
AMNESIA: Analysis and
Monitoring for Neutralizing SQL-

Injection Attacks

William Halfond

Alessandro Orso

Georgia Institute of Technology

This work was supported in part by NSF awards CCR-0306372,

CCR-0205422, and CCR-0209322 to Georgia Tech, and by the DHS

AMNESIA: Analysis and
Monitoring for Neutralizing SQL-

Injection Attacks

William Halfond

Alessandro Orso

Georgia Institute of Technology

This work was supported in part by NSF awards CCR-0306372,

CCR-0205422, and CCR-0209322 to Georgia Tech, and by the DHS

• David Aucsmith (CTO of Security and Business Unit, Microsoft)
defined SQLIA as one of the most serious threats to web apps

• Open Web Application Security Project (OWASP) lists SQLIA in
its top ten most critical web application security vulnerabilities

• Successful attacks on Guess Inc., Travelocity, FTD.com, Tower
Records, RIAA, …

William Halfond – ASE 2005 – November 10th, 2005

Vulnerable Application

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! password.equals(""))) {

 queryString += "login='" + login + "' AND pass='" + password + "'";

} else {

 queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

William Halfond – ASE 2005 – November 10th, 2005

Attack Scenario

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! password.equals(""))) {

 queryString += "login='" + login + "' AND pass='" + password + "'";

} else {

 queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

Normal Usage
¬User submits login “doe” and password “xyz”

¬SELECT info FROM users WHERE login=’doe’ AND
pass=’xyz’

William Halfond – ASE 2005 – November 10th, 2005

Attack Scenario

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! password.equals(""))) {

 queryString += "login='" + login + "' AND pass='" + password + "'";

} else {

 queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

Malicious Usage
¬Attacker submits “admin’ or 1=1 -- ” and password of “”

¬SELECT info FROM users WHERE login=‘admin’ or 1=1 -- ’
AND pass=’’

William Halfond – ASE 2005 – November 10th, 2005

Background Information

• Input filtering

• Stored procedures

• Defensive coding

“Why the obvious solutions don’t work.”

William Halfond – ASE 2005 – November 10th, 2005

Presentation Outline

• Background Information

• The AMNESIA Technique

• Empirical Evaluation

• Related Work

• Conclusion

William Halfond – ASE 2005 – November 10th, 2005

Our Solution: AMNESIA

Basic Insights
1. Code contains enough information to

accurately model all legitimate queries.
2. A SQL Injection Attack will violate the

predicted model.

Solution:
Static analysis => build query models
Runtime analysis => enforce models

William Halfond – ASE 2005 – November 10th, 2005

Overview of the Technique

1. Identify all hotspots.

2. Build SQL query models for each
hotspot.

3. Instrument hotspots.

4. Monitor application at runtime.

William Halfond – ASE 2005 – November 10th, 2005

1 – Identify Hotspots

Scan application code to identify hotspots.

String queryString = "SELECT info FROM userTable WHERE ";
if ((! login.equals("")) && (! password.equals(""))) {
 queryString += "login='" + login + "' AND pass='" + password + "'";
} else {
 queryString+="login='guest'";
}
ResultSet tempSet = stmt.execute(queryString);

Hotspot

William Halfond – ASE 2005 – November 10th, 2005

2 – Build SQL Query Model

1. Use Java String Analysis[1] to construct
character-level automata

2. Parse automata to group characters into
SQL tokens

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘ β AND pass = ‘ ‘ β

William Halfond – ASE 2005 – November 10th, 2005

3 – Instrument Application

Wrap each hotspot with call to monitor.

String queryString = "SELECT info FROM userTable WHERE ";
if ((! login.equals("")) && (! password.equals(""))) {
 queryString += "login='" + login + "' AND pass='" + password + "'";
} else {
 queryString+="login='guest'";
}
if (monitor.accepts (hotspotID, queryString) {
 ResultSet tempSet = stmt.execute(queryString);
}

Hotspot

Call to Monitor

William Halfond – ASE 2005 – November 10th, 2005

4 – Runtime Monitoring

Normal Usage:

SELECT info FROM userTable WHERE login = ‘ ‘doe AND pass = ‘ ‘xyz

Check queries against SQL query model.

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘ β AND pass = ‘ ‘ β

William Halfond – ASE 2005 – November 10th, 2005

4 – Runtime Monitoring

Check queries against SQL query model.

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘ β AND pass = ‘ ‘ β

Malicious Usage:

SELECT info FROM userTable WHERE login = ‘ ‘ AND pass = ‘ ‘OR 1 = 1 -- ‘admin

William Halfond – ASE 2005 – November 10th, 2005

AMNESIA Implementation

William Halfond – ASE 2005 – November 10th, 2005

Limitations and Assumptions

Assumption
• Queries created by manipulating strings

Limitations
• False positives

• When string analysis is not precise enough

• False negatives
• When query model includes spurious queries

and an attack matches it

William Halfond – ASE 2005 – November 10th, 2005

Evaluation: Research Questions

RQ1: What percentage of attacks can our
technique detect and prevent that would
otherwise go undetected and reach the
database?

