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Debugging

Regression testing
Impact analysis

Behavior classification
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• Practicality

• High volume of data

• Ad-hoc mechanisms

• Inefficiency in recording

• Privacy

• Sensitive information

• Safety

• Side effects

Users

DB

Network

Our technique

• Is specifically designed to be used on deployed software
(but can also be used in-house)

• Mitigates practicality, safety, and privacy issues through

• novel  technical solutions

• careful engineering 
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Record: Recorded Events

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Field Accesses
• INWRITE

• OUTWRITE

• OUTREAD

Exceptions
• EXCIN

• EXCOUT
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1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Replay Scaffolding

Event
Log

Subsystem 
of interest

Instrumented
Subsystem
of interest

Analysis
Results

• For example:
memory leak detection
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Replay performed in a similar way



Empirical Study

• RQ1 (feasibility): Can SCARPE correctly record and 
replay different subsets of an application?

• RQ2 (efficiency): Can SCARPE record executions 
without imposing too much overhead?

• Subjects:

# Classes KLOC # Test Cases

NanoXML

JABA

19 3.5 216

500 60 400
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Experimental protocol

1. For each class C in NanoXML
a. Specify C as the subsystem of interest
b. Run all test cases and record executions

2. Replay all recorded executions (> 4,000)

Results

• Record and replay successful for all classes 
and all test cases
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Experimental protocol

1. For each test case T in JABA’s test suite
a. Run T
b. Measure time to run T
c. Identify nine classes covered by T

2. For each class C and test case T considered
a. Specify C as the subsystem of interest
b. Run all test cases and record executions
c. Measure time to run T

3. For each T, compare times to run T in (1) and (2)
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Results

• Space overhead limited:

• 60 MB for largest log (~120M events)

• ~50KB for 1000 events
(uncompressed, unoptimized)

• Time overhead varies widely

• Minimum: 3%

• Average: 97%

• Maximum: 877%
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Classes Considered

•Cost does not depend on event types
•Overhead depends on #events/sec
•For example:
• Lowest overhead (3%): ~1K ev/sec
• Highest overhead (877%): ~300K ev/sec

Further considerations
•Overhead often between 30%-100%

(in the single digits in some cases)
•May be acceptable for interactive apps
• We are investigating optimizations

(No problem for in-house use)
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Related Work

• Techniques for deterministic debugging (e.g., 
DejaVu [Choi et al. 98])

• Techniques for automated mock-object creation 
([Saff and Ernst 04], [Elbaum et al. 06])

• Techniques for complete replay ([Steven and 
Podgursky 00])
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3

     Further validation
(especially w.r.t. performance)

1 Improve performance
(e.g., static/dynamic analysis for selection)
2

Investigate Applications
(we mentioned three, there are more)
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Thank you!



Questions?


