Mixing Times of Markov Chains on 3-Orientations of Planar Triangulations

Sarah Miracle
Georgia Institute of Technology
Joint work with

Dana Randall
College of Computing
Georgia Institute of Technology

Amanda Streib
School of Mathematics
Georgia Institute of Technology

Prasad Tetali
School of Mathematics
Georgia Institute of Technology
What is a 3-orientation?

An orientation of the **internal** edges of a planar triangulation such that

- The out-degree of each internal vertex is 3
- The out-degree of the 3 external vertices is 0
\(\alpha\)-orientations

- (\(\alpha\)-orientation) Given \(G = (V,E)\) and \(\alpha: V \rightarrow \mathbb{Z}^+\), vertex \(v\) has out-degree \(\alpha(v)\)
- Bipartite perfect matchings, Eulerian orientations etc. are special instances of \(\alpha\)-orientations
- Counting \(\alpha\)-orientations is \#P-complete
 - Let \(\alpha(v) = d(v)/2\) and then \(\alpha\)-orientations correspond to Eulerian orientations
 - Counting Eulerian orientations \#P-complete [Mihail, Winkler]
 - Still \#P-complete when restrict to planar graphs [Creed]
A Bijection with Schnyder Woods

• Each 3-orientation gives rise to a unique edge coloring known as a Schnyder wood where for each internal vertex \(v \):
 – \(v \) has out-degree 1 in each of the 3 colors
 – the clockwise order of the edges incident to \(v \) is: outgoing green, incoming blue, outgoing red, incoming green, outgoing blue and incoming red

• Schnyder woods are used in
 – Graph drawing
 – Poset dimension theory
 – Counting Planar Maps
 – And many more ….
For each internal vertex v:

- v has out-degree 1 in each of the 3 colors
- the clockwise order of the edges incident to v is: outgoing green, incoming blue, outgoing red, incoming green, outgoing blue and incoming red
Two Sampling Problems

Sample from the set of all 3-orientations of a **fixed triangulation**.

Sample from the set of all 3-orientations of triangulations with **n internal vertices**.
The Mixing Time

Definition: The total variation distance is

\[||P^t, \pi|| = \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} |P^t(x, y) - \pi(x)|. \]

Definition: Given \(\varepsilon \), the mixing time is

\[\tau(\varepsilon) = \min \{ t : ||P^{t'}, \pi|| < \varepsilon, \; \forall \; t' \geq t \}. \]
The Mixing Time

Definition: The total variation distance is
\[
||P^t, \pi|| = \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} |P^t(x, y) - \pi(x)|.
\]

Definition: Given ε, the mixing time is
\[
\tau(\varepsilon) = \min \{ t : ||P^t, \pi|| < \varepsilon, \ \forall \ t' \geq t \}.
\]

A Markov chain is **rapidly mixing** if $\tau(\varepsilon)$ is $\text{poly}(n, \log(\varepsilon^{-1}))$. (or polynomially mixing)
The Mixing Time

Definition: The total variation distance is
\[\| P_t^*, \pi \| = \max_{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega} | P_t^*(x,y) - \pi(x) |. \]

Definition: Given \(\varepsilon \), the mixing time is
\[\tau(\varepsilon) = \min \{ t : \| P_{t'}^*, \pi \| < \varepsilon, \forall t' \geq t \}. \]

A Markov chain is rapidly mixing if \(\tau(\varepsilon) \) is \(\text{poly}(n, \log(\varepsilon^{-1})) \).
(or polynomially mixing)

A Markov chain is slowly mixing if \(\tau(\varepsilon) \) is at least \(\exp(n) \).
Our Results

Sample from the set of all 3-orientations of a fixed triangulation.

1. The local chain is fast if max degree ≤ 6.

2. The local chain can take exponential time.

Sample from the set of all 3-orientations of triangulations with n internal vertices.

3. The local chain is fast.
Sample from the set of all 3-orientations of a fixed triangulation.

1. The local chain is fast if max degree ≤ 6.
2. The local chain can take exponential time.

Sample from the set of all 3-orientations of triangulations with n internal vertices.

3. The local chain is fast.
How Big is the Set of all 3-orientations of a Fixed Triangulation?
How Big is the Set of all 3-orientations of a Fixed Triangulation?
How Big is the Set of all 3-orientations of a Fixed Triangulation?
All 3-orientations of a Fixed Triangulation

• No known efficient method for exactly counting
• There is a known FPRAS based on a bijection with perfect matchings in bipartite graphs $O^*(n^7)$ [Bezáková et al.]
 – Improving on result by [Jerrum, Sinclair, Vigoda]
 – Implies an efficient sampling algorithm exists
• Special Case: triangular lattice $O(n^4)$ algorithm using a “tower chain” [Creed]
Repeat:

- Pick a triangle t;
- If t is a directed cycle, reverse it with probability $\frac{1}{2}$.
The Local Markov Chain \mathcal{M}_{TR}

Thm: The local Markov chain \mathcal{M}_{TR} connects the set of all 3-orientations of a fixed triangulations [Brehm].

