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Abstract—The design of maintenance mechanisms of 

distributed hash tables (DHTs) is usually specific to their 

initial graphs, and thus it is complicated and error-prone. 

Zhang and Liu propose in [4] the “distributed line graphs” 

(DLG) mechanism, a universal technique for designing 

DHTs based on arbitrary regular graphs while preserving 

the main features of the initial graphs. However, two 

important properties of DLG, the expandability and 

fidelity, have not been studied with detailed explanations 

or analysis. In this paper, we study the above properties of 

DLG transformations, and prove that (i) the DLG 

transformations are incrementally expandable, and (ii) 

DLG transformations from Gi to Gi+1 keep fidelity. 
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I. INTRODUCTION 

Distributed hash tables (DHTs) [1,2] have been widely used 
in providing cloud services. The maintenance mechanisms of 
DHTs are usually designed based on a specific type of regular 
graphs, where all nodes have the same number of edges. These 
mechanisms usually require complicated (and error-prone) 
design [1~3], tightly coupled with the static graphs on which they 
are based. 

Zhang and Liu propose the “distributed line graphs” (DLG) 
[4], a universal technique for designing DHTs based on arbitrary 
regular graphs. The main features of the initial graphs are 
preserved. They prove that in a DLG-enabled, N-node DHT, 
the out-degree is d, the in-degree is between 1 and 2d, and the 

diameter is less than 
0 02(log log 1)d dN N D   , where d, 

0D  

and 
0N  represent the degree, diameter and number of nodes of 

the initial graph, respectively. This diameter reaches the lower 

bound (log )d N  [2] of constant-degree DHTs. 

DLG is inspired by the line graph (LG) iteration [5], which 
has been proposed as a universal technique for designing 
multiprocessor networks. These techniques need global 
knowledge of the network topology and centralized control, 
which are not practical in large-scale distributed networks. 
Although DLG is a novel technique for designing DHTs on 
different kinds of initial graphs, two important properties of 
DLG, the expandability and fidelity, have not yet been well 
studied. 

Expandability is equal to the number of nodes that will be 
added to the network after a transformation. When the 
expandability is 1 we say that the transformation is 
incrementally expandable. Clearly DLG must be incrementally 
expandable to be used in DHTs since any node may join/leave 
at any time. 

Fidelity implies that the degree of similarity between the 
two graphs before and after a DLG transformation. If the 
properties (like node degree, diameter, routing, etc.) are 
preserved after any number of DLG transformations, we say 
that the transformations keep fidelity; otherwise we say that 
they do not keep fidelity. 

II. PRELIMINARLIES 

A. Concepts 

The network topology [4,5] is modeled by a graph G = (V,E) 
whose vertices V = V(G) and edges E = E(G) represent, 
respectively, the processing elements (nodes in the network) 
and the links between them. In this paper only unidirectional 
links and directed graphs [5] are considered. For simplicity, in 
the following we use the same term “node” to refer both to a 
vertex in a graph and to a node in a network [6]. If [ , ]a x y  is 

an edge from node x to node y, we say that x (or a) is adjacent 
to y and y is an out-neighbor of x, and that y (or a) is adjacent 
from x and x is an in-neighbor of y [5]. We also say that a is an 
out-edge (resp. in-edge) of x (resp. y). The number of nodes in 

graph G is called the order of G. Let ( )G x  and ( )G x  denote 

the nodes adjacent to and from x. Their cardinalities are the in-

degree, ( ) ( )G Gx x    , and the out-degree, ( ) ( )G Gx x    , of 

x [4]. The degree of x is the sum of its out-degree and in-degree. 

The graph G is d-out-regular (resp. d-in-regular) if ( )G x d    

(resp. ( )G x d   ) for all x G . G is d-regular [4] if it is d-out-

regular and d-in-regular. The distance from x to y, ( , )Gd x y , is 

the length of a shortest path from x to y. The diameter of G, 
denoted as ( )D G , is the largest distance over all the pairs of 

nodes [5]. 

B. Line Graphs 

Let the initial graph 
0G  (i.e., the network topology at the 

beginning) be a d-regular graph. In the line graph [5] of 
iG , 

denoted as 
1 ( )i iG L G  , each node represents an edge of 

iG , 



i.e., 
1( ) { |[ , ]iV G uv u v   ( )}iE G ; and a node uv is adjacent to 

a node wz iff v w , i.e., 
1[ , ] ( )iuv wz E G   when [ , ]u v  is 

adjacent to [ , ]w z  in 
iG . 

