
Shrinivas Joshi

Advanced Micro Devices
Shrinivas.Joshi@amd.com

Alessandro Orso

Georgia Institute of Technology
orso@cc.gatech.edu

SCARPE: A Technique and Tool
for Selective Capture and Replay

of Program Executions

This work was supported in part by NSF awards
CCF-0541080 and CCR-0205422 to Georgia Tech.

mailto:orso@cc.gatech.edu
mailto:orso@cc.gatech.edu
mailto:orso@cc.gatech.edu
mailto:orso@cc.gatech.edu

Collecting Field Data
In house In the field

Developers

Collecting Field Data
In house In the field

Developers

Collecting Field Data

?
In house In the field

Developers

Collecting Field Data

?

Field Data

In house In the field

Developers

Collecting Field Data

?

Field Data

In house In the field

Developers

Collecting Field Data

?

Field Data

In house In the field

Maintenance tasks:
Debugging

Regression testing
Impact analysis

Behavior classification
...

Developers

•Motivation and Overview

•Record & Replay Technique

• Implementation and Evaluation

•Conclusions and Future Work

Presentation Outline

•Motivation and Overview

•Record & Replay Technique

• Implementation and Evaluation

•Conclusions and Future Work

Presentation Outline

Record & Replay: Issues

Record & Replay: Issues

Users

DB

Network

Record & Replay: Issues

• Practicality

• High volume of data

• Ad-hoc mechanisms

• Inefficiency in recording
Users

DB

Network

Record & Replay: Issues

• Practicality

• High volume of data

• Ad-hoc mechanisms

• Inefficiency in recording

• Privacy

• Sensitive information

Users

DB

Network

Record & Replay: Issues

• Practicality

• High volume of data

• Ad-hoc mechanisms

• Inefficiency in recording

• Privacy

• Sensitive information

• Safety

• Side effects

Users

DB

Network

Record & Replay: Issues

• Practicality

• High volume of data

• Ad-hoc mechanisms

• Inefficiency in recording

• Privacy

• Sensitive information

• Safety

• Side effects

Users

DB

Network

Our technique

• Is specifically designed to be used on deployed software
(but can also be used in-house)

• Mitigates practicality, safety, and privacy issues through

• novel technical solutions

• careful engineering

Overview of the Approach

Rec
or

d

Rep
lay

Overview of the Approach

Rec
or

d

Rep
lay

Overview of the Approach

Subsystem
of interest

Rec
or

d

Rep
lay

Overview of the Approach

Subsystem
of interest

Rec
or

d

Rep
lay

Overview of the Approach

Subsystem
of interest

Output
Input

Rec
or

d

Rep
lay

Environment

Overview of the Approach

Subsystem
of interest

Output
Input

Event
Log

Rec
or

d

Rep
lay

Environment

Overview of the Approach

Subsystem
of interest

Output
Input

Event
Log

Subsystem
of interest

Rec
or

d

Rep
lay

Environment

Replay Scaffolding

Overview of the Approach

Subsystem
of interest

Output
Input

Event
Log

Subsystem
of interest

Rec
or

d

Rep
lay

Environment

Replay Scaffolding

Overview of the Approach

Subsystem
of interest

Output
Input

Event
Log

Event
Log

Subsystem
of interest

Rec
or

d

Rep
lay

Environment

Replay Scaffolding

Overview of the Approach

Subsystem
of interest

Output
Input

Event
Log

Event
Log

Subsystem
of interest

Rec
or

d

Rep
lay

Environment

Record: Recorded Events

Subsystem
of interest

Record: Recorded Events

Subsystem
of interest

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

...
x = getRatio(myTree)
...

Record: Recorded Events

Subsystem
of interest

x = getRatio(myTree)

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

...
x = getRatio(myTree)
...

Record: Recorded Events

Subsystem
of interest

x = getRatio(myTree)

28.5

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

...
x = getRatio(myTree)
...

Record: Recorded Events

Subsystem
of interest

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Record: Recorded Events

Subsystem
of interest

...
n = it.next()
...

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Record: Recorded Events

Subsystem
of interest

it.next()

...
n = it.next()
...

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Record: Recorded Events

Subsystem
of interest

it.next()

...
n = it.next()
...

<some object>

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Record: Recorded Events

Subsystem
of interest

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

INCALL / OUTCALL event { • Callee’s type

• Callee’s object ID

• Callee’s signature

• Parameter*

Record: Recorded Events

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Record: Recorded Events

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Field Accesses
• INWRITE

• OUTWRITE

• OUTREAD

Record: Recorded Events

Method calls
• INCALL

• INCALLRET

• OUTCALL

• OUTCALLRET

Field Accesses
• INWRITE

• OUTWRITE

• OUTREAD

Exceptions
• EXCIN

• EXCOUT

Record: Capturing Partial Data

Subsystem
of interest

Record: Capturing Partial Data

• Recording complete data is impractical
(huge time/space overhead in preliminary studies)

