
Monitoring Deployed Software
Using Software Tomography

Jim Bowring
College of Computing

Georgia Institute of
Technology

Atlanta, Georgia 30332-0280

bowring@cc.gatech.edu

Alessandro Orso
College of Computing

Georgia Institute of
Technology

Atlanta, Georgia 30332-0280

orso@cc.gatech.edu

Mary Jean Harrold
College of Computing

Georgia Institute of
Technology

Atlanta, Georgia 30332-0280

harrold@cc.gatech.edu

ABSTRACT
Software products are often released with missing function-
ality or errors that result in failures in the field. In previous
work, we presented the Gamma technology, which facilitates
remote monitoring of deployed software and allows for a
prompt reaction to failures. In this paper, we investigate
one of the principal technologies on which Gamma is based:
software tomography. Software tomography splits monitor-
ing tasks across many instances of the software, so that par-
tial information can be (1) collected from users by means of
light-weight instrumentation and (2) merged to gather the
overall monitoring information. After describing the tech-
nology, we illustrate an instance of software tomography for
a specific monitoring task. We also present two case studies
that we performed to evaluate the presented technique on a
real program. The results of the studies show that software
tomography can be successfully applied to collect accurate
monitoring information using only minimal instrumentation
on each deployed program instance.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Monitors, Testing tools, Tracing

General Terms
Verification, Reliability, Experimentation, Measurement

Keywords
Software engineering, code coverage, Gamma technology,
software tomography, tomographic refinement

1. INTRODUCTION
The development of reliable and safe software is difficult.

Quality assurance tasks such as testing are often constrained
due to time-to-market pressures and because products must
function in many environments with variable configurations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’02, November 18–19, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-479-7/02/0011 ...$5.00.

Consequently, released software products may exhibit miss-
ing functionality, errors, incompatibilities with the running
environment, security holes, or inferior usability.

Therefore, there is a need for techniques that can monitor
software’s behavior after its release, enabling software pro-
ducers to effectively detect and fix problems. During devel-
opment, systems can be diagnosed by performing static and
dynamic analysis, using techniques such as ad-hoc runtime
environments or code instrumentation. Unfortunately, these
approaches cannot be used when the software is executing in
the field. A suitable ad-hoc runtime environment may not
be available on the target platform and, even if available,
might be too inefficient to be used. Extensive instrumenta-
tion, on the other hand, produces space and execution time
overhead that is generally unacceptable [3].

Other researchers have addressed this problem and inves-
tigated possible solutions. The Perpetual Testing project
recognizes the need to develop “seamless, perpetual analy-
sis and testing of software through development, deployment
and evolution,” [15] and proposes one partial solution, called
Residual Testing [14]. Residual Testing proposes to contin-
uously monitor for fulfillment of test obligations that were
not satisfied in the development environment—the residue.
Residual Testing provides only a partial solution to the prob-
lem of monitoring deployed software because it does not ad-
dress the issue of reducing the instrumentation required to
monitor the residue.

Another proposed approach is Expectation-Driven Event
Monitoring (EDEM). EDEM uses software agents deployed
over the Internet to collect application-usage data to help
developers improve the fit between application design and
use [4, 9]. This approach addresses the problem of monitor-
ing deployed software, but is limited in that it collects only
usage information through event monitoring and cannot be
used to gather different kinds of information (e.g., profiling
information). Furthermore, EDEM collects the same infor-
mation about each executing program, which could result in
unacceptable overhead.

In previous work, we presented Gamma technology as
a way of continuously monitoring and improving software
products after deployment [12]. Gamma provides several
important technologies, including software tomography and
on-site code modification. Software tomography1 (1) divides

1Software Tomography is named after computed axial to-
mography (CAT) wherein the structure of a subject is re-
constructed from a series of cross-sectional images.

the task of monitoring software and gathering dynamic anal-
ysis information into a set of subtasks that require only min-
imal instrumentation, (2) assigns the subtasks to different
instances of the software, so that none of the instances will
experience significant performance degradation due to in-
strumentation, and (3) integrates the information returned
by the different software instances to gather the overall mon-
itoring information. On-site code modification enables mod-
ifications of the code in the field and allows for dynamically
reconfiguring instrumentation (e.g., to further investigate a
problem or to gather different kinds of information) and for
efficiently delivering solutions or new features.

