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• David Aucsmith (CTO of Security and Business Unit, Microsoft)
defined SQLIA as one of the most serious threats to web apps

• Open Web Application Security Project (OWASP) lists SQLIA in
its top ten most critical web application security vulnerabilities

• Successful attacks on Guess Inc., Travelocity, FTD.com, Tower
Records, RIAA, …
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Vulnerable Application

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! password.equals("")))  {

  queryString += "login='" + login + "' AND pass='" + password + "'";

} else {

  queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);
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Attack Scenario

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! password.equals("")))  {

  queryString += "login='" + login + "' AND pass='" + password + "'";

} else {

  queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

Normal Usage
¬User submits login “doe” and password “xyz”

¬SELECT info FROM users WHERE login=’doe’ AND
pass=’xyz’
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Attack Scenario

String queryString = "SELECT info FROM userTable WHERE ";

if ((! login.equals("")) && (! password.equals("")))  {

  queryString += "login='" + login + "' AND pass='" + password + "'";

} else {

  queryString+="login='guest'";

}

ResultSet tempSet = stmt.execute(queryString);

Malicious Usage
¬Attacker submits “admin’ or 1=1 -- ” and password of “”

¬SELECT info FROM users WHERE login=‘admin’ or 1=1 -- ’
AND pass=’’
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Background Information

• Input filtering

• Stored procedures

• Defensive coding

“Why the obvious solutions don’t work.”
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Presentation Outline

• Background Information

• The AMNESIA Technique

• Empirical Evaluation

• Related Work

• Conclusion
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Our Solution: AMNESIA

Basic Insights
1. Code contains enough information to

accurately model all legitimate queries.
2. A SQL Injection Attack will violate the

predicted model.

Solution:
Static analysis => build query models
Runtime analysis => enforce models
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Overview of the Technique

1. Identify all hotspots.

2. Build SQL query models for each
hotspot.

3. Instrument hotspots.

4. Monitor application at runtime.
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1 – Identify Hotspots

Scan application code to identify hotspots.

String queryString = "SELECT info FROM userTable WHERE ";
if ((! login.equals("")) && (! password.equals("")))  {
  queryString += "login='" + login + "' AND pass='" + password + "'";
} else {
  queryString+="login='guest'";
}
ResultSet tempSet = stmt.execute(queryString);

Hotspot
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2 – Build SQL Query Model

1. Use Java String Analysis[1] to construct
character-level automata

2. Parse automata to group characters into
SQL tokens

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘  β AND pass = ‘ ‘   β
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3 – Instrument Application

Wrap each hotspot with call to monitor.

String queryString = "SELECT info FROM userTable WHERE ";
if ((! login.equals("")) && (! password.equals("")))  {
  queryString += "login='" + login + "' AND pass='" + password + "'";
} else {
  queryString+="login='guest'";
}
if (monitor.accepts (hotspotID, queryString) {
  ResultSet tempSet = stmt.execute(queryString);
}

Hotspot

Call to Monitor
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4 – Runtime Monitoring

Normal Usage:

SELECT info FROM userTable WHERE login = ‘ ‘doe AND pass = ‘ ‘xyz

Check queries against SQL query model.

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘  β AND pass = ‘ ‘  β
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4 – Runtime Monitoring

Check queries against SQL query model.

SELECT info FROM userTable WHERE

login

= ‘ guest ‘

login

= ‘ ‘  β AND pass = ‘ ‘  β

Malicious Usage:

SELECT info FROM userTable WHERE login = ‘ ‘ AND pass = ‘ ‘OR 1 = 1 -- ‘admin
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AMNESIA Implementation
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Limitations and Assumptions

Assumption
• Queries created by manipulating strings

Limitations
• False positives

• When string analysis is not precise enough

• False negatives
• When query model includes spurious queries

and an attack matches it
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Evaluation: Research Questions

RQ1: What percentage of attacks can our
technique detect and prevent that would
otherwise go undetected and reach the
database?

RQ2: How much overhead does our
technique impose on web applications
at runtime?

