
Opportunities for Optimizing the Container Runtime
Adam Hall

College of Computing
Georgia Institute of Technology

Atlanta, Georgia
ach@gatech.edu

Umakishore Ramachandran
College of Computing

Georgia Institute of Technology
Atlanta, Georgia
rama@gatech.edu

Abstract—Container-based virtualization provides lightweight
mechanisms for process isolation and resource control that are
essential for maintaining a high degree of multi-tenancy in
Function-as-a-Service (FaaS) platforms, where compute functions
are instantiated on-demand and exist only as long as their exe-
cution is active. This model is especially advantageous for Edge
computing environments, where hardware resources are limited
due to physical space constraints. Despite their many advantages,
state-of-the-art container runtimes still suffer from startup delays
of several hundred milliseconds. This delay adversely impacts
user experience for existing human-in-the-loop applications and
quickly erodes the low latency response times required by emerg-
ing machine-in-the-loop IoT and Edge computing applications
utilizing FaaS. In turn, it causes developers of these applications
to employ unsanctioned workarounds that artificially extend the
lifetime of their functions, resulting in wasted platform resources.
In this paper, we provide an exploration of the cause of this
startup delay and insight on how container-based virtualization
might be made more efficient for FaaS scenarios at the Edge.
Our results show that a small number of container startup
operations account for the majority of cold start time, that
several of these operations have room for improvement, and
that startup time is largely bound by the underlying operating
system mechanisms that are the building blocks for containers.
We draw on our detailed analysis to provide guidance toward
developing a container runtime for Edge computing environments
and demonstrate how making a few key improvements to the
container creation process can lead to a 20% reduction in cold
start time.

Index Terms—Containers, Edge Computing, Runtime, Server-
less, FaaS

I. INTRODUCTION

In the near future, relocating or extending computational
resources from the Cloud toward the Edge of the network will
be necessary to support next-generation applications (such as
Augmented Reality, Video Analytics, and Self-Driving Cars)
requiring high data throughput and low latency response times.
Serving these applications from the Cloud alone is impractical
due to its centralized nature, which introduces high latency
(because of the physical distance between clients and data
centers) and constrained bandwidth (because of a limited
number of backhaul links relative to a large number of client
devices). However, physical space constraints in the last mile
mean Edge computing hardware is necessarily limited relative
to its Cloud counterparts. Despite this limitation, the Edge
must support a large number of different applications serving
various clients. To this end, it is important to ensure application
runtimes utilize hardware resources as efficiently as possible

to achieve a high degree of multi-tenancy for supporting many
different application services simultaneously.

One method for efficiently hosting different applications
in the same environment is container-based virtualization.
With this method, each process related to a service runs
within a separate namespace of the host operating system
(OS). This namespace gives the appearance of a full OS to
the processes, complete with a unique view of and limit on
which resources can be consumed. Unlike fully virtualized
machines, which each require an entirely separate copy of
the OS and all its components, containers exist within the
same host OS and share the same kernel, so their operation is
considerably more lightweight. This distinction is especially
important in an Edge computing environment, where the
processes of different application services must be separated
for security and performance reasons but must be done so
with minimal resource cost. Several application orchestration
and Function-as-a-Service (FaaS) platforms targeting Edge
computing environments [1] [2] [3] rely on containers for
this reason.

In FaaS platforms, applications are represented as inde-
pendent component parts known as functions. These single-
purpose functions exist on-demand, in that they are instantiated
when called, execute for a brief period of time, and shut down
until needed again. Each function is isolated within its own
short-lived container. In recent years, FaaS has proved a boon
to Cloud providers and their customers, enabling significant
cost and resource savings. Similarly, the scale-to-zero1 nature
of FaaS platforms further extends the utility of containers for
Edge computing environments, allowing even greater degrees
of multi-tenancy through more efficient utilization of limited
hardware resources.

Despite the advantages containers provide, they still suffer
from an issue known as the cold-start problem, requiring
several hundred milliseconds or more to complete their start
up operations. This means that any applications they host
cannot begin serving clients until container startup operations
complete. Applications that rely on Edge computing expect
rapid response times, so any advantage achieved by placing
computational resources within close proximity to clients can
be quickly eroded if the services supporting these applications

1”Scale-to-zero” describes the ability of a FaaS platform to reduce a
function to zero replicas when idle and more replicas as needed.

1 2 3 4 5 6 7 8 9 10
Arrival Time (sec)

125

150

175

200

225

250

275

300

325

St
ar

tu
p

Ti
m

e
(m

se
c)

Container Start Times

(a)

1 2 3 4 5 6 7 8 9 10
Arrival Time (sec)

2

4

6

8

10

12

14

16

Ac

tiv
e

Co
nt

ai
ne

rs

Active Containers

(b)

Fig. 1: Container startup times for a function with 100 ms
average inter-arrival time and 1 second average execution
time. The first 16 function invocations result in a cold start,
after which time running containers can be recycled to handle
new requests (left graph). After approximately 3 seconds, the
workload requires no more than 14 warm containers, leaving
2 containers idle (right graph).

take too long to start. This problem is further exacerbated
by the limited hardware available to Edge nodes, which may
necessitate recycling containers during periods of application
inactivity to free up resources.

Figure 1 demonstrates the impact of cold start on a FaaS
platform handling a workload of 10 requests per second (RPS)
over a 10 second period. In this scenario, a new container
needs to be spawned every 100 ms to service incoming
requests. With an average execution time of 1 second and
cold start of 250 ms, at least 1.25 seconds elapse before the
first container can be recycled to service additional requests.
During the ramp up period the platform must spawn 16
containers to meet demand, but afterwards a maximum of 14
containers are needed to service incoming requests. As a result,
2 containers remain idle for the remainder of the test. Since
many FaaS platforms keep containers warm in anticipation of
serving future requests faster, these extra containers consume
additional memory even when unused.

Application platforms targeting the Edge focus on optimiz-
ing orchestration and communications costs, but still rely on
containers as-is under the hood. The common method used to
reduce container cold starts involves keeping containers active
for some period following invocation (e.g., OpenWhisk [4]
uses a 10 minute window before turning off an idle container).
While this method greatly reduces cold start, it comes at a
high resource cost. Other methods for reducing or eliminating
cold start exist, such as pre-warming containers [5] [6] and
checkpoint/restore [7], but these methods also trade already
limited resources for performance gains and are thus unsuit-
able for resource constrained Edge computing platforms. To
achieve low latency and high efficiency, the Edge needs its
own optimized container runtime that addresses the root causes
of the cold start problem. As we later demonstrate, several
opportunities for container runtime optimization exist and can
be leveraged to achieve this goal.