In this paper, we investigate software tomography. Af-
ter describing the technology, we show how it can be used
to collect monitoring information from running instances of
a program. In particular, we select a representative moni-
toring task, branch coverage, and describe a suitable set of
software-tomography techniques.

To evaluate the presented techniques, we perform two case
studies in which we apply the techniques to a real program
and assess, through simulation, their effectiveness and effi-
ciency in performing the selected monitoring task. Although
preliminary in nature, the results of the study are promis-
ing. We find that by using software tomography we are
able to collect accurate monitoring information for measur-
ing branch coverage by instrumenting less than two percent
of the branches in each instance. Monitoring conducted
without software tomography would normally require full
instrumentation of some, if not all, the running instances of
the program.

The main contributions of the work are:

• An investigation into software-tomography techniques
for the monitoring of deployed software. This includes
the establishment of an initial framework for (1) the
partitioning of monitoring tasks so as to provide for
the distribution of light-weight instrumentation over
many program instances; and (2) the process of to-
mographic refinement, a dynamic improvement of the
tomographic process.

• The first set of studies to evaluate, by simulation,
software-tomography techniques on a real example. The
studies explore the application of the aforementioned
framework to the task of measuring branch coverage
in a subject.

2. SOFTWARE TOMOGRAPHY
Traditional monitoring tasks involve instrumenting the

code by inserting a full complement of probes into each in-
stance of the software. For most such tasks, this approach
requires probes at many points in the software, significantly
increasing its size and compromising its performance. Such
overhead is in general unacceptable to users, and inappli-
cable in contexts in which resources are limited, such as
embedded systems.

To achieve low-impact and minimally-intrusive monitor-
ing, we developed a new technique, called software tomogra-
phy [12]. Our technique divides the monitoring task into a
set of subtasks, each of which involves little instrumentation,
and assigns these subtasks to individual software instances
for monitoring. The technique then synthesizes the informa-
tion collected from each instrumented instance, and yields
the monitoring information required for the original task.

In order to use software tomography and gather informa-
tion for a specific monitoring task we must perform a series
of steps: (1) identification of basic subtasks, (2) assignment
of subtasks to instances, and (3) optimization of the num-
ber and placement of probes. These steps represent the key
components of our process and next we discuss each in de-
tail.

Identification of basic subtasks. Some simple tasks, such
as statement coverage, can be easily partitioned into mini-
mal subtasks. More complex monitoring tasks, such as dy-
namic data-flow analysis and profiling, will generally require
that each subtask probe more than one point in the pro-
gram. Yet other tasks, such as the detection of memory-
access information, which involve the recording of execution
details at several program points, might require complicated
task-partitioning techniques, utilizing static program anal-
ysis. Tasks might also include the validation of usage and
operational profiles developed during the software develop-
ment process. Here, the subtasks will be determined on the
basis of program operations.

Assignment of subtasks to instances. Software instances
are executed by users at will and each user may use different
parts of the software. Therefore, the frequency of execution
and the parts of the software exercised may vary across in-
stances and over time. To ensure that we gather enough
information for each subtask, so that the overall monitoring
information is meaningful, we need a technique to assign
subtasks to instances in an effective and efficient way. Our
technique performs subtask reassignment based on feedback
from the field. For example, we may eliminate subtasks
that have been completed and reassign subtasks not ade-
quately accomplished. Other possible inputs to the process
might include random selection or recommendations from a
statistical model. We call our reassignment technique tomo-
graphic refinement.

Optimization of number and placement of probes. Op-
timizing the number and placement of probes can further
reduce the instrumentation overhead for the software in-
stances. For many tasks, such as data-flow coverage, static
information extracted from the software can be used to re-
duce the number of probes needed for a specific subtask.
Furthermore, static information can be used to optimize the
number and placement the probes. In particular, when more
than one subtask must be assigned to one software instance,
the way in which subtasks are grouped may affect the num-
ber of probes needed. For example, for path profiling, we use
an existing technique by Ball and Larus [3], which instru-
ments a program for profiling by choosing a placement of
probes that minimizes run-time overhead. We have adapted
this technique so that it determines the placement of probes
that monitor only the desired paths instead of all acyclic
paths in the procedures [1].

Software tomography can be used to perform different
kinds of dynamic analysis and monitoring tasks on deployed
systems. For example, software tomography might be used
to monitor the behavior of software and detect possibly ab-
normal or unforeseen situations; in this case, software fail-
ures may be automatically identified using mechanisms that
compare a program’s behavior signature (e.g., [7, 16]) com-
puted in the field with a signature computed in-house.

