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Abstract rative experience is enjoyable or not. In this work, we ask
whether the DM can model players and use these models to
increase the quality of individual players’ narrative esipe
ences. That is, we assert that a drama manageratadbe

A drama manager is an omniscient background agent
responsible for guiding players through the story space
and delivering an enjoyable and coherent experience.

Most previous drama managers only consider the de- a surrogate for the player by taking into account his or her
signer’s intent. We present a drama manager that uses preferences and behaviors.

data-driven techniques to model players and provides Work on personalized DM has shown promise. Thue et
personalized guidance in the story space without re- al. (2007) show how a DM can choose narrative branches
moving player agency. In order to guide players’ ex- based on fixed player types. Sharma et al. (2010) use case
periences, our drama manager manipulates the story based reasoning to choose narrative branches based on fixed
space to maximize the probability of the players mak- feature vectors. Previously, we used a data-driven tecieniq

ing choices intended by the drama manager. Our system : )
is evaluated on an interactive storytelling game. Results based on player ratings to leam players’ preferences over

show that our drama manager can significantly increase trajectories through a branching story graph without fixed

the likelihood of the drama manager’s desired story con- player types or fixed feature vectors (Yu and Ried| 2012).
tinuation. The strength of the data-driven approach is its ability 8 di

cover player types, thus making it applicable to a broader
. range of interactive narratives. However, in our prior work
Introduction the DM makes all branch choices, eliminating player agency,
An interactive narrative is a form of digital entertainment a key aspect of interactive narratives. In this paper, wielbui
which players can create or influence a dramatic storyline off our previous work with a drama manager that affords the
through actions, typically by assuming the role of a char- player full agency while acting to influence the player such
acter in a fictional virtual world (Riedl and Bulitko 2013).  that he or she is more likely to make decisions that lead to
Compared to traditional storytelling systems, the intévac an improved experience according to their own preferences.
narrative gives the players the opportunity to change the di Our Personalized Drama Manager (PDM) predicts
rection or outcome of the stories, thus increasing player en players’ personalized trajectories through a human-aatho
gagement. In many cases interactive narrative systems uti- branching story graph, predicts players’ choices, and mani
lize a Drama Manager(DM), an omniscient background  pulates the narrative to increase the likelihood that tages
agent that monitors the fictional world and determines what will make certain choices. The human designer’s intention
will_ happen next in the player's story experience, often s expressed through the branching story graph while player
through coordinating and/or instructing virtual charagie agency is preserved because the player is never restricted
response to player actions (Bates 1992). Given a number of from choosing particular branch. The paper presents the fol
things a player can do in a virtual world or computer game |owing novel contributions:
at any given time, the goal of a drama manager is to increase

the likelihood that a player will experience an enjoyabld an ® An extension of the classical branching story graph to al-
coherent narrative. low multiple options that lead to the same branch.

Prevailing approaches to drama managementtreatthe DM , A gata-driven technique for predicting which option at
as a surrogate for the human designer, acting to increase the g5ch plot point an individual will choose.

likelihood that players will have narrative experienceatth ) ) . )

satisfy a set of criteria given by the game designer. This set ® An algorithm for manipulating a branching story graph
of criteria provided by the human author is the only mea-  that increases desired player choices without restricting
sures of quality for the player’s interactive experience. | player agency.

tuitively, players have different opinions on whether a-nar We have evaluated our approach in a simplified testbed
Copyright(© 2013, Association for the Advancement of Artificial ~ domain based on the original Choose-Your-Own-Adventure
Intelligence (www.aaai.org). All rights reserved. (CYOA) books. The human study results show that our



drama manager can significantly increase the likelihood the A Personalized Drama M anager