In this paper, we deconstruct a container’s startup routine
by instrumenting and analyzing a container runtime. We use
this analysis to determine the operations involved in creating a

container environment, costs associated with each operation,
and operations that can be streamlined to reduce container
startup time. Our work makes the following contributions:

1) We describe our methodology for analyzing a container
runtime, including techniques to add instrumentation
for benchmarking an application that spans multiple
processes in different namespaces.

2) We provide fine-grained measurements of the container
startup procedure, including a list of operations that
contribute significantly to cold start time.

3) We provide a detailed analysis of the functions that
impact the startup time of containers, pinpointing some
key issues that are candidates for improvement as a
way to inform the creation of a more efficient container
runtime for resource constrained Edge environments.

4) We demonstrate that opportunity exists for optimizing
the container runtime by implementing proof-of-concept
improvements that achieve a 20% reduction in cold
start time without requiring significant changes to the
runtime’s functionality.

The remainder of this paper is laid out as follows. In
Section II we provide brief background information on
how container-based virtualization technology works. In Sec-
tion III, we discuss challenges to deconstructing a container’s
startup time and our solution approach to meeting these chal-
lenges. In Section IV, we provide a description of the container
runtime aspects that were measured and our results from these
measurements. In Section V, we provide a detailed analysis
of our measurement results, highlighting the operations that
most impact container startup. In Section VI, we discuss some
proof-of-concept container runtime improvements that result in
a reduction in cold start time. In Section VII, we demonstrate
the benefit of our optimized runtime on container cold start
when faced with realistic workloads from a production FaaS
platform. And in Sections VIII and IX we discuss works
related to our own, the impact of our findings, and provide
overall conclusions drawn from this research.

II. BACKGROUND

In this section we discuss low-level details of how con-
tainers work to lay the framework for later explorations into
container startup operations. For the reader already familiar
with container technology, this section can be skipped.

Container-based virtualization provides a way to segment
one or more processes into different logical views of their
underlying host OS and give each process a unique allocation
of system resources. Under Linux, This segmentation is made
possible by two components: namespaces [8] and cgroups [9]
(also known as control groups)2. Namespaces provide a logical
division of OS resources, such as the process tree or filesystem.
For example, one process may have a unique filesystem root
directory layout or network routing table that other processes

2Although different methods exist for container-based virtualization, for
the purposes of this paper we limit our discussion to the implementation of
containers within Linux.

2

do not share. Linux provides eight different namespaces:
Cgroup, IPC, Network, Mount, PID, Time, User, and UTS.
The Cgroups kernel feature provides a way to limit the amount
of system resources that processes can consume. For example,
processes in a container may be limited to a subset of their
system’s virtual memory space while processes outside the
container may have access to the entire virtual memory space.
Multiple namespaces and cgroups may exist within a host
OS, and each namespace or cgroup may have one or more
processes tied to it.

Container creation is grounded in the Unix fork/exec
paradigm and typically begins when an active process makes
a clone() [10] system call. This system call allows the calling
process (the parent) to spawn a new process (the child) with
arguments specifying how namespaces will be assigned to
the newly cloned process. For example, if clone() is called
with the CLONE NEWNS flag set, the child process will be
started in a new mount namespace that is initialized with a
copy of the parent’s mount namespace. By default, the child
process inherits most of the properties of its parent. After
the child process has spawned, it can be further configured
to customize properties like hostname or filesystem layout,
security capabilities that limit privileged system operations,
and cgroups that limit the amount of resources it can consume.
A diagram illustrating the relationship of a namespace to its
parent/host operating system can be seen in Figure 2.

After the child process has been configured to create an iso-
lated container environment, it uses an exec() system call [11]
to effectively replace itself with the container’s init program.
The init program in turn spawns other applications, providing
a facsimile of a real operating system inside the container.
Since every new process inherits its parent’s namespaces and
capabilities, every new application spawned by init also runs
in the same container. Typically a container runtime serves as
the initial parent and child processes creating the container,
and the init program is specified by the container creator.

/

/c1/rootfs

Path

OS (Parent)
 Mount Namespace

Child Mount Namespace

Path (Actual Path)
/ (/c1/rootfs)

/home
(/c1/rootfs/home)

Fig. 2: The relationship between a child’s mount names-
pace and its parent/host. The parent directory ‘/c1/rootfs’ is
mounted as the root directory ‘/’ of the child. Any directory
created in ‘/’ on the child is actually stored in ‘/c1/rootfs’ on
the host. For example, although the child sees a directory at
‘/home’, this directory is actually stored at ‘/c1/rootfs/home’
on the parent.

III. DISSECTING CONTAINER COLD START

Deconstructing the startup operations of a container is more
challenging than it initially seems, due to both the nature of
the container creation model and a lack of available tooling
features to provide enough insight into the inner workings of
its operations. In this section we describe these challenges
and our solution approach to dissecting the container startup
procedure.

A. Inherent Challenges

The nature of the container creation model poses two main
challenges to understanding the inner workings of container
creation:

1) Multiple processes running simultaneously: During
its execution, a container runtime clones itself to a new
child process and these two processes execute in parallel
to complete container setup. Each of these processes
executes in a different namespace and with different
security capabilities. Failing to properly account for
simultaneous operations can lead to false positive timing
results (in the form of a double counting problem) if two
functions executing simultaneously are both counted as
contributing to the cold start time.

2) Limitations of existing tools: A standard approach to
measurement is to invoke common performance analysis
and profiling tools like perf [12] and strace [13]. While
some tools provide part of the functionality needed, in
our experience none are sufficient for container analysis
for two reasons. First, attempting to use these tools
to analyze a container runtime results in partial or
missing output. Popular analysis tools are designed to
work with a single view of the system, but during
container creation the runtime and its child provide
multiple views (i.e., namespaces) of the system. For
example, after the container runtime clones itself its
child process will execute in a new PID namespace
with reduced security capabilities. Both of these changes
restrict the information off-the-shelf analysis tools can
gather due to either limited information availability or
lack of permissions. Second, the information recorded
by these tools does not provide deep enough insight
into container startup operations. Performing a thorough
analysis requires information such as how long each
individual function takes to execute, how and why it
was invoked, and where in the code base that function
is defined. For these reasons we found that off-the-
shelf profiling tools were inadequate for exploring the
container startup procedure.