Line graphs can be defined iteratively as Gi = L(Gi-1) = … = 
Li(G0). The line graph (shortly LG) iterations simply refer to 
the process of generating graphs by iteratively applying the L 
operator, where Gi is said to be derived from G0. Clearly graphs 

iG  are d-regular. LG iterations preserve the main feature of the 

initial graph, such as degree, diameter and routing algorithm. 
Many graphs can be defined iteratively by LG iterations. E.g., 
Kautz graph K(d,D) = L(K(d, D-1)) = … = LD-1(K(d,1)), and de 
Bruijn graph B(d,D) = L(B(d, D-1)) = … = LD-1(B(d,1)). 

However, the series of graphs generated by LG iterations 
are not incrementally expandable [5], i.e., they cannot 
accommodate arbitrary number of nodes. Many variations were 
proposed to address this problem, e.g., PLG (partial line graphs) 
[6], necklaces [7], and factorization [8]. For example, to support 
arbitrary number of nodes, Fiol and Llado [6] proposed the PLG 
iteration. Let ( , )G V E  be a graph. Let 'E E  be a subset of 

edges which are adjacent to all nodes of G, that is, 
{ | [ , ] '}v u v E V  . A graph ' ( , ')G PL G E  is said to be a 

partial line (PL) graph of G if its nodes represent the edges of 
'E , that is, 

 ( ') { | [ , ] '}V G uv u v E   

and a node uv is adjacent to the nodes 'v w , for each 

( )Gw v , where 

 ' ,if [ , ] 'v v v w E  , or  

 ' any other node of ( ),otherwiseGv w   

Clearly PLG is incrementally expandable. However, as 
discussed in Section III.A, PLG needs global topology 
information, i.e., all the nodes and edges of the old graph to 
generate a new graph, and thus PLG is not suitable for P2P 
scenarios. 

C. Distributed Line Graphs 

Let u = u1u2...um, v = v1v2...vn, m n . The conjunction 

operator [4]  is defined as Formula (3): 


1 1 2 1...m n n m nu v u v v v u v      

The distributed line graphs are defined as follows. 

Definition 1 [4]. Let the initial graph 
0 ( , )G V E  be a d-

regular graph. A series of graphs ( )

1 ( , )i

i iG DL G v   where node 
( )iv  ( )iV G  satisfies 

 ( ) ( )( ) ( )
i i

i i

G Gu v v     ( )iv u  

is called a family of distributed line (DL) graphs derived 

from the initial graph 
0G , if the following conditions hold. 

( ) ( ) ( )

1( ) ( ) { } { ( )}
i

i i i

i i GV G V G v u v u v

      (4b) 



( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( )

( ) ( ) {[ , ] ( )} {[ , ] ( )}

{[ , ] ( )} {[ , ] ( ), ( )}

i i

i i i

i i i i

i i G G

i i i i i

G G G

E G E G x v x v v y y v

u u v u v u v w u v w v

 



  

     

   
 

The above transformation is called distributed line (DL) 

iteration, and node ( )iv  is called responsible node. As discussed 

in [4], (4a) restricts that the identifier length of ( )iv  is no 

greater than any of its direct neighbors; (4b) gives the 
identifiers of the new nodes generated by old edges; and (4c) 
shows how to generate new edges. Fig. 1(a) ~ (c) show a DL 

iteration (0)

1 0( , )G DL G v  with (0) 1v  . Fig. 1(d) shows 

another example with (1) 4v  . 
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Fig. 1. Examples of DL iterations. 

After each DL iteration there would be 1d   more nodes in 

the new graph. Clearly when d = 1 the DL iterations are 
incrementally expandable. But a series of DL graphs with base 

2d   are not incrementally expandable and thus cannot be 

directly applied to building DHTs. E.g., suppose that 
0G  is a 3-

regular graph 
0 (3,2)G K . After the iteration 

1 0( ,1)G DL G , 

there will be two more nodes in 
1G  than in 

0G . A simple 

approach is proposed to address this problem: the newly 
generated nodes are divided into two groups together with their 
edges, each group merging to one node and resulting in a DL+ 
graph [4] with one more node than the old graph. The DL 
iteration and the grouping operation are called together “DLG 
transformations” [4].  

III. EXPANDABILITY AND FIDELITY OF DLG 

A. DLG Vs. LG/PLG 

Although DLG is inspired by the LG/PLG (partial line 
graph) iterations, they have little in common, and DLG is much 
more than a distributed version of PLG. Consequently, they 
have totally different routing algorithms, maintenance 
mechanisms, and properties. 