RQ3: What percentage of legitimate
accesses does our technique prevent
from reaching the database?
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Experiment Setup

117 (1,187)

91 (799)

77 (550)

159 (5,269)

107 (952)

40 (167)

289 (772)

Average
Automata size

6716,453Portal

3410,949Classifieds

317,242Events

7116,959Bookstore

235,658Employee Directory

404,543Office Talk

55,421Checkers

HotspotsLOCSubject

• Applications are a mix of commercial (5) and student
projects (2)

• Attacks and legitimate inputs developed
independently

• Attack inputs represent broad range of exploits
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140 (100%)140880Portal

200 (100%)200823Classifieds

260 (100%)260875Events

182 (100%)1821028Bookstore

280 (100%)280413Employee Directory

160 (100%)160598Office Talk

248 (100%)2481195Checkers

DetectedSuccessfulUnsuccessfulSubject

Results: RQ1

⇒ No false negatives

⇒ Unsuccessful attacks = filtered by application
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Results: RQ2 & RQ3

• Runtime Overhead
• Less than 1ms.

• Insignificant compared to cost of
network/database access

• No false positives
• No legitimate input was flagged as SQLIA



William Halfond – ASE 2005 – November 10th, 2005

Related Work

• Require learning new API[2,8]

• Customized runtime environments and
high overhead[6,9,12,10,11]

• Address only a subset of SQLIA[3,14]

• Limited by machine learning[4,13]

• Overly conservative static analysis[5,7]
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Conclusion

• SQL Injection Attacks (SQLIAs) are a serious
threat to DB-based Web Applications

• This technique detects and prevents SQLIAs
by combining static analysis and runtime
monitoring
• Fully automated – No human effort required

• Empirical evaluation
• Commercial applications and real attacks
• No false positives generated
• Precise – No false negatives



William Halfond – ASE 2005 – November 10th, 2005

References
[1] [Christensen03] A. S. Christensen, A. Moller, and M. I. Schwartzbach. Precise analysis of string expressions. In

Proceedings of the 10th International Static Analysis Symposium, volume 2694 of LNCS, pages 1--18. Springer-Verlag,
June 2003.

[2] [Cook05] W.R. Cook and S. Rai.  Safe Query Objects: Statically Typed Objects as Remotely Executable Queries. ICSE
2005

[3] [Gould04] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries in database applications.
In Proceedings of the 26th International Conference on Software Engineering (ICSE 04), pages 645--654, 2004.

[4] [Huang03] Y. W. Huang, S. K. Huang, T. P. Lin, and C. H. Tsai. Web application security assessment by fault injection and
behavior  monitoring. In Proceedings of the 11th International World Wide Web  Conference (WWW 03), May 2003.

[5] [Huang04] Y. W. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo. Securing web application code by static
analysis and runtime protection. In Proceedings of the 12th International World Wide Web Conference (WWW 04), May
2004.

[6] [Kc03] G. S. Kc, A. D. Keromytis, and V.Prevelakis. Countering code-injection attacks with instruction-set randomization. In
Proceedings of the ACM Conference on Computer and Communications Security, pages 272--280, October 2003.

[7] [Livshits05]
[8] [McClure05] Russell McClure and Ingolf Krüger. SQL DOM: Compile Time Checking of Dynamic SQL Statements. ICSE

05
[9] [Newsome05] James Newsome and Dawn Song. Dynamic Taint Analysis: Automatic Detection, Analysis, and Signature

Generation of Exploit Attacks on Commodity Software. In Network and Distributed Systems Security Symposium. Feb
2005.

[10] [Nguyen-Tuong05] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, David Evans.  Automatically
Hardening Web Applications Using Precise Tainting Information. In Twentieth IFIP International Information Security
Conference, May 2005.

[11] [Pietraszek05] T. Pietraszek1 and C.V. Berghe. Defending Against Injection Attacks through Context-Sensitive String
Evaluation. RAID 2005

[12] [Scott02] D. Scott and R. Sharp. Abstracting application-level web security. In Proceedings of the 11th  International
Conference on the World Wide Web, pages 396--407, 2002.

[13] [Valeur05] F. Valeur, D. Mutz, and G. Vigna, Learning-Based Approach to the Detection of SQL Attacks, Proceedings of
the Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)

[14] [Wassermann04] G. Wassermann and Z. Su. An analysis framework for security in web applications. In Proceedings of
the FSE Workshop on Specification and Verification of Component-Based Systems, pages 70--78, October 2004.