RQ2: How much overhead does our
technique impose on web applications
at runtime?

RQ3: What percentage of legitimate
accesses does our technique prevent
from reaching the database?

William Halfond – ASE 2005 – November 10th, 2005

Experiment Setup

117 (1,187)

91 (799)

77 (550)

159 (5,269)

107 (952)

40 (167)

289 (772)

Average
Automata size

6716,453Portal

3410,949Classifieds

317,242Events

7116,959Bookstore

235,658Employee Directory

404,543Office Talk

55,421Checkers

HotspotsLOCSubject

• Applications are a mix of commercial (5) and student
projects (2)

• Attacks and legitimate inputs developed
independently

• Attack inputs represent broad range of exploits

William Halfond – ASE 2005 – November 10th, 2005

140 (100%)140880Portal

200 (100%)200823Classifieds

260 (100%)260875Events

182 (100%)1821028Bookstore

280 (100%)280413Employee Directory

160 (100%)160598Office Talk

248 (100%)2481195Checkers

DetectedSuccessfulUnsuccessfulSubject

Results: RQ1

⇒ No false negatives

⇒ Unsuccessful attacks = filtered by application

William Halfond – ASE 2005 – November 10th, 2005

Results: RQ2 & RQ3

• Runtime Overhead
• Less than 1ms.

• Insignificant compared to cost of
network/database access

• No false positives
• No legitimate input was flagged as SQLIA

William Halfond – ASE 2005 – November 10th, 2005

Related Work

• Require learning new API[2,8]

• Customized runtime environments and
high overhead[6,9,12,10,11]

• Address only a subset of SQLIA[3,14]

• Limited by machine learning[4,13]

• Overly conservative static analysis[5,7]

William Halfond – ASE 2005 – November 10th, 2005

Conclusion

• SQL Injection Attacks (SQLIAs) are a serious
threat to DB-based Web Applications

• This technique detects and prevents SQLIAs
by combining static analysis and runtime
monitoring
• Fully automated – No human effort required

• Empirical evaluation
• Commercial applications and real attacks
• No false positives generated
• Precise – No false negatives

William Halfond – ASE 2005 – November 10th, 2005

References
[1] [Christensen03] A. S. Christensen, A. Moller, and M. I. Schwartzbach. Precise analysis of string expressions. In

Proceedings of the 10th International Static Analysis Symposium, volume 2694 of LNCS, pages 1--18. Springer-Verlag,
June 2003.

[2] [Cook05] W.R. Cook and S. Rai. Safe Query Objects: Statically Typed Objects as Remotely Executable Queries. ICSE
2005

[3] [Gould04] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries in database applications.
In Proceedings of the 26th International Conference on Software Engineering (ICSE 04), pages 645--654, 2004.

[4] [Huang03] Y. W. Huang, S. K. Huang, T. P. Lin, and C. H. Tsai. Web application security assessment by fault injection and
behavior monitoring. In Proceedings of the 11th International World Wide Web Conference (WWW 03), May 2003.

[5] [Huang04] Y. W. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo. Securing web application code by static
analysis and runtime protection. In Proceedings of the 12th International World Wide Web Conference (WWW 04), May
2004.

[6] [Kc03] G. S. Kc, A. D. Keromytis, and V.Prevelakis. Countering code-injection attacks with instruction-set randomization. In
Proceedings of the ACM Conference on Computer and Communications Security, pages 272--280, October 2003.

[7] [Livshits05]
[8] [McClure05] Russell McClure and Ingolf Krüger. SQL DOM: Compile Time Checking of Dynamic SQL Statements. ICSE

05
[9] [Newsome05] James Newsome and Dawn Song. Dynamic Taint Analysis: Automatic Detection, Analysis, and Signature

Generation of Exploit Attacks on Commodity Software. In Network and Distributed Systems Security Symposium. Feb
2005.

[10] [Nguyen-Tuong05] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, David Evans. Automatically
Hardening Web Applications Using Precise Tainting Information. In Twentieth IFIP International Information Security
Conference, May 2005.

[11] [Pietraszek05] T. Pietraszek1 and C.V. Berghe. Defending Against Injection Attacks through Context-Sensitive String
Evaluation. RAID 2005

[12] [Scott02] D. Scott and R. Sharp. Abstracting application-level web security. In Proceedings of the 11th International
Conference on the World Wide Web, pages 396--407, 2002.

[13] [Valeur05] F. Valeur, D. Mutz, and G. Vigna, Learning-Based Approach to the Detection of SQL Attacks, Proceedings of
the Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)

[14] [Wassermann04] G. Wassermann and Z. Su. An analysis framework for security in web applications. In Proceedings of
the FSE Workshop on Specification and Verification of Component-Based Systems, pages 70--78, October 2004.