A sub-branch of the DLG technique, called optimal DL 
iterations, could be viewed as a distributed version of PLG. It 
can be proved (in Theorem 2 in the next Section) that the 
optimal DL iterations are equivalent to PLG iterations. That is, 
if both started with a common regular graph G0, any graph 
obtained by a series of optimal DL iterations has its isomorphic 
counterpart obtained by a series of PLG iterations, and vice 
versa. The core difference between the optimal DL iterations 
and the normal DLG is that, in optimal DL iterations the 
candidate responsible nodes are required to have globally 



shortest identifiers, while in normal DL iterations they are only 
required to have locally shortest identifiers (see (4a)). 

Let us compare the result graphs of DLG and PLG. 
Although they have the same results at the first few iterations, 
they will have different results as the network evolves, since 
DLG does not try to strictly emulate interconnection networks. 
For example, assume G5 is shown in Fig. 2(a). Now, node 01 
satisfies the requirements for being a responsible node. Let G6 
= DL(G5, 01), as shown in the above Fig. 2(b), then in G6 there 
would be two nodes with length 3 (nodes 201 and 301), and a 
node with length 1 (node 5). Clearly G6 can never be achieved 
by any series of PLG iterations from G0, since every PLG 
iteration always changes the node with the globally shortest 
identifier. 
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Fig. 2. DL iteration that never happens in PLG iterations. 

More important, the inside processing of DLG is totally 
different from that of PLG. Consider the DL iteration G1 = 
DL(G0, 1) shown in Fig. 1(a), (b) and (c).  This iteration turns 
node 1’s two in-edges [0,1] and [4,1] into two new nodes 01 
and 41, respectively, and assigns node 1’s in-neighbors to the 
two new nodes: in-neighbor 0 is assigned to 01 and 4 to 41. 
The out-neighbors of the new nodes are the same as those of 
node 1: nodes 2 and 4. Here, the number of involved edges is 
O(1). 

B. DLG Expendability 

This subsection presents the following Theorems to show 
DLG is incrementally expandable. 

Theorem 1. Distributed line graph transformations are 
incrementally expendable. 

Proof. For clarity, we first prove that in a distributed line 
graph, the label of a node must not be a suffix of the label of 

another. Obviously it holds initially for 
0G . Suppose it holds 

for 
iG  with 0i  . 

Let v   
1 2... mv v v . By the definition of DL graphs, the new 

nodes in 
1iG    ( , )iDL G v  are in the form of 

1 2... mv v v  with 

length 1m  , and there is no node v in 
1iG 
. Let y be a new 

node in 
1iG 
. Let u be an old node other than v both in 

iG  and 

1iG 
. It is easy to see that in 

1iG 
: node y is not a suffix of 

other new nodes; node u is not a suffix of other old nodes; and 
neither node y nor u is a suffix of the other. Therefore, it holds 

for 
1iG 
 and thus it holds for all DL transformations. 

Define |x| as the identifier length of node x. Suppose that 

1... mx x x . If there is some node ( )Gy x  satisfying y x , 

by Theorem 1 in [4], we have 
1 1... my x x  . If ( ) 1G x   , node x 

must have another in-neighbor of the form 
1 1 1' ... ...r my x x    

with 1 2r  . Then y will be a suffix of 'y , which is 

contradictory to the above conclusion. So if there is some 

( )Gy x  satisfying y x , then for any ( )Gw x , we have 

w x .  Therefore, a node has exactly 1 in-neighbor if and 

only if its label length is 1-letter longer than that of the in-
neighbor, and thus it cannot be the responsible node in a DL 
iteration. Then according to (4b), after each DL iteration there 
would be d new nodes in the new graph, and according to 
Section III.A the d new nodes are divided into 2 groups 
merging into 2 nodes, one for the deleted node and the other 
for the newly added node. Therefore, the DLG transformations 
are incrementally expandable. 

C. DLG Fidelity 

Next we use the definitions [4] of optimal DL iteration and 

  mapping to bridge the DL graphs with traditional line 

graphs, in order to prove the following Theorem 2 for the 

property of DLG fidelity. Let the initial graph 
0 ( , )G V E  be a 

d-regular graph. For a series of DL iterations ( )

1 ( , )i

i iG DL G v   

is said to be optimal, if the constraint for ( )iv  in Definition 1 is 

strengthened to 

 ( )iu V G   ( )iv u  

Clearly by (5) the candidate responsible nodes are required 
to have the globally shortest identifiers, while by (4a) they are 
only required to have the locally shortest identifiers compared 
with their neighbors. 