Repeat:

- Pick a triangle t;
- If t is a directed cycle, reverse it with probability $\frac{1}{2}$.

![Diagram showing the process of the Markov chain]
Our Results

1. The local chain \mathcal{M}_{TR} is fast if max degree ≤ 6.

2. The local chain \mathcal{M}_{TR} can take exponential time.

3. The local chain is fast.

Sample from the set of all 3-orientations of a fixed triangulation.

Sample from the set of all 3-orientations of triangulations with n internal vertices.
Our Results

Sample from the set of all 3-orientations of a fixed triangulation.

1. The local chain \mathcal{M}_{TR} is fast if max degree ≤ 6.

2. The local chain \mathcal{M}_{TR} can take exponential time.

Sample from the set of all 3-orientations of triangulations with n internal vertices.

3. The local chain is fast.
Let $\Delta_i(T)$ be the maximum degree of any internal vertex of T.

Thm: If $\Delta_i(T) \leq 6$ then \mathcal{M}_{TR} mixes in time $O(n^8)$

[M., Randall, Streib, Tetali]
Let $\Delta_I(T)$ be the maximum degree of any internal vertex of T.

Thm: If $\Delta_I(T) \leq 6$ then \mathcal{M}_{TR} mixes in time $O(n^8)$.

Proof sketch:

A. Define auxiliary Markov chain \mathcal{M}_{CR}
B. Show \mathcal{M}_{CR} is rapidly mixing
C. Compare the mixing times of \mathcal{M}_{TR} and \mathcal{M}_{CR}
Thm: If $\Delta_i(T) \leq 6$ then \mathcal{M}_{TR} mixes in time $O(n^8)$ [M., Randall, Streib, Tetali]

Proof sketch:

A. Define auxiliary Markov chain \mathcal{M}_{CR}
B. Show \mathcal{M}_{CR} is rapidly mixing
C. Compare the mixing times of \mathcal{M}_{TR} and \mathcal{M}_{CR}

\mathcal{M}_{CR} can reverse directed cycles which contain more than one triangle

- Maintains the same stationary distribution
- Moves are based on "tower moves" introduced by [Luby, Randall, Sinclair]
Repeat:
- Pick a triangle \(f \);
- If \(f \) is the beginning of a tower of length 1, reverse it with probability \(\frac{1}{2} \).
- If \(f \) is the beginning of a tower of length \(k \geq 2 \), reverse it with probability \(\frac{1}{6k} \).
A tower of length k is a path of faces f_1, f_2, \ldots, f_k such that:

1. f_k is the only face bounded by a directed cycle
2. For every $1 \leq i < k$, the disagree edge of f_i is also incident with f_{i+1}
3. Every vertex v is incident to at most 3 consecutive faces in the path
Our Results

Sample from the set of all 3-orientations of a fixed triangulation.

1. The local chain \mathcal{M}_{TR} is fast if max degree ≤ 6.

2. The local chain \mathcal{M}_{TR} can take exponential time.

Sample from the set of all 3-orientations of triangulations with n internal vertices.

3. The local chain is fast.
Our Results

Sample from the set of all 3-orientations of a **fixed triangulation**.

1. The local chain \mathcal{M}_TR is fast if max degree ≤ 6.

2. The local chain \mathcal{M}_TR can take exponential time.

Sample from the set of all 3-orientations of triangulations with n **internal vertices**.

3. The local chain is fast.
Thm: There exists a triangulation T on which M_{TR} requires exponential time. [M., Randall, Streib, Tetali]
Thm: There exists a triangulation T on which M_{TR} requires exponential time. [M., Randall, Streib, Tetali]

Proof sketch:
A. Define a triangulation T
B. Show that T has a “bottleneck”
Thm: There exists a triangulation T on which \mathcal{M}_{TR} requires exponential time. [M., Randall, Streib, Tetali]

Proof sketch:
A. Define a triangulation T
B. Show that T has a “bottleneck”
There is only one 3-orientation of T with edge (v_0, v_1) colored green!
The “Bottleneck
The "Bottleneck

Edge \((v_0, v_1)\) colored red.
The “Bottleneck

Edge \((v_0, v_1) \) colored red.

Edge \((v_0, v_1) \) colored blue.
The “Bottleneck

Edge \((v_0, v_1)\) colored red.

Edge \((v_0, v_1)\) colored green.