players choose the intended story plot points. In this section, we describe our Personalized Drama Man-
ager (PDM) which models players’ storytelling preferences
and also models players’ behavioral choices. We hypothe-
Background and Related Work size that players, when faced by a set of options afforded by
the game (i.e., the arcs on a branching story graph), choose
) ) options based on a variety of local cues—those that sound
Drama manager agents have been widely used to guide themost interesting, that agree with personal motivations, or
users through an expected story experience set by design-that sound most likely to lead to favorable outcomes. Fur-
ers. See Riedl and Bulitko (2013) for a recent overview of thermore, we observe that certain trajectories through the
Al approaches to interactive narrative. Approachesto dram pranching story graph are more preferred than others, and
management include: search (Weyhrauch 1997; Nelson andthat these preferences are individualistic (Thue et al7200
Mateas 2005), planning (Ried! et al. 2008; Cavazza et al. yy and Riedl 2012). Therefore, it is possible for players’
2009), and reactive behavior planning (Mateas and Stern |gcal choices of options to be in conflict with their global
2003), case based reasoning (Sharma et al. 2010), and op-yture interests.
timization (Roberts et al. 2006). In this paper, we aim to build a DM that is capable of influ-

Most personalizedMs learn a model of play style using ~ €ncing players’ choices of options such that he or she is more
discrete play type categories. The PaSSAGE system (Thue etlikely to experience a highly rated narrative according to
al. 2007) automatically learns a model of the player's prefe  their individual preferences. Our PDM approach is summa-
ence through observations of the player in the virtual world  fized as follows. First, we extend the branching story graph
and uses the model to dynamically select the branches of representation to allow for multiple options that branch to
a CYOA style story graph. PaSSAGE uses Robin’s Laws the same successor plot point. Secon_d, given the spe_ciahze
game player types: Fighters, Power Gamers, Tacticians, Sto Pranching story graph, the PDM predicts the best trajectory
rytellers, and Method Actors. Peinado and Gervas (2004) for a particular player through the graph. Third, the PDM
use the same player types, while Seif El-Nasr (2007) uses Uses CF to predict which option a player will choose after
heroism, violence, self-interestedness, and cowardick-as ~ €ach plot point. Finally, when a discrepancy is detected be-
mensions. Sharma et. al, use case based reasoning based ofiveen plot point predicted to be chosen and successor plot
a fixed set of hand-chosen features to choose branches in thePoint predicted to maximize player experience, the PDM
story graph. Dimensional player models are good for games manipulates the branching story graph by showing some op-

for which validated models exist, but may not extend to other tions and hiding other options such that the player is more
types of interactive narratives. likely to choose the personalized plot point. However, at no

. : . . inti lot point d ilable.
PBCF (Yu and Riedl 2012) is a data-driven technique for POINTIS & Sccessor piot point ever made unavatiable

learning players’ preferences over narrative experigrges Authoring Multiple Options
pIymg coIIab_oratNe filtering (.CF) to players’ ratings cin To give our drama manager the ability to manipulate the
rative experiences. CF algorithms attempt to detect peter branching story graph without making successor plot points

in users’ ratings; CF algorithms discover latent user types unreachable by the player, we extend the branching story

that explalr(; a;_nd prfed|ct| l:ser. r?ttljng begawor.thBeﬁgltjse thfe graph representation such that multiple options are atiowe
recommendation of a plot point depends on he hIStory of point to the same child plot point. Let a branching story

plot points previously visited by the player, PBCF extends : C . -
X . . graph be a directed gragh = (V, E) such that; € Vis a
standard CF algorithms to solgequentiatecommendation plot point fori = 1...|V/|, andefj ¢ Eis thekth edge from

problems. Unfortunately, in order to maximize player expe- '+, ‘representing a player option available after plot point
rience, PBCF chooses branches for the player, eliminating vi. We usee!  to denote thexistenceof at least one edge
I 1 I v 1:" j . . . . . .

p:cayeéjr agency. That 'SV’VPBCtF '3 ngéoFrybgene:atpr msltead from v; to v; and indicating that; is an immediate succes-
ol a drama manager. vve exten y restonng player o of,,. . Figure 1 shows an example branching story graph
agency; players are able to freely choose options afteyever iy muitiple options. The left side of the figure only shows
plot point, and no branches are pruned. successor relations, while the right side of the figure zooms