To further clarify these challenges, we provide a high-level
diagram of the container startup procedure in Figure 3. This
procedure begins with the execution of a container runtime
binary (1) which first performs preliminary operations such
as loading a container’s configuration and setting up security
policies. After these initial operations, the runtime process
clones itself (2) into a new child process and waits for the child

3

process to load and return its process identifier (3). The child
process performs its own initialization procedures while com-
municating with the parent process to coordinate operations
such as the setup of cgroups (4) and namespaces (5). During
this period the parent and child may be occasionally blocked
while waiting for each other to complete different operations
(as indicated by the yellow circles along each timeline). The
operations performed by the child process occur in a separate
namespace from the parent process. When startup operations
have completed (6), the child process begins execution of the
container’s init program (7) and the container is ready to run.

Parent Process
(runc)

Child Process
(runc Clone)

(2) Clone
Runtime

(6) Finalize
Setup

300 ms
cold start

(5) Setup
Namespaces

(3) Wait for
child start

(1) Load
Runtime

(4) Setup
cgroups

(7) Init
Container

Fig. 3: A high-level illustration of the container startup proce-
dure. Container startup consists of two processes (parent and
child) which work simultaneously in different namespaces to
create an environment to isolate the container init process.

As previously mentioned, a methodology for timing oper-
ations must account for the interplay between runtime parent
and child processes to provide a thorough analysis of the
operations that contribute to cold start. For example, if func-
tionA() in the parent calls functionB() in the child, its recorded
execution time will include the time for its own operations plus
the execution time for functionB(). Not accounting for this
situation falsely attributes execution time to different startup
operations and inflates the overall measured startup time. In
the next section, we describe how we address these challenges
to achieve accurate logging and timing of container startup
operations.

B. Methodology

Containers are created through a combination of system
calls and kernel functions, and these features are commonly
accessed via a standard container library like libcontainer [14].
The runc container runtime [15] implements libcontainer and
is used by popular platforms such as Docker and Kubernetes
for container creation. For the purposes of this paper, we
added instrumentation to runc that records each function called
during the container creation process. Although our instru-
mentation records container creation from the perspective of
runc, we note that our observations generalize across different

container runtimes and our findings apply equally for any
container creation scenario.

The runc code base is written in the Go programming
language and consists of just over 1,000 functions. To instru-
ment these functions, we created a new package within runc
with a function, TimeC(), that records function start and stop
times along with each function’s caller and location within
the runc source tree. We leverage two features of Go to
gather accurate function timing information. The first feature
is Go’s defer statement [16], that ensures a block of code
within a function will not be executed until its surrounding
function returns. All arguments to a function called by defer
are evaluated immediately. This means if we place a defer
call to TimeC() at the beginning of each instrumented function
with an argument that records the current time, the argument
will be evaluated as soon as the surrounding function starts,
effectively providing us with the start time of that function.
The second feature is Go’s built-in runtime package [17] that
provides operations allowing a program to interact with the Go
runtime system. We use these operations to extract information
about the instrumented function.

When an instrumented function is executed, the defer state-
ment is evaluated immediately and records the current time
as the function start time. When the instrumented function
returns, defer calls TimeC() with information about the instru-
mented function and its parent (calling) function, such as the
names of the functions and the filename, line number, and
package in which they appear in the runc source tree. The
TimeC() function immediately records the current time as the
end time of the surrounding function and calculates the elapsed
time to determine the function execution time in nanoseconds.
Statistics for the function are then converted to a string of
comma-separated values and stored in an in-memory log that
is written to disk after the container has started.

If an instrumented function calls other functions within
runc, its recorded execution time will also encompass the
execution time of those called functions. This situation leads
to false positive timing information. As a solution, during the
log parsing phase the execution times of a parent’s children are
subtracted from the parent’s recorded execution time, yielding
a normalized result.

IV. MEASUREMENT RESULTS

In this section, we discuss the results from measuring
container execution times with our instrumented container
runtime.

A. Container Startup Time

We chose the Ubuntu 18.04 container image from Docker
Hub for use in our measurements. These measurements were
taken on a machine running a 4-core Intel i5-1035G1 with 8
GB of RAM. To eliminate additional overhead, our container
was configured to execute a single script that prints a times-
tamp upon initialization and then exits. Figure 4 demonstrates
the distribution of cold start times for 100 container creations
spaced 100 ms apart using an unmodified version of the runc

4

container runtime. We recorded an average container startup
time of 259 ms, but note that this time can be highly variable,
increasing to as much as 329 ms in our experiment.

220 240 260 280 300 320
Startup Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Container Start Times, Unmodified Runtime

Fig. 4: Distribution of 100 container startup times.

Our instrumented version of runc was used to measure the
execution times taken by the functions called during each
container’s startup to shutdown period. We recorded measure-
ments of execution times for an average of 3900 function calls
per container creation. These execution times were recorded
with nanosecond precision. To gauge the accuracy of our in-
strumentation technique, we compared the execution times of
both an unmodified and instrumented version of runc over 100
container startup events. Since the difference between results
reported by both versions was 1% on average, we consider
this validation that our instrumentation technique provides an
accurate representation of the time taken to execute functions
during container startup.

B. Container Startup Flow

Our instrumentation records the time that a function is called
and its parent (calling) function, allowing us to recreate the
operational flow that makes up a container startup process. A
basic version of this flow is illustrated in Figure 5. We discov-
ered that the basic flow of startup operations is almost identical
among different container types, in that the same functions or
types of functions are called in almost the same order across
container startups. Typically, a runc parent process begins by
loading and validating a container’s configuration and then
checking for and initializing IntelRDT (Resource Director
Technology) [18], if available. The parent process then creates
a copy of itself - a runc child process - and specifies which new
namespaces should be created for the copy. Security profiles
for AppArmor [19] and seccomp [20] are then loaded, Cgroups
are applied to the child to limit its resource utilization, and the
child’s namespaces are configured to isolate it from the rest
of the system. At this point the child process is running in a
fully contained environment. To complete container setup, the
child process executes the entry point application specified
by the container config, effectively replacing itself with the
container init process. After container execution completes,
runc reclaims control from the init process to destroy and
clean up container resources.

