8803 Machine Learning Theory, Spring 2010

Course Information


Lectures:  Tues/Thurs 3:05-4:25, Skiles 168.

Instructor: Maria Florina Balcan (KACB 2144 , 404-385-8640).

Course Description: Machine learning studies automatic methods for learning to make accurate predictions or useful decisions based on past observations and experience, and it has become a highly successful discipline with applications in many areas such as natural language processing, speech recognition, computer vision, or gene discovery.

This course on the design and theoretical analysis of machine learning methods will cover a broad range of important problems studied in theoretical machine learning. It will provide a basic arsenal of powerful mathematical tools for their analysis, focusing on both statistical and computational aspects. We will examine questions such as "What guarantees can we prove on the performance of learning algorithms? " and "What can we say about the inherent ease or difficulty of learning problems?". In addressing these and related questions we will make connections to statistics, algorithms, complexity theory, information theory, game theory, and empirical machine learning research.

Evaluation and Responsibilities: Grading will be based on 5 or 6 homework assignments, a take-home final, and a class presentation or project.

General structure of the course: We will use roughly 3/4 of the lectures to cover "core" topics in this area, and then will diverge in the remaining 1/4 based on student interest. Here is a short outline of the "core" portion (some bullets correspond to multiple lectures):

Textbooks: The recommended (not required) textbooks are An Introduction to Computational Learning Theory by M. Kearns and U. Vazirani, and A Probabilistic Theory of Pattern Recognition by L. Devroye, L. Györfi, G. Lugosi. Additionally, we will use a number of survery articles and tutorials.