Our PDM assumes that an interactive narrative experi- in on one particular branch to show multiple options. As a

ence can be represented abranching story grapha di- shorthand, we use letters to indicate the successor nelatio
rected graph in which nodes represpldt pointsand arcs and letters with superscripts to indicate distinct options
represenbptionsthe player can choose from. A branching Ideally, there are multiple options between all plot points

story graph thus specifies which plot points are allowed to and theirimmediate successors. The goal of the drama man-
follow other plot points; it encodes human authorial intent  ager is to pick a subset of the options to present to the player
For the purposes of a DM agent, a branching story graph such that at least one option leads to each child (ensuring
provides the set of successor plot points at any given time. true player agency) and also increase the likelihood theat th
While the representation is simple, many other drama man- player will pick the option that transitions to the desired
agement plot representations are reducible to the branch- child plot point. For example, suppose the drama manager
ing story graphs (Riedl and Young 2006; Weyhrauch 1997; predicts that a particular player's optimal narrativedcaj
Nelson and Mateas 2005; Roberts et al. 2006). tory through Figure 1 is through plot poiht. Suppose the



Figure 1: Example of a branching story graph with multi-
ple options. Letters indicate successor relations betykxn
points, while letters with superscripts indicate distiogt
tions the player may choose from.

drama manager further predicts that the player’s prefe®nc
over options to bé&!' > j! > k? > j2 > k? > j°, such
that the player is predicted to transition to plot paifitin-
stead. To intervene, a DM can present optighand? to
the player, while suppressing the other options.

This simple extension to the conventional branching story
graph gives a DM the ability to subtract options from
players’ considerations without completely pruning a loian
of the graph. This preserves the authorial intent behind the
structure of the graph and also ensures that all trajestorie
through the graph are available to the player at all times.

We believe that options should be authored to appeal
to different motivations that they players might have, tap-
ping into individual differences. In our own experiments,
we have utilized the following motivational theories, draw
from Petty (1986) and Cialdini (2006):

e Expert Sourcea desire to follow experts’ opinions.

e Scarcity a desire for something that will soon become un-
available.

e Consistencya desire to appear consistent with what we
have already done or said.

e Social Proof a desire to imitate others in similar situa-
tions.

e Reasoninga desire to follow arguments that sound ra-
tional.

e Number of arguments desire to follow statement that
contains repetitive arguments expressed in different ways
without new information.

Motivation—Friendshipa desire for friendship.
Motivation—Safetya desire for being safe.
Motivation—Moneya desire for being rich.
Motivation—Famea desire for being famous.

Authoring of options based on the above motivational the-
ories is not strictly necessary, but we hypothesize that uti
lization of motivational categories will improve our drama

manager’s ability to learn players’ preferences for option

Player Option Preference Modeling

We assume that different players have different preference
over the options. For each player, if we know his/her pref-
erence for all the options in the extended branching story

Option
kl * * 2

Playerl Player2  Player3

1 * 2

k3 * * *

Figure 2: An illustration of the option-rating matrix.
k', k2, k3, 51, 52, etc. represent the options in Figure 1. The
stars represent missing ratings.

graph, it will be straightforward for the drama manager to se
lect a subset of options to show. In this section, we describe
how we train the drama manager to predict which options
the player will prefer at any given plot point.

To predict players’ option preference, we use collabo-
rative filtering (CF) algorithms to build a players’ option
preference model. CF has been successfully applied in rec-
ommender systems to model user preference over movies,
books, music, etc. (Su and Khoshgoftaar 2009). CF algo-
rithms attempt to learn users’ preference patterns from rat
ings feedback and predict new user’s ratings from previous
user’s ratings which share similar preference patterns.

Applying CF algorithms to option preference, we have
players rate the options presented after each plot point in
the training phase. We then construct an option-rating ma-
trix as in Figure 2. Am by m option-rating matrix contains
the ratings fon options fromm players. Each column of the
option-rating matrix contains one player’s preferenciegst
for all the options while each row contains ratings for one
option from all the players. The option-rating matrix wit b
similar to the product rating matrix in traditional CF algo-
rithms. The matrix will be sparse, containing a large number
of missing ratings since we do not expect each player to read
all the options in the extended branching story graph.

