
CS2200 Introduction to Systems and Networking

Purpose & Outcomes

Purpose
Provide a broad exposure to computer system structure and networking including software abstractions
in operating systems for orchestrating the usage of the computing resources:

 Organization of the processor
 Memory hierarchy
 Storage devices
 Parallel processors
 Networking hardware
 Software abstractions in the operating systems for orchestrating their usage
 Networking protocols to connect the computer system to its environment

Outcomes
 (Competency Knowledge) Understand the difference between RISC and CISC architectures. Be

able to identify the strengths and weaknesses of each paradigm.
 (Competency Knowledge) Understand and be able explain runtime system concepts such as

procedure calls and register saving. Be able to write recursive subroutines in assembly.
 (Competency Application) Understand how a processor is controlled. Given a datapath and an

instruction set be able to write the finite state machine steps in a high-level meta language.
 (Competency Knowledge) Understand and be able to explain (at a high level) hardware

modifications required to implement an interrupt system and to understand the basic concepts
required to write an interrupt handler (in assembly language).

 (Competency Knowledge) Understand the basic principles of pipelining:
 Pipelining registers
 Potential performance improvements with pipelining
 Pipelining Hazards: Structural, Data and Control
 (Competency Knowledge) Understand basic concepts of processor scheduling: Process vs

program, PCB, scheduling algorithms (Round Robin, Shortest Job First, First Come First Served,
Priority, Multilevel Queues), types of scheduler (short, medium and long term) and context
switching.

 (Competency Comprehension) Given a set of processes with appropriate parameters show
scheduling behavior under different scheduling algorithms.

 (Competency Application) Be able to calculate the proper size required for pipeline register and
speedups with pipelining.

 (Competency Application) Be able to solve basic word problems involving Amdahl's Law.

 (Competency Knowledge) Be able to identify and explain how to avoid or minimize the effect of
the different types of pipelining hazards.

 (Competency Knowledge) Understand the drivers of memory cache designs: Temporal locality,
spatial locality and working set. Be able to match the design with the motivator.

 (Competency Knowledge) Understand the basic operation of virtual memory and typical
components: Page table, virtual pages, physical frames, TLB, page/frame offset, page
replacement algorithms (LRU, Random, FCFS, and Optimum). Be able to describe the basic
operation and identify the necessary subsystems.

 (Competency Knowledge) Understand the basic design of typical caches including indexes, tags,
dirty and valid bits as well as multi-word blocks, set-associative and ully associative caches.
Given selected design parameters (i.e. word size, memory available for data

 (Competency Knowledge) Understand basic concepts of parallel processing: UMA (SMP) vs
NUMA configurations, multiprocessor cache coherency, network interconnection schemes,
threads, mutex, condition variables.

 (Accomplishment Application) Be able to write multi-threaded programs using the pthreads
package. An example would be a multithreaded producer consumer application.

 (Competency Knowledge) Understand basic networking concepts: Ethernet (CSMA/CD), Token
Ring, Payload vs. header and trailer, checksums, bandwidth, effective bandwidth, latency, MAC
addresses, Network (IP) addresses, protocol stacks, TCP/IP, routing, hubs/repeaters, bridges,
VLANS, routers.

 (Competency Knowledge) Understand fundamentals of I/O devices such as polling versus
interrupts, memory mapped I/O, device registers (data, control and status), disk memory
concepts (sectors, tracks, platters, cylinders, seek time, rotational latency), disk scheduling
algorithms (FCFS, SSTF, scan, c-scan, look, c-look)

 (Accomplishment Synthesis) Write and debug medium sized C programs that simulate various of
the above subsystems (interrupt enabled processor, virtual memory, multi-threaded operating
system schedulers, reliable transport layer protocol which will be examples of operating-system-
like coding.

15 week Semester Lecture schedule (with reference to textbook):
 (Arch) Processor design and implementation – 3 weeks (Ch 2-5)
 (OS) Processor scheduling – 1 week (Ch 6)
 (OS/Arch) Memory management including memory hierarchy – 3 weeks (Ch 7-9)
 (OS/Arch) Multiprocessor and multithreaded programming – 2 weeks (Ch 12)
 (Arch/OS) I/O: Interfacing I/O devices, interrupts, handlers, drivers, disk scheduling – 1 week (Ch

10)
 (OS) File systems – 2 weeks (Ch 11)
 (OS/Arch) Networking – 2 weeks (Ch 13)
 (Misc) tests, review – 1 week

Project schedule (with assistance in recitation meetings – 2 hours of
scheduled time every week):
 (Arch) Processor implementation
 (Arch) Interrupt implementation and interrupt handler
 (OS) Virtual Memory management
 (OS) Multithreaded processor scheduler
 (OS/networking) Reliable transport protocol