In this paper, we discuss how to use software tomography
for a specific dynamic-analysis task: monitoring for branch
coverage. We present two techniques for measuring branch

coverage using a set of deployed program instances. We
demonstrate the partial instrumentation of single instances,
the synthesis of the collected data, and the technique of
tomographic refinement.

As stated above, the first step in the process for defining a
software-tomography technique is the identification of basic
subtasks. In the case of monitoring for branch coverage, the
most basic subtask is that of monitoring a single branch.

After the basic subtasks have been identified, single sub-
tasks can be assigned to software instances. We assume, for
this discussion, that we have no a priori information about
how the software will be used. Therefore, we evenly dis-
tribute the subtasks among the instances, one per instance.2

Such a distribution of probes, although efficient, is in general
ineffective. It is possible that the branches instrumented in
a given instance will never be executed. This will be true
for unreachable code and very likely for rarely-used code.
Thus the initial effectiveness of the detection process varies
inversely with the number of instances monitoring these un-
reachable and rarely-exercised branches.

To remedy this problem, we introduce tomographic re-
finement, as described above. In this paper, we restrict our
attention to two possible refinement policies: round-robin
and aggregation.

First we define a measure, which we call the refinement
ratio. This ratio is calculated, in this case, by dividing the
number of branches reported as covered in a given time in-
terval by the number of branches yet to be covered. We can
then define thresholds in terms of this ratio, as we demon-
strate below. The measurement of time here is problematic,
thus we choose to use program executions as a proxy for the
unit of time in our simulations.

In round-robin refinement, every time branch b is reported
as covered, (1) the instrumentation for that branch is dis-
abled/removed in all the instances that are instrumented for
b, and (2) all the instances that were instrumented for b are
then re-instrumented for another branch, on a round-robin
basis, from the pool of branches not yet reported as covered.

Aggregation refinement is an improvement of round-robin
refinement that provides for the assignment of more than
one branch per instance. Aggregation refinement is initiated
when the refinement ratio falls below a specific threshold. It
is worth noting that this approach increases the instrumen-
tation overhead of each instance primarily with respect to
code size, as the additional instrumentation is for branches
that are likely to be rarely exercised.

As both refinement techniques are interactive and dy-
namic, we need to be able to control their termination based
on the quality of their success. For these techniques, we de-
fine a termination policy by providing a lower limit to the re-
finement ratio. When ratio falls below this threshold value,
we terminate the refinement process.

In the next section, we describe our empirical investiga-
tions using two case studies that we designed to evaluate the
proposed software-tomography techniques.

3. EMPIRICAL INVESTIGATIONS
To investigate whether software tomography can be effec-

tively used to perform continuous, lightweight monitoring of

2It is worth noting that, based on the number of deployed
instances, we may not be able to assign all the subtask in this
initial phase. If this is the case, tasks that are left unassigned
are assigned by the tomographic-refinement policy.

deployed software, we performed a set of case studies con-
sidering the following research question:

Given a program P , a set of instances of P run-
ning on different machines, and a monitoring task
T that, if realized by fully instrumenting pro-
gram P , would produce information I, can we
estimate I by partially instrumenting each in-
stance of P , collecting (partial) monitoring data
from each instance, and merging such data?

We restricted our attention to the software tomography
task presented in Section 2 and we considered four tech-
niques:

Full instrumentation. Each instance is fully instrumented.
This technique does not exploit software tomography
and serves as our control technique. It lets us compare
the approximated information that we gather using the
tomographic techniques with the complete monitoring
information. We refer to this technique as the FULL

technique.

Single entity. The set of branches are evenly assigned among
the instances so that each instance is instrumented for
one single branch. We refer to this technique as the
SIMPLE technique.

Round-robin refinement. This technique implements the
round-robin approach described in section 2. We refer
to this technique as the REF-RR technique.

Aggregation refinement. This technique implements the
aggregation approach described in section 2. We refer
to this technique as the REF-AG technique.

To investigate our research question, we simulated the ap-
plication of the four techniques to a subject and collected
and compared the results. In the next sections, we illustrate
our experimental settings and present and discuss two case
studies.

