
CS2200 Introduction to Systems and Networking

Purpose & Outcomes

Purpose
Provide a broad exposure to computer system structure and networking including software abstractions
in operating systems for orchestrating the usage of the computing resources:

 Organization of the processor
 Memory hierarchy
 Storage devices
 Parallel processors
 Networking hardware
 Software abstractions in the operating systems for orchestrating their usage
 Networking protocols to connect the computer system to its environment

Outcomes
 (Competency Knowledge) Understand the difference between RISC and CISC architectures. Be

able to identify the strengths and weaknesses of each paradigm.
 (Competency Knowledge) Understand and be able explain runtime system concepts such as

procedure calls and register saving. Be able to write recursive subroutines in assembly.
 (Competency Application) Understand how a processor is controlled. Given a datapath and an

instruction set be able to write the finite state machine steps in a high-level meta language.
 (Competency Knowledge) Understand and be able to explain (at a high level) hardware

modifications required to implement an interrupt system and to understand the basic concepts
required to write an interrupt handler (in assembly language).

 (Competency Knowledge) Understand the basic principles of pipelining:
 Pipelining registers
 Potential performance improvements with pipelining
 Pipelining Hazards: Structural, Data and Control
 (Competency Knowledge) Understand basic concepts of processor scheduling: Process vs

program, PCB, scheduling algorithms (Round Robin, Shortest Job First, First Come First Served,
Priority, Multilevel Queues), types of scheduler (short, medium and long term) and context
switching.

 (Competency Comprehension) Given a set of processes with appropriate parameters show
scheduling behavior under different scheduling algorithms.

 (Competency Application) Be able to calculate the proper size required for pipeline register and
speedups with pipelining.

 (Competency Application) Be able to solve basic word problems involving Amdahl's Law.

 (Competency Knowledge) Be able to identify and explain how to avoid or minimize the effect of
the different types of pipelining hazards.

 (Competency Knowledge) Understand the drivers of memory cache designs: Temporal locality,
spatial locality and working set. Be able to match the design with the motivator.

 (Competency Knowledge) Understand the basic operation of virtual memory and typical
components: Page table, virtual pages, physical frames, TLB, page/frame offset, page
replacement algorithms (LRU, Random, FCFS, and Optimum). Be able to describe the basic
operation and identify the necessary subsystems.

 (Competency Knowledge) Understand the basic design of typical caches including indexes, tags,
dirty and valid bits as well as multi-word blocks, set-associative and ully associative caches.
Given selected design parameters (i.e. word size, memory available for data

 (Competency Knowledge) Understand basic concepts of parallel processing: UMA (SMP) vs
NUMA configurations, multiprocessor cache coherency, network interconnection schemes,
threads, mutex, condition variables.

 (Accomplishment Application) Be able to write multi-threaded programs using the pthreads
package. An example would be a multithreaded producer consumer application.

 (Competency Knowledge) Understand basic networking concepts: Ethernet (CSMA/CD), Token
Ring, Payload vs. header and trailer, checksums, bandwidth, effective bandwidth, latency, MAC
addresses, Network (IP) addresses, protocol stacks, TCP/IP, routing, hubs/repeaters, bridges,
VLANS, routers.

 (Competency Knowledge) Understand fundamentals of I/O devices such as polling versus
interrupts, memory mapped I/O, device registers (data, control and status), disk memory
concepts (sectors, tracks, platters, cylinders, seek time, rotational latency), disk scheduling
algorithms (FCFS, SSTF, scan, c-scan, look, c-look)

 (Accomplishment Synthesis) Write and debug medium sized C programs that simulate various of
the above subsystems (interrupt enabled processor, virtual memory, multi-threaded operating
system schedulers, reliable transport layer protocol which will be examples of operating-system-
like coding.

15 week Semester Lecture schedule (with reference to textbook):
 (Arch) Processor design and implementation – 3 weeks (Ch 2-5)
 (OS) Processor scheduling – 1 week (Ch 6)
 (OS/Arch) Memory management including memory hierarchy – 3 weeks (Ch 7-9)
 (OS/Arch) Multiprocessor and multithreaded programming – 2 weeks (Ch 12)
 (Arch/OS) I/O: Interfacing I/O devices, interrupts, handlers, drivers, disk scheduling – 1 week (Ch

10)
 (OS) File systems – 2 weeks (Ch 11)
 (OS/Arch) Networking – 2 weeks (Ch 13)
 (Misc) tests, review – 1 week

Project schedule (with assistance in recitation meetings – 2 hours of
scheduled time every week):
 (Arch) Processor implementation
 (Arch) Interrupt implementation and interrupt handler
 (OS) Virtual Memory management
 (OS) Multithreaded processor scheduler
 (OS/networking) Reliable transport protocol