Subsystem
of interest

Record: Capturing Partial Data

• Recording complete data is impractical
(huge time/space overhead in preliminary studies)

Subsystem
of interest

x = getRatio(hugeTree)

28.5

Record: Capturing Partial Data

• Recording complete data is impractical
(huge time/space overhead in preliminary studies)

Subsystem
of interest

double getRatio(HugeTree ht) {
 Iterator it = ht.iterator();
 while (it.hasNext()) {
 Node n = (Node)it.next();
 double res = n.val;
 if (res > 0)
 return res / norm;
 }

x = getRatio(hugeTree)

28.5

Record: Capturing Partial Data

• Recording complete data is impractical
(huge time/space overhead in preliminary studies)

➡Record only data that affect the computation

• Scalar values

• Object IDs and Types

Subsystem
of interest

double getRatio(HugeTree ht) {
 Iterator it = ht.iterator();
 while (it.hasNext()) {
 Node n = (Node)it.next();
 double res = n.val;
 if (res > 0)
 return res / norm;
 }

x = getRatio(hugeTree)

28.5

Record: Capturing Partial Data

• Recording complete data is impractical
(huge time/space overhead in preliminary studies)

➡Record only data that affect the computation

• Scalar values

• Object IDs and Types

Subsystem
of interest

double getRatio(HugeTree ht) {
 Iterator it = ht.iterator();
 while (it.hasNext()) {
 Node n = (Node)it.next();
 double res = n.val;
 if (res > 0)
 return res / norm;
 }

x = getRatio(hugeTree)

28.5

28.5

Record: Capturing Partial Data

• Recording complete data is impractical
(huge time/space overhead in preliminary studies)

➡Record only data that affect the computation

• Scalar values

• Object IDs and Types

Subsystem
of interest

double getRatio(HugeTree ht) {
 Iterator it = ht.iterator();
 while (it.hasNext()) {
 Node n = (Node)it.next();
 double res = n.val;
 if (res > 0)
 return res / norm;
 }

x = getRatio(hugeTree)

28.5

28.5

<1110, some.package.HugeTree>

Possible Applications

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Possible Applications

Subsystem
of interest

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis• For component failures
[WODA 06]

• For complete executions
[ICSE 07]

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Unit of
interest

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Unit of
interest

Unit

Test

Case

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Unit of
interest

Unit

Test

Case

• For safe component updates
[PASTE 05]

• For regression testing
(in progress)

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Unit of
interest

Unit

Test

Case

• For safe component updates
[PASTE 05]

• For regression testing
(in progress)

Can also be a
system test!

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Possible Applications

Subsystem
of interest

Output
Input

Event
Log

Environment

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Possible Applications

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Replay Scaffolding

Subsystem
of interest

Possible Applications

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Replay Scaffolding

Subsystem
of interest

Instrumented
Subsystem
of interest

Possible Applications

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Replay Scaffolding

Event
Log

Subsystem
of interest

Instrumented
Subsystem
of interest

Analysis
Results

Possible Applications

1. Debugging of field failures

2. Unit test cases from user executions

3. Post-mortem dynamic analysis

Replay Scaffolding

Event
Log

Subsystem
of interest

Instrumented
Subsystem
of interest

Analysis
Results

• For example:
memory leak detection

•Motivation and Overview

•Record & Replay Technique

• Implementation and Evaluation

•Conclusions and Future Work

Presentation Outline

•Motivation and Overview

•Record & Replay Technique

• Implementation and Evaluation

•Conclusions and Future Work

Presentation Outline

 The Tool: SCARPE
Selective CApture and Replay of Program Executions

Instrumentation
Module

SCARPE Toolset

Record
Module

JVM rawevents

execution
events

I/O

class names

Users

Event
Log

Observed
Set

Program

Instrumented
Program

 The Tool: SCARPE
Selective CApture and Replay of Program Executions

Instrumentation
Module

SCARPE Toolset

Record
Module

JVM rawevents

execution
events

I/O

class names

Users

Event
Log

Observed
Set

Program

Instrumented
Program

Replay performed in a similar way

Empirical Study

• RQ1 (feasibility): Can SCARPE correctly record and
replay different subsets of an application?

• RQ2 (efficiency): Can SCARPE record executions
without imposing too much overhead?

• Subjects:

Classes KLOC # Test Cases

NanoXML

JABA

19 3.5 216

500 60 400

RQ1 – Feasibility
(NanoXML)

RQ1 – Feasibility
(NanoXML)

Experimental protocol

1. For each class C in NanoXML
a. Specify C as the subsystem of interest
b. Run all test cases and record executions

2. Replay all recorded executions (> 4,000)

RQ1 – Feasibility
(NanoXML)

Experimental protocol

1. For each class C in NanoXML
a. Specify C as the subsystem of interest
b. Run all test cases and record executions

2. Replay all recorded executions (> 4,000)

Results

• Record and replay successful for all classes
and all test cases

RQ2 – Efficiency
(JABA)

RQ2 – Efficiency
(JABA)