3.1 Experimental Settings
As a subject for our studies, we used a C program called

Space. Space is an interpreter for an antenna array def-
inition language written for the European Space Agency.
It consists of 136 functions and 6,200 lines of code, and is
available with a set of 13,585 test cases.

Because of the nature of the considered studies, perform-
ing our experiments in a real setting would involve the ac-
tual deployment of an application to a number of sites, the
presence of one or more users at each site, and a complex
infrastructure to collect and merge the data. Therefore, we
performed our experiments using simulation. Using simula-
tion we can explore our research question without the initial
overhead of actually deploying software and collecting the
data via a network or the Internet.

We implemented our simulation as follows. First, we used
the Aristotle analysis system [2, 6] to instrument Space

for branch coverage, ran all the 13,585 test cases, and stored
the coverage information (i.e., which branches are covered
by each test case) in a relational database. Then, we built a
tool on top of the database: the Tomographic Simulator

(TS).
Using TS, we can perform simulations where (1) several

instances of Space are deployed on different sites, and (2)
each instance is partially instrumented and is executed by

one or more users at each site. The tool simulates partial
instrumentation by recording, for each instance, the instru-
mented branch(es) for that instance. The tool simulates an
execution of the program at a given site s by randomly se-
lecting a test case t from a pool. The pool can be the entire
set of test cases or a subset thereof, depending on the pa-
rameters of the simulation (as described below). Based on
the coverage information stored in the database for t and on
the instrumentation information recorded for s, the tool can
report whether an instrumented branch would be covered
by the considered execution.

There are different parameters for a simulation, which can
be set using a menu-driven interface provided by TS:

Number of deployed instances (N). This parameter rep-
resents the number of sites at which the monitored
program is deployed and used.

Site weight (W). This parameter is used by the tool to
assign to each site a random weight w between 1 and
W . The weight of one site represents the frequency
with which users at that site execute the software rel-
ative to other users at other sites. For example, if the
weight is 2 for site s1 and 4 for site s2, then the in-
stance of the program in s2 will be executed twice as
often as the instance in s1. If W is set to 1, all sites
execute the program with the same frequency.

Site input space (I). This parameter is used by the tool
to assign to each site a random value i between 1 and
I. This value determines how many test cases are as-
sociated with the site (i.e., how many different execu-
tions may occur at the site). A set of i test cases is
assigned to the site by selecting test cases from two
pools: a pool of unique test cases, which are removed
from the pool once assigned, and a pool of overlapping
test cases, which can be assigned to more than one
site. If I is set to all, then each site is assigned the
whole test suite.

Using the latter two parameters we can simulate individ-
ual operational profiles [11] at each site. By modifying these
two parameters, we can tune the heterogeneity of the user
population. In the case of technique REF-AG, there are two
additional parameters, that is, the threshold for refinement
(TR) and the threshold for termination (TT). The value of
TR is used to decide when to assign additional branches to
the instances and the value of TT is used to decide when to
terminate the refinement process, as described in Section 2.
For both our studies, we used a value of 10% for TR and a
value of 0.1% for TT .

After the parameters have been set and TS has initialized
all the sites with a pool of test cases and possibly a weight-
ing factor, the simulation starts. The tool iterates through
all the sites and, for each site, simulates the execution of
that instance with the input provided from the set of tests
assigned to that site. TS reports whether the instrumented
branches were exercised by that execution. This informa-
tion is retrieved with an appropriate query to the database.
When all the sites have been processed once, TS performs
the refinement for REF-RR and REF-AG, by updating the
instrumentation information, and then re-iterates through
all the sites. The process terminates after a given number
of iterations, when TT is reached, or when the user stops it.

3.2 Case Studies
In this section, we present the results of two case studies

in which we evaluated the considered software-tomography
techniques on Space using our simulation tool TS. In these
studies, we considered two different scenarios. For the first
study, we constructed a scenario in which users manifest
identical behavior in terms of their potential set of inputs.
For the second study, we constructed a scenario in which
users have differing operational profiles.

To be able to compare the results, we assumed the ini-
tial distribution of probes to be the same for all the three
tomographic techniques.

In each study, we evaluated the different tomographic
techniques along three dimensions:

Effectiveness. The accuracy of the information computed
by the technique with respect to the actual information
(provided by the control technique).

Efficiency with respect to instrumentation. The num-
ber of probes per instance required for the application
of the technique.