Load & Validate
Config/Specrunc run container IntelRDT

Setup

Apply
cgroups

Configure
Namespaces

Exec to
container init

Run
Container

Destroy and
Clean Up
Container

Setup
security
policies

Clone runc

Fig. 5: The basic flow of operations that occur during a
container’s startup process.

C. Component Parts of Container Startup

To better describe container startup operations, we group
functions that contribute to cold start and have a similar pur-
pose into one of several categories. Our category placements
are based on both the layout of the runc source code and on
the trace data generated by our instrumented version of that
code. We use the following categories to describe container
startup operations:

• Security. Functions in this category are concerned with
the setup and maintenance of security operations that
restrict what a container may do. Examples include func-
tions from the AppArmor and seccomp implementations
used by libcontainer.

• Mounts. Functions in this category perform operations
related to the mount namespace, such as establishing a
unique filesystem layout for the container.

• Platform Specific. Functions in this category perform op-
erations associated with platform-specific features, such
as IntelRDT.

• Cgroups. Functions in this category perform operations
related to the creation and application of Linux control
groups. These operations are used to restrict the amount
of resources of the system that a container can use.

• Bootstrap. Functions in this category are responsible for
setting up the initial container parent process before it is
cloned.

• Sync. Functions in this category handle operations related
to synchronizing between parent and child processes
during container creation, such as serializing/deserializing
data and maintaining communications channels via pipes.

• Configuration. Functions in this category load, interpret,
and apply configuration directives, such as those found in
the OCI runtime specification.

D. Quantifying Component Parts of Container Startup

To provide a more concrete view of how each category
contributes to a container’s start time, Table I demonstrates
execution times and function counts of these categories as
averaged across the 100 container startup operations described
previously. As we discuss in the next section, the cause of the

5

cold start problem in containers appears to be related to just
a few types of operations in each category. In Figure 6 we
demonstrate the magnitude of these dominant operations on
the cold start time of a container.

Category Exec Time Functions Calls

Security 42 ms 11 975

Mounts 99 ms 19 164

Platform 20 ms 9 20

Cgroups 38 ms 84 1,577

Bootstrap 43 ms 99 309

Sync 7 ms 22 35

Configuration 10 ms 43 230

TABLE I: Execution times, number of unique functions, and
number of function calls for categories contributing to cold
start.

Fig. 6: Average execution time percentages for each category
as it contributes to cold start.

V. ANALYSIS OF MEASUREMENT RESULTS

According to the data gathered for our analysis, five
categories have a small number of significantly expensive
operations that contribute to the slow startup of containers:
Security, Mounts, Platform Specific, Bootstrap, and Cgroups.
In the following subsections we perform a breakdown of each
operation type and explore components that may be the cause
of slowdowns, followed by an exploration of the miscellaneous
supporting functions that are used by the runtime, and suggest
how these components could be optimized for the FaaS model.
We conclude the section with a discussion of the container
shutdown procedure.

A. Security

The Security category includes functions that implement
security restrictions for container processes via the seccomp

Linux kernel facility. The libseccomp library [21] is used to
interface with these mechanisms and restrict the OS system
calls (syscalls) that can be made by processes in the container.
Allowing a container process to make syscalls is essential
for certain operations, as some functionality is only available
outside of userspace. At the same time, denying a process
the ability to make some syscalls is necessary to provide a
secure execution environment that is isolated from the host
OS and other container processes. This tradeoff resulted in
the need for security facilities such as seccomp to provide
strong isolation at the cost of some performance penalty. The
category contains 11 unique functions and 975 function calls.
Of these 11 functions, 2 of them account for almost 16% of
the cold start time of a container: seccomp.InitSeccomp() and
seccomp.matchCall().

The InitSeccomp() function creates and configures a new
seccomp filter context [22], into which the rules for each
syscall defined in a container’s configuration will be added. It
then iterates through those rules and adds them one at a time
by calling matchCall(). After all rules have been added, the
filter context is loaded into the kernel via libseccomp’s Load()
function [23]. This initial setup takes 16 ms to complete.

Each syscall is represented by a common name and a
numeric value that is specific to the kernel/architecture on
which the container is being run, and has an action associated
with it that dictates how seccomp will react when the syscall
is used by a process. These two properties are resolved by
matchCall() before they can be used by the filter context. First,
the syscall name listed in the container config is converted to
the syscall number used by the kernel. Next, the filter action
is resolved from its name to a libseccomp object. Finally, both
syscall number and action are added to the filter.

Our measurements show that matchCall() only takes 80
µs to execute on average, but the number of times it is
called is directly related to the number of syscall policies
in a container’s configuration. The configuration for a typical
container has 316 entries for syscalls, representing 67% of the
470 syscalls available in the Linux 4.19 kernel [24]. For a
standard container, adding syscall rules to the filter takes 25
ms.

In the context of a FaaS platform, we can envision two
approaches for reducing the overhead of security operations
on the cold start time:

1) By reducing the number of syscalls filtered to a min-
imum, less calls to matchCall() are needed. This in
turn speeds up the container creation process as well
as reduces the attack surface by limiting unnecessary
privileged functionality. One drawback to this approach
is that platform operators or FaaS application develop-
ers may not have the knowledge or time required to
determine what syscalls a container and its processes
actually need. On the other hand, the behavior of FaaS
applications is similar (i.e., short-lived, single-purpose
functions) and so there may be opportunity for platforms
to dictate a limited number of syscalls that make sense
for the functions they allow their users to run.

6

2) Optimization of the libseccomp library and/or the
seccomp kernel facility merits further investigation.
As noted previously, rules are added to a filter one
at a time via multiple function calls, so the ability to
batch this operation into a single call could provide
some cost savings. Similarly, although each invocation
of matchCall() is relatively fast, in aggregate the number
of invocations required adds significant slowdown to
the startup process and if streamlined should result in
significant time cost savings.

