank (PR), Single-Source Shortest Paths (SSSP), Weakly Connected Com-
ponents (WCC) and Sparse Matrix Multiplication (SMM). LinkBench also pro-
vides a mix of insert/delete/update operations on vertices and edges as basic
graph database manipulation.

All experiments were conducted on a machine with 2.5 Ghz Intel Core 2
CPU, 8GB of RAM and 10TB, 15, 000 rpm hard drive. We implemented the pro-
posed batch replacement bu↵er manager on Neo4j 2 (Neo4j-BR) and GraphChi-
DB 3 (ChiDB-BR). Neo4j is a leading industry-standard graph database that

2 http://neo4j.com/
3 https://github.com/graphchi/graphchiDB-scala
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adopts LRU-based bu↵er manager and vertex-centric programming model, while
GraphChi-DB (ChiDB) is a research prototype that discards bu↵er manager
and adopts edge-centric programming model. For database manipulation, we
also report the performance of a relational database MySQL, only for the pur-
pose of reference. ChiDB also has an option to adopt log-structured merge tree
(ChiDB-LSM) for write-optimized database manipulation. We explicitly created
appropriate indexes for all databases during the experimental study.

4.2 Performance Comparison

In this section, we first show the e↵ectiveness of our batch replacement bu↵er
manager for data manipulation and graph algorithms. Then, we show that our
approach is robust for various bu↵er sizes and workloads.

Figure 5 shows the average execution time for the typical graph algorithms.
The bu↵er size BS is set to 5% of the dataset size. We have three observations:
1) for all graph algorithms on all datasets, the batch replacement variants of
the two graph databases outperform their original versions. This shows that our
batch replacement policy is superior to the LRU-based policy and the approach
that does not use bu↵er manager; 2) on both real-world datasets, ChiDB-BR and
ChiDB outperforms Neo4j-BR and Neo4j. This shows edge-centric programming
model is more suitable for graph algorithms on real-world datasets. The high
value of ↵ ⇡ 1.4 indicates that a few vertices may contain a huge number of edges
so that data pages involved in these vertices are read and evicted repeatedly in
Neo4j and Neo4j-BR. Even though, our batch replacement policy exhibits better
performance than the LRU-based policy; 3) on the synthetic dataset, Neo4j-BR
outperforms ChiDB. This is because under ↵ = 0.5 edges are distributed more
uniformly on vertices and thus Neo4j-BR benefit from less bu↵ered page eviction.

Table 2 shows the average execution time for various manipulation workload
on a small dataset (5GB) and a large dataset (50GB) respectively. We have
the following observations: 1) on both datasets, both Neo4j-BR and ChiDB-BR
outperform the original databases equipped with LRU-based bu↵er manager or
log structure merge tree or no bu↵er manager; This indicates that batch re-
placement bu↵er manager is more suitable for graph databases; 2) Neo4j-BR
and ChiDB-BR outperform MySQL, which shows the superiority of specialized
graph database; 3) Neo4j outperforms ChiDB on small dataset while ChiDB out-
performs Neo4j on large dataset, revealing that LRU-based bu↵er management
is sensitive to the scale of dataset, while batch replacement bu↵er management
is more robust.

Both batch replacement bu↵er manager and log structured merge tree are de-
signed for update-intensive applications by leveraging sequential I/O. However,
ChiDB-BR outperforms ChiDB-LSM in most cases. This is because LSM-tree
does not consider the optimal replacement plan. Sometimes LSM-tree’s data
accesses will be scattered across a wide range on disk, which incurs numerous
random I/Os.
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Fig. 5. Execution Time for Graph Algorithms on Three Datasets, where the synthetic
dataset contains 106 vertices and 108 edges with ↵ = 0.5. BS = 5% of dataset size.

Figure 6 validates the robustness of our approach on various ratios of bu↵er
size to data size. On Live Journal dataset, we continuously increased the bu↵er
size until the whole dataset was hold in main memory. The execution time of the
PageRank algorithm keeps dropping. We can see: 1) until the bu↵er holds half
the dataset, graph databases employing the batch replacement policy always out-
perform their counterparts; therefore, our approach can exploit available main
memory e�ciently; 2) when the bu↵er holds the whole dataset and bu↵er re-
placement is no longer needed, our approach consumes 1% less execution time
than their counterparts; this shows that our method for identifying optimal re-
placement plans is e�cient.

Figure 7 shows the query performance on the Friendster dataset for typi-
cal read-only workloads, including retrieval of a specific vertex / edge and a
traversal-heavy Friends-of-Friends (FoF) query. The FoF query is defined to find
all vertices which can reach a specific vertex via any proxy vertex. We can see
that although maintaining intervals of continuous bu↵ered pages is of no use
since there is no replacement for dirty pages, the overhead is still low. Therefore,
although our batch replacement bu↵er manager is designed for update-intensive
applications, its performance is acceptable for read-only applications as well.



12 Authors Suppressed Due to Excessive Length

Table 2. Execution Time (ms) for Graph Database Manipulation on Synthetic Dataset
with ↵ = 1.5 and BS = 5GB.