Efficiency with respect to interactions. The number of
interactions with the deployed instances occurring dur-
ing the monitoring. Interactions occur each time the
instrumentation is updated.

3.2.1 Case Study 1
In this study, we examine the performance of each consid-

ered technique when all instances of the software are used
in a uniform fashion. To this end, we set the input space so
that each site is assigned the complete test suite.

The parameters of the simulation are set as follows:

• Number of deployed instances := 2,500
• Site weight := 1
• Site input space := all

• Threshold for REF-AG := 10%

The diagram in Figure 1 shows the results for 100 itera-
tions of the simulation for the four techniques. As shown in
the graph, technique FULL reports the coverage of 1,074
branches during the first iteration. This limit is a function
of the test suite. Thus, no additional coverage is achieved
during the following iterations.

Effectiveness. As expected, all three tomographic tech-
niques asymptotically tend to the curve for technique FULL.
The curve for technique SIMPLE reaches the curve for
FULL after several thousands of iterations (at a point not
shown in the diagram). The reason why the two curves even-
tually converge is that, with uniform sites and without any
refinement, each branch reported as covered by FULL has
a constant, greater than zero probability of being exercised.
In other words, because of the uniformity of the sites, this
result is a property of the probability distribution for branch
coverage in the test suite. Nevertheless, if we express the ac-
curacy of a technique in terms of the area between the curve
for the technique and the curve computed by FULL, we can
easily see how REF-AG performs better than REF-RR and,
in turn, REF-RR performs better than SIMPLE.

Efficiency w.r.t. instrumentation. By definition, SIMPLE

and REF-RR always have only one branch instrumented
per instance. REF-AG, on the other hand, performs to-
mographic refinement by assigning an increasing number of
probes to software instances. In this study, REF-AG reaches

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

M
ea

su
re

d
co

ve
ra

ge

Iterations

FULL
SIMPLE
REF-RR
REF-AG

Figure 1: Results for Case Study 1.

an optimum and stops refining at the 22nd iteration, after
having performed 17 refinements. Therefore, the number of
branches instrumented by the technique in this case is 1.4%
of the total number of branches (17 over 1,228).

Efficiency w.r.t. interactions. By definition, SIMPLE

has no interactions with the software instances, whereas
techniques using tomographic refinement do. According to
the termination policy described in Section 2 and the simu-
lation parameters, both refinement techniques keep on per-
forming refinements until the rate of progress falls below a
threshold of 0.1%. In the case of REF-RR, the threshold
is not reached within the first 100 iterations. During this
time REF-RR performs 4,811 interactions with the sites on
which the program is deployed. REF-AG computes the ac-
curate coverage information (1,074 branches covered) in just
21 iterations, but at the cost of a four-fold increase in the
number of interactions over REF-RR (20,562). Thus, the
improved performance is achieved at a performance cost.
This trade-off suggests that there may be ways to tune the
two parameters, depending on the requirements of the mon-
itoring task.

3.2.2 Case Study 2
In this study, we examine the performance of each consid-

ered technique when every site is given a distinct operational
profile or “personality.” To this end, we assign a range of
weights and distinct input spaces to each site by suitably
modifying the parameters of the simulation.

This second scenario is more representative of how real
users might execute the software than is Study 1. This is
because, in general, programs may be used by a variety of
people in different contexts producing heterogeneous pro-
gram behaviors.

The parameters of the simulation are set as follows:

• Number of deployed instances := 2,500
• Site weight := 50
• Site input space := 25
• Threshold for REF-AG := 10%

The diagram in Figure 2 shows the results for 50 itera-
tions of the simulation for the four techniques. As in study
one, technique FULL reports the coverage of 1,074 branches
during the first iteration and no additional coverage is re-
ported subsequently. It is important to note that, because
of the way the simulation is performed, each iteration in
study one represents 2,500 executions, whereas in study two
each represents an average of 62,500 executions. Although
we could normalize the results in terms of executions, this
would not change the qualitative nature of the results.

Effectiveness. For this study, the presence of operational
profiles changes the results with respect to the effectiveness
of the three techniques. The curves for SIMPLE and REF-
RR do not converge to the curve for FULL. SIMPLE does
not converge because, without refinement and with differ-
ent operational profiles, some of the probes are never exe-
cuted in the instance to which they are assigned. REF-RR

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50

M
ea

su
re

d
co

ve
ra

ge

Iterations

FULL
SIMPLE
REF-RR
REF-AG

Figure 2: Results for Case Study 2.

does not converge because the rate of progress falls below
the threshold that determines refinement termination. The
curve for REF-AG, on the other hand, converges to the curve
for FULL after 14 iterations.