B. Mounts

The Mounts category consists of 19 functions called 164
times, and its operations are the largest contributor to cold
start time. Two functions, libcontainer.maskPath() and libcon-
tainer.pivotRoot(), account for 90 ms of time spent starting a
container.

The maskPath() function configures paths on the host
filesystem that cannot be virtualized within the container. For
example, certain parts of the /proc filesystem [25] contain
access to things like the system memory or low-level device
drivers and do not support isolation via namespaces. Instead,
these filesystem paths must be isolated by rebinding via either
a bind mount to /dev/null for special files or a read-only
tmpfs mount for special directories. Under the hood, this
operation relies on the mount() syscall. In our experiments,
maskPath() was called 9 times. Its execution contributed 61
ms to container startup time.

The pivotRoot() function acts as a wrapper for the
pivot root() syscall. It is responsible for switching the root
filesystem of a container from that of the host (typically
located at /, and referred to as oldroot) to the container’s
root path - the location on the host that holds all the containers
files (referred to as newroot), similar to what is illustrated
in Figure 2. Its operation also relies heavily on system calls,
calling open() on both these paths, performing a change of
directory to newroot via fchdir(), and calling pivot root()
on this location. After newroot is set as the container’s
root filesystem location, pivot root() unmounts oldroot by
changing to its location via another fchdir() call, re-mounting
it as a recursive bind mount via a mount() call, and finally
detaching it via an unmount() call. Finally, it completes its
operation by calling chdir(“/”), placing the container process
at the top of the new root filesystem hierarchy. Changing to the
new container root using this method added 29 ms to startup
time in our experiments.

Both maskPath() and pivotRoot() rely almost exclusively on
system calls to complete their operations, and do not incorpo-
rate much custom logic otherwise. They utilize Go’s built-in
unix package [26] to access these low-level OS primitives.
This property suggests that opportunity for optimization may
exist in either the unix package or within the Linux kernel
itself. Although such exploration is outside the scope of this
work, given the impact of these operations on the container
further investigation is warranted.

C. Platform Specific
Functions in the Platform Specific category are responsible

for performing operations related to Intel’s Resource Director
Technology [18] that allows for fine-grained resource alloca-
tion and monitoring for hardware such as cache and memory
bandwidth. Of these nine functions, all but one of them require
under 0.5 ms to complete, contributing a total of approximately
1 ms to the category’s execution time. The remainder of this
time is dominated by the parseCpuInfoFile() function that
takes approximately 9.5 ms to complete each execution.

The parseCpuInfoFile() reads and parses the file at
/proc/cpuinfo to determine if the flags cat_l3 and mba
exist, indicating CPU and kernel support for IntelRDT sub-
features. If either of these flags are present, the container
runtime performs additional actions to apply any IntelRDT
configuration directives. This function is called twice: once
by the parent process and once by the child process. These
two calls contribute 19 ms to the cold start time.

The IntelRDT functions are executed regardless of whether
or not the container is running on Intel-based hardware and
whether or not configuration directives for them exist in a
container’s config. The short-lived application functions that
execute on a FaaS platform are not likely to benefit from Intel-
RDT’s presence, especially given the overhead it introduces.
Making the execution of these functions an optional feature
(e.g., via a container config directive) could introduce a cost
savings to container startup time, regardless of the underlying
platform.

D. Cgroups
Functions in the Cgroups category perform operations such

as gathering preliminary information for setting a container’s
resource limits, locating the Cgroup file system path, creating
and applying Cgroups, and verifying that a Cgroup’s creation
and/or application was successful. Although there are many
function calls, most execute in under 1 ms and their aggregate
execution contributes approximately 15 ms to startup time. The
remainder of this setup cost is incurred by the executions of 4
functions, amounting to approximately 23 ms of the Cgroup
category’s execution time. These functions include:

• parseCgroupFromReader(), that gathers the Cgroup
configurations that exist for a given process ID (pid) by
reading the file located at /proc/<pid>/cgroup. It
returns these entries to the caller in the form of a key-
value map.

• ParseCgroupFile(), that opens a Cgroup file at a given
path (typically /proc/<pid>/cgroup) and then calls
parseCgroupFromReader() to parse that file.

• findCgroupMountpointAndRootFromReader(), that
attempts to locate the mount point of a Cgroup
virtual file system by scanning through the file
/proc/self/mountinfo, that contains information
about mount points in a process’s mount namespace.

• FindCgroupMountpointAndRoot(), that is responsible
for the first step toward locating the mount point for the
Cgroup virtual file system. It begins by performing a file

7

open on /proc/self/mountinfo. It then calls find-
CgroupMountpointAndRootFromReader() to parse this
file. Its execution takes approximately 5.1 ms.

The most expensive operations associated with Cgroup
creation and management are related to locating and parsing
the files serving as interfaces to Cgroup subsystems. Although
cgroups are interfaced via a virtual file system [27], accessing
this file system still incurs the same overhead as a real
filesystem due to the cost of marshaling and unmarshaling data
between kernelspace and userspace. As a potential optimiza-
tion, FaaS platforms might employ different discrete resource
tiers, create cgroups representing these tiers once, and reuse
them. For example, if the platform supports assigning func-
tions 128 MB, 256 MB, or 512 MB of RAM, three different
memory cgroups could be created when the platform starts
and associated functions could be assigned to the appropriate
tier when invoked.

E. Bootstrap, Sync, & Configuration

The remaining three categories are similar to each other
in that they provide operations essential to container startup
but do not contain operations that stand out as candidates for
deeper analysis. The Bootstrap category consists of operations
that create the initial container runtime parent process and
manage communications with its child process. Two of its
functions, newContainerInit() and getChildPid(), contribute
the majority of execution time and are responsible for estab-
lishing a shared socket and named pipe that enable communi-
cation between parent and child. The Sync category operations
are responsible for supporting communications between the
container runtime parent and child processes during startup.
For example, during container setup the parent must place the
child in various cgroups to limit resource utilization, but can
only do so after the child has communicated its PID back to
the parent. Expensive functions in this category are associ-
ated with process signal handling and parsing JSON-encoded
messages sent between parent and child. The Configuration
category contains operations related to the loading, parsing,
and validation of the container config.