Data Size Operation ChiDB-BR ChiDB ChiDB-LSM Neo4j-BR Neo4j MySQL

106 vertices,
108 edges

node insert 0.09 12.9 0.10 0.08 0.13 0.11
node delete 0.10 16.7 0.14 0.07 0.12 0.17
node update 0.12 19.1 0.16 0.09 0.13 0.21
edge insert 0.15 24.6 0.17 0.09 0.19 0.25
edge delete 0.15 26.3 0.19 0.12 0.19 0.34
edge update 0.19 29.5 0.22 0.14 0.22 0.41

107 vertices,
109 edges

node insert 31 94 37 36 259 42
node delete 33 105 41 39 268 45
node update 34 116 46 41 280 49
edge insert 42 136 55 47 295 64
edge delete 48 152 63 57 323 69
edge update 51 159 67 62 344 73
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4.3 Property of Batch Replacement

In this section, we evaluate the e↵ectiveness of our batch replacement policy in
terms of I/O and the computational overhead.

Figure 8 plots the ratios of random I/O to all disk I/O for the workloads
of PageRank, node insertion and FoF query respectively, which represent typi-
cal workloads of graph algorithm, database manipulation and read-only query.
We can observe that both Neo4j-BR and ChiDB-BR used the least random I/O
access. Therefore, it is not surprising their execution time is the shortest in
aforementioned experiments. Figure 9 depicts the distribution of bu↵ered inter-
val lengths when running the PageRank Algorithm on the Friendster dataset.
We can see that on most datasets there are su�cient segments of continuous
bu↵ered data pages. Therefore, it is always possible for our batch replacement
bu↵er manager to exploit sequential I/Os. The distribution of random I/O and
interval lengths for other graph algorithms and data manipulation are similar to
Figure 8 and 9.

Figure 10 shows the average execution time for each batch replacement us-
ing our segment tree based solution (Tree) and the trivial sort-based algorithm
(Sort, Algorithm 1) on the Friendster dataset for the PageRank Algorithm. We
can see that as the bu↵er size increases, our segment tree based solution outper-
forms the trivial sort-based solution significantly. Figure 11 shows the additional
memory consumption for maintaining the segment tree of continuous pages on
the Friendster dataset for the PageRank Algorithm. We can see that the segment
tree only consumes less than 1% of the bu↵er size. Note that the computational
and memory overhead are normally only influenced by bu↵er size, rather than
the variation of workloads and datasets.

5 Conclusion

In this paper, we propose a novel approach to batch replacement bu↵er man-
agement for graph databases. Taking the specific data organization and vertex-
centric or edge-centric programming models into consideration, the proposed
method enables graph databases to make the best of sequential I/O. In addition
to a sort-based trivial solution to find optimal replacement plan, we propose a
segment tree based bu↵er structure to e�ciently maintain optimal replacement
plans. Extensive experiments on real-world and synthetic datasets show that
our approach significantly improve the performance of existing graph databases
and outperforms the LRU-based approaches and a recently proposed no-bu↵er
approach. The experiment results also show that our approach incurs minimum
computational and memory overhead and therefore is practical for real-world
applications.

Acknowledge

This work is partially funded by China Scholarship Council. Ling Lius research
is partially supported by the National Science Foundation under Grants IIS-



14 Authors Suppressed Due to Excessive Length

0905493, CNS-1115375, IIP-1230740 and a grant from Intel ISTC on Cloud
Computing.

References

1. Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. Linkbench: A database benchmark based on the facebook social graph.
SIGMOD ’13, pages 1185–1196.

2. Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group
formation in large social networks: Membership, growth, and evolution. KDD ’06,
pages 44–54.

3. Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious
b-trees. SIAM J. Comput., 35(2):341–358, 2005.

4. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag TELOS, 3rd ed.
edition, 2008.

5. Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas,
Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. Building
an e�cient rdf store over a relational database. SIGMOD ’13, pages 121–132.

6. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 30(1-7):107–117, 1998.

7. Wolfgang E↵elsberg and Theo Haerder. Principles of database bu↵er management.
ACM Trans. Database Syst., 9(4):560–595, December 1984.

8. Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow
framework. OSDI’14, pages 599–613.

9. Neo4j graph database. http://neo4j.com/.
10. Titan graph database. http://thinkaurelius.github.io/titan/.
11. Jialong Han and Ji-Rong Wen. Mining frequent neighborhood patterns in a large

labeled graph. CIKM ’13, pages 259–268.
12. Jialong Han, Ji-Rong Wen, and Jian Pei. Within-network classification using

radius-constrained neighborhood patterns. CIKM ’14, pages 1539–1548.
13. Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,

Jinha Kim, and Hwanjo Yu. Turbograph: A fast parallel graph engine handling
billion-scale graphs in a single pc. KDD ’13, pages 77–85.

14. Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph
computation on just a pc. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12, pages 31–46.

15. Twitter Developer:Get Friends List. https://dev.twitter.com/rest/reference/get/friends/list.
16. Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning
and data mining in the cloud. PVLDB ’12.

17. P. Macko, V.J. Marathe, D.W. Margo, and M.I. Seltzer. Llama: E�cient graph
analytics using large multiversioned arrays. ICDE ’15, pages 363–374.

18. Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. SIGMOD ’10, pages 135–146.



Title Suppressed Due to Excessive Length 15

19. Norbert Mart́ınez-Bazan, Victor Muntés-Mulero, Sergio Gómez-Villamor, Jordi
Nin, Mario-A. Sánchez-Mart́ınez, and Josep-L. Larriba-Pey. Dex: High-
performance exploration on large graphs for information retrieval. CIKM ’07,
pages 573–582.

20. Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. An optimality proof
of the lru-k page replacement algorithm. J. ACM, 46(1):92–112, January 1999.

21. Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-
structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385, June 1996.

22. Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly Media,
Inc., 2013.

23. Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
Chaos: Scale-out graph processing from secondary storage. SOSP ’15, pages 472–
488.

24. Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric
graph processing using streaming partitions. SOSP ’13, pages 472–488.

25. Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. The
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