Efficiency w.r.t. instrumentation. For this study, REF-
AG reaches an optimum and terminates the refinement at
the 14th iteration, after having performed 8 refinements.
Therefore, the number of branches instrumented by the tech-
nique in this case is 0.7% of the total number of branches (8
over 1,228).

Efficiency w.r.t. interactions. In the case of REF-RR,
the threshold for termination is reached after 13 iterations,
when the number of branches reported as covered is 865.
During the 13 iterations, the number of interactions with the
deployment sites is 2,708. REF-AG interacts with the sites
only up to the 14th iteration, when the refinement process
terminates, and performs a total of 8,447 interactions. As in
study 1, the improved performance of REF-AG is achieved
at a cost of a higher number of interactions.

3.3 Limitations of the Studies
As with any empirical study, this study has limitations.

We have considered the application of the tomographic tech-
niques to a single program and we do not know whether
the input space given by our test suite is representative of
any actual input space that might be provided by real users.
Therefore, although we used a real program, we cannot claim

generality for our results and additional studies are required
to address such questions of external validity.

Other limitations involve internal and construct validity.
In our studies, we assumed that dynamic updates of the
instrumentation can always be performed instantaneously
and with a fixed overhead. Latencies or hidden costs in the
updates could affect the performances of the tomographic
techniques. We also assumed that the overhead for a given
probe is fixed. Depending on the location of the probe, the
overhead associated with it may vary. For example, a probe
in a loop that is executed a high number of times before
the probe gets eliminated or deactivated comports a bigger
overhead than a probe in a branch rarely executed.

3.4 Discussion
These two studies show that for the task of branch cover-

age detection using software tomography, where the goal is
to measure coverage, the accuracy can be increased at the
cost of additional interaction with the deployed instances. In
fact, without a refinement strategy of some sort, the growth
in the rate of detection for SIMPLE approaches zero be-
fore the task is complete. The cost of this incompleteness
can be contrasted with that of a refinement strategy that
will likely complete the task in a reasonable time. Although
we have not formalized a cost model, there are two distinct
cost components relative to refinement as we have presented
it as a technique available to a software developer. There is

the cost to the developer of increased interaction with the
deployed instances. There is the cost of increased runtime
and/or space overhead for individual users. The developer
will need to assess the impact of these cost components and
then choose a position between no refinement and aggressive
refinement.

This study of software tomography has been very pro-
ductive for us in creating and validating a basic research
framework for software tomography, which will guide future
research. The case studies prepare us for investigations into
the application of tomography to much more complex tasks
for software deployed among real users.

4. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the use of software to-

mography for the monitoring of deployed software. We have
presented two techniques for collecting coverage information
from the field for a set of instances of a program. We have
implemented and validated the two presented techniques by
performing two case studies using simulation. The result
of the studies shows that, at least for the cases considered,
software tomography can be successfully applied.

In the paper, we have not addressed problems related to
dynamic updates of the running instances, by simply as-
suming the technology is available. In fact, there are many
existing approaches for the dynamic update of instrumenta-
tion or code in general (e.g., [5, 8, 13, 18]). Moreover, new
architectures such as Microsoft .Net [10] and Sun ONE [17]
architectures may provide new opportunities to efficiently
update software on a per-user basis. We are currently eval-
uating a prototype for the dynamic updating of instrumen-
tation. We will use it to assess overhead and possible issues
involved in tomographic refinement [13].

An important merit of our first set of studies is that they
raised several issues and fueled further research. We are
currently considering two main directions for future work.
First, we will start collecting real operational-profile data,
by distributing fully-instrumented versions of other software
products. We will use the data collected to investigate the
performance of software tomography using real users’ oper-
ational profiles. Second, we will investigate refinement using
probabilistic and data-mining models. An immediate step
will be to investigate how we might improve tomographic
refinement using a probabilistic model for probe placement
based on the results from in-house testing.

Another area of future research is the applicability of soft-
ware tomography to other monitoring tasks. We foresee that
criteria related to operational profiles, such as determining
feature use and detecting commonly used paths, will be good
candidates. For each task, we will develop the algorithms
for identifying subtasks and placing probes and design ap-
propriate refinement techniques.