F. Shutdown

Our instrumentation is comprehensive in that it captures tim-
ings for container runtime functions during the entire lifecycle
of the container (i.e., from the time a container is created to
when it is destroyed). We initially suspected that shutdown
would contribute a negligible amount of time to the overall
results, but found that it takes 52 ms on average. Several
operations are required to shut down a container cleanly, such
as removing its Cgroups/namespaces. Although none of these
operations directly impact the cold start of the container, we
note that this finding is still of interest to efforts in making
containers more efficient in FaaS or Edge platforms. The need
to frequently start and stop containers in these platforms means
that a reduction in shutdown latency could decrease the time
spent waiting for resources to become available when the
platform is overloaded. Research has shown that mount and

IPC namespace cleanup in particular is expensive, due to the
way the Linux kernel handles synchronized access to shared
data [5]. Improvements to this area would entail a deeper
exploration of the kernel.

VI. IMPROVEMENTS BASED ON MEASUREMENT RESULTS

Two approaches exist for reducing the execution times
of operations contributing to cold start. The first approach
involves modifying the underlying kernel mechanisms that
are used by the container runtime. If we optimize beyond
the runtime (i.e., by modifying the Linux kernel) we can
achieve more generic benefits to container creation. However,
this effort involves a deep dive into the Linux kernel and has
the potential to disrupt its entire ecosystem. An alternative
approach is to implement optimizations to the runtime itself.
This approach is more tractable in the immediate term and,
as we later demonstrate, can yield considerable reductions to
cold start times.

From the results of our analysis we can identify three key
mechanisms for optimizing runtime operations: (1) exploiting
parallelism of operations where possible, (2) pre-loading or
caching information to avoid redundant tasks, and (3) elimi-
nating functionality that is unnecessary for our use case (e.g.,
features that add to cold start but are not used in a FaaS
platform). In the following sections, we discuss proof-of-
concept improvements made to a container runtime using each
of these mechanisms.

A. Exploiting Parallelism

In recording the container creation process, we noted that
one of two requirements exist for the execution of startup op-
erations: (1) the operation must complete before other startup
operations may begin or (2) the operation must complete
before container initialization is finalized. In the latter case,
operations that block the creation process when not strictly
necessary present an opportunity to reduce cold start time by
performing their executions in parallel. For example, in the
Mounts category the pivotRoot() function uses the unmount()
syscall to unmount the system root from the container’s names-
pace after it is no longer in use. Waiting for this operation to
complete call blocks the startup process, but can be performed
in a non-blocking way for several reasons:

1) Unmount occurs after pivoting the cloned container
runtime process to the newroot namespace, causing
subsequent startup operations of the process to operate
within this context.

2) The call is made with the MNT DETACH flag [28],
which immediately disconnects a filesystem and makes
it unavailable for new accesses, thereby making it inel-
igible for use by subsequent operations in the container
startup procedure.

3) Since the system root is not directly available to new
processes, the unmount operation is performed as a
precaution to remove any dangling references which
could allow a malicious process in the container to gain
privileged access to the true system root. No processes

8

will be spawned in the container until its startup pro-
cedure completes, meaning we only need to ensure that
the true system root is unmounted before this occurs.

pivotRoot()

unix.Unmount()

Container
Init

 73 ms

 25 ms

Container
Setup

finalize
Namespace()

Fig. 7: Optimization of the Mounts pivotRoot() procedure. A
new thread is created to execute unix.Unmount() in parallel,
overlapping the 73 ms time period between pivotRoot() and
finalizeNamespace().

With these points in mind, we modified the source code of
runc’s pivotRoot() function to run the system root unmount in
a non-blocking manner, which we illustrate in Figure 7. Our
optimization leverages two features of the Go programming
language: Goroutines [29] (functions that run concurrently
with other functions) and WaitGroups [30] (functions that
wait for goroutines to finish). Our modification creates a
global WaitGroup within our timing instrumentation code,
encapsulates pivotRoot()’s original unix.Unmount() call within
a new goroutine, and adds this goroutine to the global Wait-
Group. To ensure the unmount operation completes before
the container starts, we cause the WaitGroup to perform a
blocking wait within the finalizeNamespace() function, which
is called by runC near the end of the container creation
process. On average, a 73 ms period is elapsed between the call
to pivotRoot() and the call to finalizeNamespace(), providing
adequate time for the 25 ms unmount operation to complete
without blocking.

The same principle also applies to maskPath() operations,
which rely on mount() system calls to hide privileged filesys-
tem paths that cannot be isolated via namespaces. We applied
the same optimization technique used with pivotRoot() to
maskPath(), allowing otherwise blocking rebinding calls to
complete in parallel outside the critical path of container
startup. These parallel calls leverage the same global Wait-
Group to ensure that all masking operations have completed
before control is given to the container init process.

B. Pre-Loading / Caching

Most directives defined in a container’s configuration do
not change between FaaS invocations, but still require the
same initialization during every container startup. For exam-
ple, in the Security category the InitSeccomp() function must
resolve every named system call in the config to a numeric
kernel-specific representation before it can load them into the
seccomp filter. These numeric representations only change if

the underlying OS kernel or hardware architecture changes,
which is unlikely to occur on any regular basis. This prop-
erty provides an opportunity to perform the name-to-number
translation once, cache the results, and avoid redundant work
during container startup.

To implement this improvement, we modified runc as fol-
lows:

• Pre-parsed the configuration of each container to extract
syscall names and translate them to their numeric equiv-
alents

• Added a new function to init_linux.go, addSyscall-
Numbers(), that takes as input a list of system call
numbers and a seccomp filter and adds rules for each
number to the filter using the seccomp library’s AddRule()
function

• Removed the loop inside InitSeccomp() that previously
used matchCall() to resolve each system call and replaced
it with a single call to our addSyscallNumbers() function

C. Eliminating Unnecessary Functionality

Because runc was created for a wide array of use cases, it
includes functionality which adds to startup time but may be
unnecessary in certain scenarios. For example, our analysis
of IntelRDT shows that its most expensive function, par-
seCpuInfoFile(), is called regardless of whether or not RDT
is utilized on a system. Short-lived application functions on
a FaaS platform are not likely to benefit from IntelRDT and
thus it makes sense to disable this feature in favor of a reduced
time to start. To demonstrate this improvement, we modified
the runc source code to disable IntelRDT.

