CS 3600: Markov Decision Process problem

Given the following Markov Decision Problem, use Value Iteration to find the optimal policy.

There are four states, $s 1, s 2, s 3$, and $s 4$, arranged in a grid. State $s 4$ is a sink (absorbing) state. The immediate rewards are given above. The agent can move UP, DOWN, LEFT, RIGHT and the transition model is such that there is an 80% chance of a correct move, and a 10% chance of moving to either side in error (e.g., if performing UP, there is a 10% chance of performing LEFT instead and a 10% chance of performing RIGHT instead).

Let the initial utility values for states are shown below.

- $\mathrm{U}_{0}\left(\mathrm{~s}_{1}\right)=0.1$
- $\mathrm{U}_{0}\left(\mathrm{~s}_{2}\right)=0.1$
- $\mathrm{U}_{0}\left(\mathrm{~s}_{3}\right)=0.1$
- $\mathrm{U}_{0}\left(\mathrm{~s}_{4}\right)=1.0$
- $\gamma=0.5$

s_{1}	s_{4}
$r=-0.04$	$r=1$
s_{2}	s_{3}
$r=-0.04$	$r=-0.04$