We believe that, in the long run, software tomography will
provide for the collection of all sorts of dynamic information
about deployed programs and the way they are used. Such
information will be invaluable to software producers as an
integral part of their software development processes. In-
terpretation of the collected data might provide feedback to
inform the next product cycle, aid in diagnosing systems,
yield insights for the design of new products, and inspire
new development strategies.

Acknowledgments
This work was supported in part by National Science Foun-
dation awards CCR-9988294, CCR-0096321, CCR-0205422,
SBE-0123532 and EIA-0196145 to Georgia Tech, by the State
of Georgia to Georgia Tech under the Yamacraw Mission,
and by the Office of Naval Research through a National De-
fense Science and Engineering Graduate (NDSEG) Fellow-
ship. Alberto Pasquini, Phyllis Frankl, and Filip Vokolos
provided Space and many of its test cases. Gregg Rother-
mel provided many of the test cases, test suites, and coverage
information used for the studies. The anonymous reviewers
provided insightful comments and suggestions that helped
us to improve the paper.

5. REFERENCES

[1] T. Apiwattanapong and M. J. Harrold. Selective path
profiling. In Proceedings of the Workshop on Program
Analysis for Software Tools and Engineering
(PASTE’02), November 2002. (to appear).

[2] Aristotle Research Group. Aristotle: Software
engineering tools, 2002.
http://www.cc.gatech.edu/aristotle/.

[3] T. Ball and J. R. Larus. Efficient path profiling. In
Proceedings of the 29th International Symposium on
Microarchitecture, pages 46–57, Dec 1996.

[4] Expectation-driven event monitoring (EDEM), 2002.
http://www.ics.uci.edu/~dhilbert/edem/.

[5] D. Gupta, P. Jalote, and G. Barua. A formal framework
for on-line software version change. IEEE Transactions
on Software Engineering, 22(2):120–131, Feb 1996.

[6] M. Harrold and G. Rothermel. Aristotle: A system for
research on and development of program-analysis based
tools. Technical Report Technical Report
OSU-CISRC-3/97-TR17, The Ohio State University,
Mar 1997.

[7] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and
Y. L. An empirical evaluation of the correlation
between fault-revealing test behavior and differences in
program spectra. Journal of Software Testing,
Verification, and Reliability, 10(3), Sep 2000.

[8] M. Hicks, J. Moore, and S. Nettles. Dynamic software
updating. In C. Norris and J. J. B. Fenwick, editors,
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI’01), ACM SIGPLAN Notices, pages 13–23.
ACMPress, Jun 2001.

[9] D. M. Hilbert and D. F. Redmiles. Extracting usability
information from user interface events. ACM
Computing Surveys, 32(4):384–421, Dec 2000.

[10] Microsoft Corporation. Microsoft .Net, 2002.
http://www.microsoft.net/net/.

[11] J. D. Musa, A. Iannino, and K. Okumoto. Software
Reliability: Measurement, Prediction, Application.
MacGraw-Hill (New York NY), 1987.

[12] A. Orso, D. Liang, M. Harrold, and R. Lipton.
Gamma system: Continuous evolution of software after
deployment. In Proceedings of the International
Symposium on Software Testing and Analysis
(ISSTA’02), pages 65–69, Jul 2002.

[13] A. Orso, A. Rao, and M. J. Harrold. A technique for
dynamic updating of Java software. In Proceedings of
the IEEE International Conference on Software
Maintenance (ICSM 2002), Oct 2002. (to appear).

[14] C. Pavlopoulou and M. Young. Residual test coverage
monitoring. In Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), pages
277–284, May 1999.

[15] Perpetual testing, 2002.
http://www.ics.uci.edu/~djr/edcs/,
http://laser.cs.umass.edu/perptest/,
http://www.cs.uoregon.edu/research/perpetual/

edcs/Perpetual-Testing.html.

[16] T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with
applications to the Year 2000 problem. In Proceedings
of the 6th European Software Engineering Conference
(ESEC’97), pages 432–449, Sep 1997.

[17] Sun Microsystems. Sun[tm] Open Net Environment
(Sun ONE), 2002.
http://wwws.sun.com/software/sunone/.

[18] M. Tikir and J. Hollingsworth. Efficient
instrumentation for code coverage testing. In
Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2002), pages
86–96, Jul 2002.