We investigated a variety of common CF training algo-
rithms on the option-rating matrix, including: Non-negati
Matrix Factorization (NMF) (Lee and Seung 2001; Zhang
et al. 2006), probabilistic PCA (pPCA) (Tipping and Bishop
1999), K-Nearest Neighbor, and K-means algorithms. The
learned player model retains the extracted rating patterns
for players of different option preference types and will be
used to predict future players’ preference ratings over the
options. Once training is complete, the player option pref-
erence model can be used to predict players’ ratings for op-
tions that players have never encountered. This includes th
possibility of predicting a player’s preferences for opmn
a graph that he or she has never played through if we have
data for the player from another graph.

Drama Manager Algorithm

Our PDM attempts to influence players’ trajectories through
a branching story graph with multiple options per child plot
point. We employ the insight that players will choose the op-
tions that sound the most interesting to them and that a DM
can display options predicted to be more or less preferred
by an individual to influence game play behavior. To achieve
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Figure 3: The branching story graph for the choose-your-agdwenture bookThe Abominable Snowmafihe digits at the
bottom are the left-most score distribution we used in ttaduation.

this, a DM must have a model of players’ preferences for op-
tions after each plot point to predict how players’ will move
through a branching story graph if left to their own device.
This model is learned using one of the option-matrix CF al-
gorithms described in the previous section.

Our PDM puts the model to use as follows. For each new
player, our PDM must collect a few initial option ratings
r. These ratings can be collected on a graph especially for
training on new players or can come from repeated interac-
tions with the system. Once a player is in the option-rating
matrix and the player model is updated, the PDM uses the
following algorithm to guide the player in the branching
story graph. At each plot point in graph, the PDM performs
the following steps.

1. Determine which child plot point the player should ex-
perience next.

2. Predict the player’s preference for all options using the
option preference model.

3. Display the highest rated option that points to desired
successor plot point and the lowest rated option for each
other successor plot point.

4. Player chooses an option.

5. Collect player’s ratings for the displayed options. In-
clude the ratings inte.

6. Display the corresponding child plot point according to
the player’s selection and go to step 1.

We assume that PBCF (Yu and Riedl 2012) or other player
modeling algorithms can be applied in step 1. The details are
beyond the scope of this paper. It is not strictly necessary t
collect option ratings as in step 5. We do it in our system for
the purpose of collecting as much data as possible to build
more accurate player option preference models. With every
new rating, the PDM will get better understanding of the
current player’s preference over the options.

Evaluation

To evaluate our PDM algorithm, we have conducted a study
whereby our PDM attempts to influence players of an online

choose-your-own-adventure interactive story. We hypothe
size that our PDM algorithm will be able to significantly af-
fect the behavior of players, as compared to a version of the
interactive story with no drama management. We describe
the Choose-Your-Own-Adventure story, online game envi-
ronment, methodology, and results.

Stories and User Interface

We transcribed two Choose-Your-Own-Adventure books:
The Abominable ShowmamdThe Lost Jewels of Nabooti
into two branching story graphs. The original stories were
modified such that each possible narrative trajectory con-
tains exactly six plot points. This was achieved by manually
removing branches that led to “sudden death” outcomes and
merging a few successive plot points. The branching story
graph ofThe Abominable Snowmaontains 26 leaf nodes
and 19 branching points. The branching story grapitced
Lost Jewels of Naboatontains 31 leaf nodes and 18 branch-
ing points. Figure 3 shows the branching story graphiod
Abominable Snowman

We authored two additional options for every branch
in the branching story graphs. Each new option was con-
structed by rewriting the existing option with different tho
vations as described earlier in the paper. In the final exténd
branching story graphs, there are thus three differenvogti
per successor plot point at every branching point except the
lowest level, which we left unaltered. In total, there ard 21
options in the two branching story graphs.

In the experiments, all the stories were presented plot-
point by plot-point to the players. After each plot pointg th
players were asked to rate the story-so-far and all the ioptio
onascale of 1 to 5 before they could select one of the options
to continue. A larger rating number indicates a greater-pref
erence. Figure 4 shows our online interactive storytelling
testbed. The figure shows two plot points, a place for players
to rate the story-so-far (for PBCF training), and two opsion
with ratings (for option-preference training).



of them. The Yeti are angry. I must
inge a trip for you into the Terai
ind study the tigers. Later, perhaps, you could conduct

the tigers
5(Best) (4 (3 )2 1(Worst)

