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Testing & Analysis after Deployment
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[Pavlopoulou99] Test adequacy Residual coverage data
[Hilbert00] Usability testing GUI interactions
[Dickinson01] Failure classification Caller/callee profiles
[Bowring02] Coverage analysis Partial coverage data
[Orso03] Impact analysis Dynamic slices
[Liblit05] Fault localization Various profiles (returns, …)
… … …



Alex Orso - ESEC-FSE - Sep 2005

Tradeoffs of T&A after Deployment

• In-house
(+) Complete control (measurements, reruns, …)
(-) Small fraction of behaviors

• In the field
(+) All (exercised) behaviors
(-) Little control

• Only partial measures, no reruns, …
• In particular, no oracles
• Currently, mostly crashes
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Our Goal

Provide a technique for automatically
identifying failures
• Mainly, in the field
• Useful in-house too

• Automatically generated test cases
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• Motivation and Goal
• General Approach
• Empirical Studies
• Conclusion and Future Work
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Background: Classification Techniques

Classification -> Supervised learning -> Machine learning

Many existing techniques (logistic regression, neural
networks, tree-based classifiers, SVM, …)
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Background: Random Forests Classifiers

• Tree-based classifiers
• Partition predictor space in

hyper-rectangular regions
• Regions are assigned a label
(+) Easy to interpret
(-) Unstable

• Random forests [Breiman01]
• Integrate many (500) tree classifiers
• Classification via a voting scheme
(+) Easy to interpret
(+) Stable
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Our Approach

Some critical open issues
• What data should we collect?
• What tradeoffs exist between different types of data?
• How reliable/generalizable are the statistical analyses?
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Specific Research Questions

RQ1: Can we reliably classify program outcomes
using execution data?

RQ2: If so, what type of execution data should
we collect?

RQ3: How can we reduce runtime data collection
overhead while still producing accurate and
reliable classifications?

⇒ Set of exploratory studies
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Experimental Setup (I)

Subject program
• JABA bytecode analysis library
• 60 KLOC, 400 classes, 3000 methods
• 19 single-fault versions (“golden version” + 1 real fault)

Training set
• 707 test cases (7 drivers applied to 101 input programs)
• Collected various kinds of execution data (e.g., counts

for throws, catch blocks, basic blocks, branches,
methods, call edges, …)

• “Golden version” to label passing/failing runs
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Experimental Setup (II)

Users’ Runs
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Ideal setting, but
• Expensive
• Difficult to get enough data points
• Oracle problem

=> Simulate users’ runs
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RQ1 & RQ2: Can We Classify at All? How?

• RQ1: Can we reliably classify program outcomes using
execution data?

• RQ2: Assuming we can classify
program outcomes, what type of
execution data should we collect?

• We first considered a specific kind of
execution data: basic-block counts (~20K)
(simple measure, intuitively related to faults)

• Results: classification error estimates always almost 0!
• But, time overheard ~15% and data volume not negligible
=> Other kinds of execution data
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RQ1 & RQ2: Can We Classify at All? How?

• We considered other kinds of execution data:
• Basic-block counts yielded almost perfect predictors

=> richer data not considered
• Counts for: throws, catch-blocks, methods, and call-edges

• Results
• Throw and catch-block counts are poor predictors
• Method counts produced nearly perfect models

• As accurate as block counts, but much cheaper to collect
• 3000 methods vs. 20000 blocks (overhead < 5%)

• Branch and call-edge counts equally accurate, but more costly
than method counts

Preliminary conclusion (1): Possible to classify program
runs; method counts provided high accuracy at low cost
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RQ3: Can We Collect Less Information?

• Method-count models used between 2 and 7 method
counts. Great for instrumentation, but…

• Two alternative hypotheses
• Few methods are relevant -> must choose specific methods well
• Many, redundant methods -> method selection less important

• To investigate, performed 100 random samplings
• Took 10% random samples of method counts and rebuilt models
• Models were excellent 90% of the times
• Evidence that many method counts are good predictors

Preliminary conclusion (2): “failure signal” spread, rather
than localized to single entities => estimates can be
based on a few data, collected with negligible overhead
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Validity of the Analysis

Two main issues to consider
• Multiplicity
• Generality
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Statistical Issues -- Multiplicity

When # of predictors far exceeds # of data points, the
likelihood of finding spurious relationship increases
• i.e., random relationships confused for real ones

We took two steps to address the problem
• Consider method counts

(least number of predictors)
• Conducted study in which we

• Randomly permuted method counts
• Took a 10% random sample of method

counts and rebuilt models (100 times)
=> Never found good models based on this data

Preliminary conclusion (3): Results are unlikely to be due
to random chance
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Statistical Issues -- Generality

Classifiers for 1 specific bug are useful, but…
• We would like to have models that encode “correct

behavior” for the application in general
• Looked for predictors that worked in general
⇒Found 11 excellent predictors for all versions

Programs typically contain more than 1 bug
• Applied our approach to 6 multi-bug versions
• Models had error rates less than 2% in most cases

Preliminary conclusion (4): Results promising w.r.t.
generality (but need to investigate further)
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Summary

• Possible to classify program outcomes using
execution data

• Method counts gave high accuracy at low cost
• Estimates can be computed based on very few

data, collected with negligible overhead
• Our results are unlikely to depend on random

chance and are promising in terms of generality
• But, these are still preliminary results, and we

need to investigate further
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Future Work

• Multiple faults
• Investigate relationship between

predictors and failures
• Investigate relationship between

predictors and faults
• Conduct further experiments with

system(s) in actual use