Let 
1 2... mu u u u . Define 


1... ,         if 

( , )
,                       otherwise.   

m i mu u i m
u i

u


  
 


 

Define   mapping of graph G as ' ( , )G G m , where 

 ( ') { ( , ) ( )}V G v m v V G   

 ( ') {[ ( , ), ( , )] ( ), ( ),[ , ] ( )}E G u m v m u V G v V G u v E G      

Theorem 2. DLG transformations keep fidelity. 
Proof. Let graph G be a DL+ graph with base d. From [4], 

for all ( )x V G , the out-degree is d, the in-degree is between 1 

and 2d, and the average degree is 2d. The diameter satisfies 

0 0( ) 2(log log 1)d dD G N N D    . So the properties of degree, 

diameter and routing are kept after DLG transformations. Next 
we will show a series of DLG graphs are consanguineous. Let 

the order of 
0G  be 

0N . By the definition of optimal DL 

iterations, for each ( )i

iv G  we have 

 ( )

0

iv G where
0i N  

Suppose that (0)

0( )E E G  satisfies 

 (0)

0{ | [ , ] } ( )v u v E V G  , and  

 (0)

0| |E N  

Then the PL graph * (0)

0 0( , )G PL G E  satisfies 

 *

0 0( ,1)G G   

Suppose that ( 1)

0( )iE E G   with 
00 i N   satisfies 


0

( 1) ( ) ( ) ( ){[ , ] | ( )}i i i i

GE E u v u v     



Then, PL graphs * ( )

0( , )i

iG PL G E  are isomorphic with DL 

graphs ( 1)

1( , )i

i iG DL G v 

  generated by optimal DL iterations, 

and they satisfy 

 *( ,1) ( ,1)i iG G   

with 
00 i N  . On the other hand, clearly we have 

 *

0( ,1)iG G   

with 
00 i N  . Then we have 


1 0( ,1)iG G    with 

00 i N  . 

Similarly, for each 2x   and integer i satisfying 


2 1

0 0

0 0

x x
j j

j j

N d i N d
 

 

      

and we have 

 1

1 0( , ) ( )x

iG x L G 

   

So all nodes in * ( )

0( , )i

iG PL G E  have the same identifier 

length 1x  , and the shortest node identifier in 
1iG 

 be of 

length x. Next, let 
iG  be a series of DL graph derived from the 

initial graph 
0G  by DL iterations. Let the shortest node 

identifier in 
iG  be of length 

im . Let 

 * ( , 1)i i iG G m   

Clearly we have 

 *

0 0G G  

For each ( )

1 ( , )i

i iG DL G v  , there are two cases: 

(i) If ( )| |i

iv m , that is, ( )iv  is of the shortest identifier in 
iG , 

then we have 

 * * ( )

1 ( , )i

i iG DL G v   

Note that ( )iv  also has the shortest identifier in *

iG . 

(ii) Otherwise we have 

 * *

1i iG G   

Therefore, the graphs *

iG ( 0,1,...)i   are a series of DL 

graphs derived from the initial graph 
0G  by optimal DL 

iterations. Then by (15) we have 

 1* *

0( , ) ( )im

i iG m L G 
  

On the other hand, since * ( , 1)i i iG G m  , we have 

 *( , ) ( , )i i i iG m G m   

Then, by (21), (20) and (17), a series of DLG graphs are 
consanguineous. Since line graphs keep fidelity [5], DLG 
transformations also keep fidelity. 

IV. EVALUATION 

In this section we demonstrate the incremental 
expendability of DLG by evaluating the diameter (maximum 
routing path length) of a DLG-enabled, Kautz graph-based 
DHT called DLG-Kautz (DK) [4]. 

We evaluate the diameter of DK, as a function of the 
number of nodes. The base of DK is fixed to d = 2. In each 

experiment we choose an initial node uniformly at random and 
the initial node sends a message which is then routed following 
the bit-correct routing algorithm. The initial graph is K(2,2) as 
depicted in Fig. 1(a). The result is shown in Fig. 3, where the 
number of nodes varies from 6 to 1500. Clearly the 
expandability is 1 and DLG is incrementally expandable. 

 

 

Fig. 3. Incrementally expandable evolution of topology. 

V. CONCLUSION 

This paper focuses on the two properties of expandability 
and fidelity in the DLG transformations [4], and proves that (i) 
DLG transformations are incrementally expandable; and (ii) 
DLG transformations keep fidelity. 
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