D. Summary of Improvements

Overall, our three proof-of-concept improvements reduce
the average cold start of a container by 20%. Figure 8
demonstrates the effect of these optimizations on 100 container
startups over a 10 second period. In addition to reducing
the average time to start a container, our optimizations also
reduce the variability among container startup times. Fig-
ure 9 demonstrates the distribution of startup times before
optimization (standard deviation of 19.6 ms) and after opti-
mization (standard deviation of 7 ms). Reducing variability
is especially important in latency critical applications, such
as those envisioned for the future of Edge computing. For
example, in a latency critical application that distributes work
across multiple Edge nodes the application’s response time is
dominated by the response time of the slowest node.

VII. EVALUATION

To show the impact of our proof-of-concept improvements
in a real-world scenario, we evaluated three serverless func-
tions configured with execution times and invocation traces
from the Microsoft Azure Public Dataset [31]. We selected
three functions from this set with high, medium, and low
interarrival times to understand the effects of cold start when
serving mixed workloads. Table II describes these functions
and their configurations. All functions were invoked from cold

9

Fig. 8: A before and after comparison of container startup
times over a 10 second period using an unmodified version
of runc (left) and a version that implements or three proof-
of-concept optimizations (right). Our optimizations result in a
20% reduction to container startup time.

200 220 240 260 280 300 320
Startup Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Container Start Times

Unmodified
Optimized

Fig. 9: Distributions of container cold start times for an
unmodified version of runc and a version using our proof-of-
concept optimizations. In addition to reducing average con-
tainer startup time, these optimizations also reduce variability
in startup times.

start during a 1 minute test period to demonstrate the worst-
case scenario (i.e., no recycling of already warm containers).
Results from this experiment are shown in Figure 10.

Function Interarrival Time Execution Time
5e0db5fd7898 500 ms 629 ms
f9dd89047700 385 ms 306 ms
c8c0dc2ebb78 88 ms 545 ms

TABLE II: Interarrival and execution times for our 3 example
functions.

Similar to our standalone experiments, here we see that cold
start time for function invocations are reduced by 22% on
average with just three optimizations to the container runtime.
As the interarrival time decreases (i.e., as the requests per
second increase), the amount of interference in the system
increases as container setup operations attempt to modify
shared data structures in the operating system simultaneously.
Optimizing blocking operations allows the container setup to
continue doing useful work while this interference is resolved
in the background. Figure 11 demonstrates the distributions in
cold start times among these functions, showing a reduction in
variability when our proof-of-concept optimizations are used.

(a)

(b)

(c)

Fig. 10: Comparison of startup times for our 3 example
functions when running a standard runtime (left figures) and
a runtime with our proof-of-concept optimizations (right fig-
ures). Our optimizations yield an average of 22% reduction to
cold start in these tests.

VIII. RELATED WORK

The primary goal of this paper is a thorough exploration
of container startup operations to understand the cold start
problem. To our knowledge, this work is the first instrumen-
tation and evaluation of the component parts of a container
runtime. However, over the past few years several similar
research efforts have explored the overheads associated with
container-based virtualization. Most recently, Young, et al. [32]
conducted an evaluation on the performance of gVisor, the
security-oriented container engine developed by Google and
used to back their FaaS platform. In this study they decon-
structed gVisor and provided an analysis of its inner workings,
including overhead introduced by its sandboxing and security
features. The gVisor runtime is similar to runc in that it
isolates processes within a single OS and implements the
OCI standard, but provides a much stronger security model
by strictly brokering system calls and I/O via its Sentry
and Gofer services running in userspace. The authors of this
study focus on high level measurement of gVisor’s impact

10

200 220 240 260 280 300
Startup Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
5e0db5fd7898 Start Times Distribution

Unmodified
Optimized

(a)

200 250 300 350 400 450 500
Startup Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
c8c0dc2ebb78 Start Times Distribution

Unmodified
Optimized

(b)

200 250 300 350 400 450 500 550
Startup Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
f9dd89047700 Start Times Distribution

Unmodified
Optimized

(c)

Fig. 11: Distribution of startup times for our 3 example
workloads when using a standard runtime vs. an optimized
runtime. Variability and startup time are reduced for each
workload evaluated.

on the speed of container startup, system calls, memory,
networking, and storage, whereas our work focuses on low
level measurement of the individual component functions
used to create containers. Similar to our findings, the gVisor
study shows that securing processes running in a container
incurs significant overhead. Oakes, et al. [5] provide a brief
exploration of the performance of some individual Linux OS
primitives that enable containers, and use this to motivate and
inform the design of a new container system for FaaS. Their
evaluation stresses each primitive individually and shows how
they behave when faced with large workloads. The work we
do in this paper operates one level above this exploration,
measuring the individual functions of a container runtime that
operate with these primitives and how that operation in concert
contributes to the container startup time.

Our motivation for understanding the cold start problem is
to open the door to future research for enabling more efficient
application isolation in FaaS platforms for Edge computing
environments. Several alternative methods for application iso-
lation have been proposed recently. As mentioned earlier in
this section, gVisor [33] was developed as a way to provide
container-like operation with an enhanced security model. In
2017, Manco, et al. introduced LightVM, a streamlined version
of the Xen hypervisor that leverages unikernels to achieve
fast boot times [34]. More recently, Agache, et al. presented
Firecracker, a virtual machine monitor built to run MicroVMs
and custom tailored to provide fast startup on serverless
platforms without adversely affecting the capabilities available
to end-users in existing solutions [35]. These methods show
promising results toward improving process or application
isolation, but also introduce trade-offs to achieve their goals,
meaning there is no one-size-fits-all solution. For example,
unikernels achieve very fast boot times by stripping their
software stack to a bare minimum, but do so at the expense
of reduced flexibility, in turn preventing them from supporting
more robust applications. Because different use cases necessi-
tate different approaches, containers remain a viable contender
in this space and can be made more competitive through
further improvements.

IX. DISCUSSION AND CONCLUDING REMARKS

Recent trends in low-latency, high-throughput applications
such as AR/VR coupled with advances in connectivity such as
5G paint a picture of a near future where Edge computing is
essential to providing computational offload with fast enough
turnaround time to be useful. To meet this coming demand,
it is important that we devise ways to provide execution
environments that are very nimble. The research presented in
this paper is a step in that direction.

