CS4600 - Introduction to Intelligent Systems Fall 2003

Homework 7 - Sample Solution

Problem 1

Of the entire population, 2% has a certain disease X . A test Y , which indicates whether or not a person has the disease, is not 100% accurate. If a person has the disease, there is a 6% chance that it will go undetected by the test. However, there is also a 9% chance of "false alarm" (meaning that the person does not have the disease but the test indicates otherwise). A person Z takes a test which later comes out positive (meaning that the test says he has the disease). What is the probability of this person having the disease in reality?

Let D be"having the disease"

+ be "test positive"
We are given the following information:
$\mathrm{P}(\mathrm{D})=0.02$
which implies $\mathrm{P}($ not D$)=0.98$
$\mathrm{P}($ not $+\mid \mathrm{D})=0.06$
which implies $\mathrm{P}(+\mid \mathrm{D})=0.94$
$\mathrm{P}(+\mid$ not D$)=0.09$
First, we compute $\mathrm{P}(+)$

$$
\begin{aligned}
& =\mathrm{P}(+\mathrm{AND} \mathrm{D})+\mathrm{P}(+\mathrm{AND}(\operatorname{not} \mathrm{D})) \\
& =\mathrm{P}(+\mid \mathrm{D}) \mathrm{P}(\mathrm{D})+\mathrm{P}(+\mid \operatorname{not} \mathrm{D}) \mathrm{P}(\text { not } \mathrm{D}) \\
& =0.94 \times 0.02+0.09 \times 0.98 \\
& =0.107
\end{aligned}
$$

We would like to know $\mathrm{P}(\mathrm{D} \mid+$)

$$
\begin{aligned}
& =\mathrm{P}(+\mid \mathrm{D}) \times \mathrm{P}(\mathrm{D}) / \mathrm{P}(+) \\
& =0.94 \times 0.02 / 0.107 \\
& \sim=0.1757
\end{aligned}
$$

Problem 2

Consider the following Bayesian network:

a) Are D and E necessarily independent given evidence about both A and B ?

No. The path D-C-E is not blocked.
b) Are A and C necessarily independent given evidence about D ?

No. They are directly dependent. The path A-C is not blocked.
c) Are A and H necessarily independent given evidence about C?

Yes. All paths from A to H are blocked.

Problem 3

Consider the following Bayesian network. A, B, C, and D each could have a value of either true or false. If we know that A is true, what is the probability of D being true?

$P(D \mid A)$

$$
\begin{aligned}
& \sum_{(b, c) \in B \times C} \mathrm{P}(\mathrm{D} \mid(\mathrm{B}, \mathrm{C})=(\mathrm{b}, \mathrm{c})) \times \mathrm{P}((\mathrm{~B}, \mathrm{C})=(\mathrm{b}, \mathrm{c}) \mid \mathrm{A}) \\
= & \mathrm{P}(\mathrm{D} \mid \mathrm{B} \text { and } \mathrm{C}) \times \mathrm{P}(\mathrm{~B} \text { and } \mathrm{C} \mid \mathrm{A})+ \\
& \mathrm{P}(\mathrm{D} \mid \mathrm{B} \text { and }(\operatorname{not} \mathrm{C})) \times \mathrm{P}(\mathrm{~B} \text { and }(\text { not } \mathrm{C}) \mid \mathrm{A})+ \\
& \mathrm{P}(\mathrm{D} \mid(\operatorname{not} \mathrm{B}) \text { and } \mathrm{C}) \times \mathrm{P}((\operatorname{not} \mathrm{~B}) \text { and } \mathrm{C} \mid \mathrm{A})+ \\
& \mathrm{P}(\mathrm{D} \mid(\operatorname{not} \mathrm{B}) \text { and }(\text { not } \mathrm{C})) \times \mathrm{P}((\text { not } \mathrm{B}) \text { and }(\text { not } \mathrm{C}) \mid \mathrm{A}) \\
= & (0.3 \times 0.2 \times 0.7)+(0.25 \times 0.2 \times 0.3)+(0.1 \times 0.8 \times 0.7)+(0.35 \times 0.8 \times 0.3) \\
= & 0.042+0.015+0.056+0.084 \\
= & 0.197
\end{aligned}
$$

