Problem 2: Independence

Prof. Jim Rehg
College of Computing, Georgia Institute of Technology
Friday, January 14, 2005
Due beginning of class Wednesday, Jan 19, 2005

(a) Let \(x, y, z \) be binary random variables. For each of the following joint distributions, determine whether \(x \) and \(z \) are dependent, showing your analysis:

i. \(p(x, z) = \begin{array}{cc}
 x = 0 & x = 1 \\
 z = 0 & 0.02 & 0.08 \\
 z = 1 & 0.18 & 0.72 \\
\end{array} \)

ii. \(p(x, z) = \begin{array}{cc}
 x = 0 & x = 1 \\
 z = 0 & 0.025 & 0.125 \\
 z = 1 & 0.125 & 0.725 \\
\end{array} \)

(b) Let \(x, y, z \) be binary random variables. Suppose \(p(x, y, z) \) factorizes as \(p(x, y, z) = p(x)p(y|x)p(z|y) \). Find a specific numerical parameterization for this model with the properties:

i. \(z \perp x \mid y \)

ii. \(x = z \).

By \(x = z \) we mean that when a sample \((x, y, z)\) is drawn according to \(p(x, y, z) \), it will always be the case that \(x \) and \(z \) have the same value.