Improving container-based virtualization for faster startup
can be a boon to Edge computing, but is unlikely to be the
only solution. Because of the dynamic nature of the Edge,
and because it presents the opportunity to develop application
types that have not yet been envisioned, it may be necessary
to combine approaches to make a hybrid FaaS runtime which
adapts to meet the needs of the application being served. For
example, the hybrid model might leverage a programming
language framework such as WebAssembly (as proposed by
Hall, et al. [36]) or a microkernel (as proposed by Ren, et
al. [37]) for simple, short-running applications; containers for
moderately complex applications with longer execution times;
and virtual machines for applications with long execution
times that require strong isolation.

Opportunity exists to create a more nimble execution en-
vironment for the Edge. The measurement results we provide
lay the foundation for determining how to improve container-
based virtualization. Our analysis and proof-of-concept im-
plementations to runc demonstrate the potential for creating
a container runtime that provides fast enough startup to
preserve the low-latency advantages of the Edge while keeping
resource overhead low. These general ideas are transferable to

11

other areas of related research which can yield new runtime
paradigms for the unique applications of Edge computing.

X. ACKNOWLEDGEMENTS

We thank our anonymous reviewers for their insightful
feedback and suggestions, which substantially improved the
content of this paper. We would also like to thank fellow
students in our lab for their careful reading and critique of
earlier drafts of our manuscript. This work was funded in
part by NSF CNS-2008368, Cisco, and a gift from Microsoft
Corp.

REFERENCES

[1] KubeEdge Project. (2022) KubeEdge. [Online]. Available:
https://kubeedge.io

[2] K3s Project. (2022) K3s: Lightweight Kubernetes. [Online]. Available:
https://k3s.io

[3] OpenFaas Ltd. (2022) OpenFaaS - Serverless Functions Made Simple.
[Online]. Available: https://www.openfaas.com

[4] Apache Software Foundation. (2022) Apache OpenWhisk
Open Source Serverless Cloud Platform. [Online]. Available:
https://openwhisk.apache.org/

[5] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau, “Sock: Rapid task provisioning with serverless-
optimized containers,” in USENIX ATC’18, 2018.

[6] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “Sand: towards high-performance serverless computing,”
in Proceedings of the USENIX Annual Technical Conference (USENIX
ATC), 2018.

[7] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Bench-
marking, analysis, and optimization of serverless function snapshots,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
559–572.

[8] Linux Manpages. (2022) namespaces - overview of
Linux namespaces. [Online]. Available: http://man7.org/linux/man-
pages/man7/namespaces.7.html

[9] ——. (2022) cgroups - Linux control groups. [Online]. Available:
http://man7.org/linux/man-pages/man7/cgroups.7.html

[10] ——. (2022) clone - create a child process. [Online]. Available:
http://man7.org/linux/man-pages/man2/clone.2.html

[11] ——. (2022) exec(3) Linux manual page. [Online]. Available:
https://man7.org/linux/man-pages/man3/exec.3.html

[12] kernel.org. (2022) perf: Linux profiling with performance counters.
[Online]. Available: https://perf.wiki.kernel.org/index.php

[13] Linux Manpages. (2022) strace - trace system calls and signals. [Online].
Available: http://man7.org/linux/man-pages/man1/strace.1.html

[14] Open Container Initiative. (2022) libcontainer. [Online]. Available:
https://github.com/opencontainers/runc/tree/main/libcontainer

[15] ——. (2022) runc. [Online]. Available:
https://github.com/opencontainers/runc

[16] Go Programming Language Maintainers. (2022) Defer statements.
[Online]. Available: https://golang.org/ref/specDefer statements

[17] ——. (2022) Package runtime. [Online]. Available:
https://pkg.go.dev/runtime

[18] Intel Corporation, “Intel Resource Directory
Technology (Intel RDT),” 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html

[19] AppArmor Project, “The AppArmor user space development project,”
2022. [Online]. Available: https://gitlab.com/apparmor/apparmor

[20] Linux Manpages, “seccomp - operate on Secure Computing state
of the process,” 2022. [Online]. Available: http://man7.org/linux/man-
pages/man2/seccomp.2.html

[21] The libseccomp Project. (2022) libseccomp. [Online]. Available:
https://github.com/seccomp/libseccomp-golang

[22] GoDoc Project. (2022) package seccomp, func NewFilter.
[Online]. Available: https://godoc.org/github.com/seccomp/libseccomp-
golangNewFilter

[23] The GoDoc Project, “GoDoc - package seccomp, func (*ScompFilter)
Load,” https://godoc.org/github.com/seccomp/libseccomp-
golangScmpFilter.Load, 2020.

[24] Linux Manpages. (2022) syscalls - Linux system calls. [Online].
Available: http://man7.org/linux/man-pages/man2/syscalls.2.html

[25] ——, “proc - process information pseudo-filesystem,”
http://man7.org/linux/man-pages/man5/proc.5.html, 2020.

[26] The GoDoc Project, “GoDoc - package unix,”
https://godoc.org/golang.org/x/sys/unix, 2020.

[27] Linux Kernel Maintainers. (2022) cgroups. [Online]. Available:
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

[28] Linux Manpages. (2022) umount(2) Linux manual page. [Online].
Available: https://man7.org/linux/man-pages/man2/umount.2.html

[29] C. Doxsey, “An Introduction to Programming in Go / Concurrency,”
https://www.golang-book.com/books/intro/10, 2020.

[30] G. P. L. Maintainers, “sync - The Go Programming Language,”
https://golang.org/pkg/sync/WaitGroup, 2020.

[31] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020, pp. 205–218.

[32] E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “The true cost of containing: A gvisor case study,” in
11th USENIX HotCloud 19, 2019.

[33] The gVisor Authors, “gVisor,” https://gvisor.dev, 2020.
[34] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,

K. Yasukata, C. Raiciu, and F. Huici, “My vm is lighter (and safer) than
your container,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 218–233.

[35] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), 2020, pp. 419–434.

[36] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019, pp. 225–236.

[37] Y. Ren, G. Liu, V. Nitu, W. Shao, R. Kennedy, G. Parmer, T. Wood, and
A. Tchana, “Fine-grained isolation for scalable, dynamic, multi-tenant
edge clouds,” in USENIX ATC 20, 2020, pp. 927–942.

12