Figure 4: A screenshot of the interactive storytelling syst

Table 1: The average within-graph and cross-graph predic-

tion accuracies of option selection for different algamnith

Algorithm | within-graph  cross-graph
PPCA 0.7509 0.7589
NMF 0.8123 0.8011
KNN 0.7123 0.6931

KMeans 0.7080 0.6962

Training the Option Preference M odel

We recruited 121 participants from Amazon’s Mechanical
Turk. Each player read 6 full-length stories. Each story was
randomly started at the root of one of the two branching

story graphs. Each story was presented plot-point by plot-

point to the player as in Figure 4. At every branching plot
point, the DM randomly picked one option for each suc-

els of NabootiThen the PDM predicted the players’ option
selection in the other branching story graph Tdre Abo-
minable SnowmaWe repeated the random split process 50
times and computed the average percent of time the PDM
correctly predicted the players’ selection. Table 1 shdwes t
DM’s within-graph and cross-graph prediction accuracies
for different algorithms: pPCA, NMF (with 4 dimensions),
K-Nearest Neighbor algorithm (with = 20), K-mean al-
gorithm (withk = 4). Our system is able to predict players’
selection of options at greater than 80% accuracy.

Testing the Drama M anager

We recruited additional 72 participants from Mechanical
Turk to evaluate our PDM's ability to guide the players in
a full branching story graph. Each player read 6 full-length
stories plot-point by plot-point.

For the first five stories, players explored the branching
story graph ofThe Lost Jewels of Naboofihis allowed us
to incorporate some data about new players and update our
model. As during model training, at every branching plot
point, the PDM randomly picked one option for each succes-
sor plot point. During a player’s sixth trial, the player yéal
through the branching story graphTie Abominable Snow-
man At each plot point of Figure 3, the PDM tried to guide
the players to either the leftmost (43 participants) or the
rightmost (29 participants) successor plot point by using
the player model to choose two options pointing to the left-
most/rightmost successor plot point and choosing oneoptio
pointing to each remaining successor plot point.

We analyzed the effectiveness of our PDM in two dif-
ferent ways. First, we looked at the percentage of the time
players choose options that corresponded with the PDM'’s
desires. Second, we simulated the situation in which it tar-
gets certain nodes based on predicted scores from PBCF.

Frequency of Player Choices We looked at the percent-
age of the time the player chose an option at any plot point
that leads to the leftmost/rightmost successor plot point.

cessor plot point and the player was free to make a choice. Taple 2 shows the average guidance successful rate for

We collected their ratings for all the options and storiesyth
read. In total we had 121 valid players for a total of 726
play-throughs, and a 122 214 option-rating matrix.

different configurations. In our training data, we observe
that players chose an option leading to the leftmost branch
53.91% of time and chose an option leading to the right-

Participants were asked to explore the graph as much as most branch 44.52% of time. Note that some plot points have

seen previously, their previous ratings for story-so-fad a
options were automatically filled out from their previous re
sponse.

We randomly selected 80% of the training players and
learned a player model with their rating data. For the re-
maining 20% of data, we computed thaiithin-graphand
cross-graphoption selection prediction accuracies. To com-
pute the within-graph accuracy, the DM built the initial-rat
ing vector for each player using the option ratings from the
subtree with plot point 1 as its root in Figure 3. Then based
on the player model and the initial rating vector, the PDM
predicted the player’s option selection behavior in the-sub

option leading to neither the left nor right successor. When
the PDM was configured to guide the players to the leftmost
child plot point, it succeeded 74.07% of time € 0.001).
When it was configured to guide the players to the rightmost
child plot point, it succeeded 70.83% of time <€ 0.001).

ScoreDistribution  Our second method for evaluating our
PDM was to provide a score distribution over all leaf nodes
in Figure 3. This simulates the situation where PBCF at-
tempts to maximize players’ experiences by predicting the
ratings that players will give to leaves. This evaluatidiste
us how much moratility (in terms of player enjoyment) the

tree with plot point 2 as its root. To compute the cross-graph presence of drama management will achieve over the lack of

accuracy, the PDM built the initial rating vector using the o
tion ratings from the branching story graphTdfe Lost Jew-

drama management. We constructed two score distributions,
leftmost-score distribution and rightmost-score distfidn,



the player continuing to hunt the Yeti versus abandoning
the quest for a different objective; naturally people ragdi
this particular book would have a preference for continuing

Table 2: The average guidance successful rate for different
PDM configurations.