Edge \((v_0, v_1)\) colored blue.
Two Sampling Problems

Sample from the set of all 3-orientations of a fixed triangulation.

Sample from the set of all 3-orientations of triangulations with n internal vertices.
Two Sampling Problems

Sample from the set of all 3-orientations of a **fixed triangulation**.

Sample from the set of all 3-orientations of triangulations with **n internal vertices**.
• In bijection with pairs of non-crossing Dyck paths
 (string with equal # of 1’s and -1’s where the sum is always greater than 0)

• Has size $C_{n+2}C_n - C_{n+1}^2$
 (C_n is the nth Catalan number)

• Can sample using the reduction to counting
 (Explicitly worked out by [Bonichon, Mosbah])
The Local Markov Chain \mathcal{M}_{EF}

Repeat:

- Pick two adjacent triangles t_1 and t_2 with shared edge xy;
- Pick an edge \overrightarrow{zx} from $t_1 \cup t_2$, if possible, replace $(\overrightarrow{zx}, \overrightarrow{xy})$ by (xz, zw) with probability $\frac{1}{2}$.
The Local Markov Chain \mathcal{M}_{EF}

Repeat:

- Pick two adjacent triangles t_1 and t_2 with shared edge xy;
- Pick an edge zx from $t_1 \cup t_2$, if possible, replace (zx, xy) by (xz, zw) with probability $\frac{1}{2}$.

Thm: The local Markov chain \mathcal{M}_{EF} connects the set of all 3-orientations with n internal vertices [Bonichon, Le Saec, Mosbah].
Our Results

Sample from the set of all 3-orientations of a fixed triangulation.

1. The local chain \mathcal{M}_{TR} is fast if max degree ≤ 6.

2. The local chain \mathcal{M}_{TR} can take exponential time.

Sample from the set of all 3-orientations of triangulations with n internal vertices.

3. The local chain \mathcal{M}_{EF} is fast.
Our Results

Sample from the set of all 3-orientations of a **fixed triangulation**.

1. The local chain \mathcal{M}_{TR} is fast if max degree ≤ 6.

2. The local chain \mathcal{M}_{TR} can take exponential time.

Sample from the set of all 3-orientations of triangulations with n **internal vertices**.

3. The local chain \mathcal{M}_{EF} is fast.
Thm: \mathcal{M}_{EF} mixes rapidly. [M., Randall, Streib, Tetali]
Thm: \mathcal{M}_{EF} mixes rapidly. [M., Randall, Streib, Tetali]

Proof sketch:

A. Let \mathcal{M}_{DK} be the “mountain to valley” chain on Dyck paths
B. \mathcal{M}_{DK} is known to mix rapidly [Wilson]
C. Compare the mixing times of \mathcal{M}_{EF} and \mathcal{M}_{DK}
Thm: \mathcal{M}_{EF} mixes rapidly. [M., Randall, Streib, Tetali]

Proof sketch:

A. Let \mathcal{M}_{DK} be the “mountain to valley” chain on Dyck paths
B. \mathcal{M}_{DK} is known to mix rapidly [Wilson]
C. Compare the mixing times of \mathcal{M}_{EF} and \mathcal{M}_{DK}

Although \mathcal{M}_{DK} is local in the setting of Dyck paths, in the context of 3-orientations it can make global changes in a single step.
The Bijection with Dyck Paths

Bottom Path:
1. Trace around the blue tree in a clockwise direction
2. Add a 1 if the edge is the opposite of the trace direction
3. Otherwise add a 0

Top Path:
1. Let v_1, v_2, \ldots, v_n be the order the vertices are encountered in step 1 above
2. Let d_i be the # of incoming red edges to vertex v_i
3. Let r be the # of incoming red edges to s_{red}
4. The top path is: $1(-1)^{d_2}, 1, (-1)^{d_3}, \ldots 1(-1)^{d_n} (-1)^r$
The “Mountain to Valley” chain \mathcal{M}_{DK}

Repeat:

- Pick v on one of the paths;
- If v marks a mountain/valley, invert with probability $\frac{1}{2}$, if possible.
Open Problems

1. Can the fast mixing proof for \mathcal{M}_{TR} be extended to triangulations with $\Delta_1(T) > 6$?

2. Is there a family of triangulations with bounded degree where the mixing time of \mathcal{M}_{TR} is exponentially large but has bounded degree?
 - Recently [Felsner, Heldt] created a, somewhat simpler, family of graphs based on our construction but the maximum degree still grows with n.

3. Is there an alternative local chain which can sample efficiently from the set of 3-orientations of a fixed triangulation without recourse to the bipartite perfect matching sampler of [Bezáková et al.]?
Thank you!