Experimental protocol

RQ2 – Efficiency
(JABA)

Experimental protocol

1. For each test case T in JABA’s test suite
a. Run T
b. Measure time to run T
c. Identify nine classes covered by T

RQ2 – Efficiency
(JABA)

Experimental protocol

1. For each test case T in JABA’s test suite
a. Run T
b. Measure time to run T
c. Identify nine classes covered by T

2. For each class C and test case T considered
a. Specify C as the subsystem of interest
b. Run all test cases and record executions
c. Measure time to run T

RQ2 – Efficiency
(JABA)

Experimental protocol

1. For each test case T in JABA’s test suite
a. Run T
b. Measure time to run T
c. Identify nine classes covered by T

2. For each class C and test case T considered
a. Specify C as the subsystem of interest
b. Run all test cases and record executions
c. Measure time to run T

3. For each T, compare times to run T in (1) and (2)

RQ2 – Efficiency
(JABA)

RQ2 – Efficiency
(JABA)

Results

RQ2 – Efficiency
(JABA)

Results

• Space overhead limited:

• 60 MB for largest log (~120M events)

• ~50KB for 1000 events
(uncompressed, unoptimized)

RQ2 – Efficiency
(JABA)

Results

• Space overhead limited:

• 60 MB for largest log (~120M events)

• ~50KB for 1000 events
(uncompressed, unoptimized)

• Time overhead varies widely

• Minimum: 3%

• Average: 97%

• Maximum: 877%

RQ2 – Detailed Results

0

225

450

675

900

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

min

max

avg×

Legend:

Pe
rc

en
ta

ge
 O

ve
he

ad

Classes Considered

RQ2 – Detailed Results

0

225

450

675

900

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

min

max

avg×

Legend:

Pe
rc

en
ta

ge
 O

ve
he

ad

Classes Considered

•Cost does not depend on event types
•Overhead depends on #events/sec
•For example:
• Lowest overhead (3%): ~1K ev/sec
• Highest overhead (877%): ~300K ev/sec

RQ2 – Detailed Results

0

225

450

675

900

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

min

max

avg×

Legend:

Pe
rc

en
ta

ge
 O

ve
he

ad

Classes Considered

•Cost does not depend on event types
•Overhead depends on #events/sec
•For example:
• Lowest overhead (3%): ~1K ev/sec
• Highest overhead (877%): ~300K ev/sec

Further considerations
•Overhead often between 30%-100%

(in the single digits in some cases)
•May be acceptable for interactive apps
• We are investigating optimizations

(No problem for in-house use)

•Motivation and Overview

•Record & Replay Technique

• Implementation and Evaluation

•Conclusions and Future Work

Presentation Outline

•Motivation and Overview

•Record & Replay Technique

• Implementation and Evaluation

•Conclusions and Future Work

Presentation Outline

Related Work

• Techniques for deterministic debugging (e.g.,
DejaVu [Choi et al. 98])

• Techniques for automated mock-object creation
([Saff and Ernst 04], [Elbaum et al. 06])

• Techniques for complete replay ([Steven and
Podgursky 00])

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Subsystem 1 Subsystem 2 Subsystem 3 ...

EL1 EL2 EL3 ... EL1 EL2 EL3 ... EL1 EL2 EL3

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Subsystem 1 Subsystem 2 Subsystem 3 ...

EL1 EL2 EL3 ... EL1 EL2 EL3 ... EL1 EL2 EL3

1 ≤ cardinality ≤ #classes

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Subsystem 1 Subsystem 2 Subsystem 3 ...

EL1 EL2 EL3 ... EL1 EL2 EL3 ... EL1 EL2 EL3

Same VS different subsystems at different sites

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Subsystem 1 Subsystem 2 Subsystem 3 ...

EL1 EL2 EL3 ... EL1 EL2 EL3 ... EL1 EL2 EL3

Field VS in-house

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Subsystem 1 Subsystem 2 Subsystem 3 ...

EL1 EL2 EL3 ... EL1 EL2 EL3 ... EL1 EL2 EL3

Always collect VS anomaly-driven collection
Send back VS replay locally

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Subsystem 1 Subsystem 2 Subsystem 3 ...

EL1 EL2 EL3 ... EL1 EL2 EL3 ... EL1 EL2 EL3

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

 Further validation
(especially w.r.t. performance)

1

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

 Further validation
(especially w.r.t. performance)

1 Improve performance
(e.g., static/dynamic analysis for selection)
2

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Alternative approaches
(binary level, JVM level)

3

 Further validation
(especially w.r.t. performance)

1 Improve performance
(e.g., static/dynamic analysis for selection)
2

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Alternative approaches
(binary level, JVM level)

3

 Further validation
(especially w.r.t. performance)

1 Improve performance
(e.g., static/dynamic analysis for selection)
2

Investigate Applications
(we mentioned three, there are more)

4

Summary and Future Work
Output

Input
Subsystem 1

Subsystem 2

Subsystem 3Environment

Event
Logs

Thank you!

Questions?