Condition Leftmost _ Rightmost the quest. Similarly, players preferred to transition frolot
branch branch point O to plot point 2 75% of the time when left to their
No intervention 0.5391 0.4452 own devices. Our PDM will have a tougher time influenc-
DM target: leftmost branch |  0.7407 - ing players at plot points where players have a strong nat-
DM target: rightmost branch - 0.7083 ural preference for one branch over another. If we exclude
p-value <0.001  <0.001 plot point 0 and 2 from testing analysis, the successful rate

of guidance to the leftmost children will increase to 79.6%,
and the successful rate of guidance to the rightmost chldre
will increase to 75.86%.

Failure to guide the player at any given plot point reduces
the optimality of the player’s experience (according to som

Table 3: The average scores of the full-length stories ex-
plored by the players for different PDM configurations.

Condition Leftmost  Rightmost score distribution). In practice, if this happens our PDM at
leaf leaf tempts to guide the player to the next highest rated leaf node
No intervention 3.21 2.77 in the current subtree of the branching story graph. From
DM target: leftmost leaf | 4.0 - the score comparison in the second evaluation technique, we
DM target: rightmost leaf] - 4.03 show that our PDM is capable of guiding players to stories
p-value <0001 <0.001 with higher simulated preference ratings.

Our evaluation shows that CF can be used for cross-
graph prediction. Once our option preference model has

such that for any subtree in the graph, the leftmost or right- P€en trained on two branching story graphs, itis possible fo
most successor of the root is an ancestor of a higher-scoring "€W Players to provide a few ratings (as few as five stories
leaf than any other successor of the root. The leftmostescor worth of Qa_ta) on a training graph and then_recelve accu-
distribution is shown at the bottom of Figure 3. For this dis- "at€ predictions on the other graph. Pragmatically, onee th
tribution, there is a leaf in the left subtree (e.g. leaf 6tiat ~ SYStem is bootstrapped with training data from both graphs,
subtree with root node 3) scoring higher than any leaves in NeW players only require a short familiarization phase teefo
the right subtree (e.g. the subtree with root node 19). The '€ceiving personalized interactive narrative experience
scores for the leaf nodes are in the range of 1 to 5. Player agency is a critical aspect of interactive narrative
Table 3 gives the average scores of the full-length stories Ve did not ask players whether the drama manager reduced
explored by the players for different configurations. With- Player perception of agency. However, since players are pre
out intervention, players followed trajectories resigtim sented Wlth options for all possible bra_nches—no branches
an average score of 3.21 under the leftmost distributiosh, an @re outright denied to players—we believe that the appear-
an average score of 2.77 under the rightmost distribution. @nce of player agency will be upheld.
With the PDM attempting to guide the players to the left-
most branches, the system achieved an average score of 4.0 Conclusions

.001). With the PDM att ting t ide the pl . . .
(p < 0.001). Wi © arempring to guide the players Personalized drama management aims to deliver a personal-

to the rightmost branches, the system achieved an average. ; . h .
score of 4.03 < 0.001). ized experience while preserving player agency. In this pa-

per, we present a drama management system that can guide
players in the branching story graph by manipulating the
graph to increase the probability of desired story continu-
Our evaluation shows that our PDM can significantly influ- —ation without sacrificing player agency. In the future, our
ence the trajectories of players, regardless of how thetarg DM will operate in full conjunction with personalized story
branch is chosen. When instructed to guide the player down recommendation algorithms such as PBCF.

certain branches (left or right), we find that the DM is able Player guidance and personalized drama management
to significantly impact the likelihood that those branchesa  have not been widely explored. But we believe that they

chosen. When instructed to guide the player to certain leaf are essential parts of building a DM that is responsible
nodes according to a score distribution, we find that the DM for optimizing the player’'s experience in a game or vir-

Discussion

is able to significantly improve the utility of the player's-e  tual world. Our approach is capable of effectively influ-
perience according to the scoring metric. |r_1 fu_ture studies ence players’ choices while preserving the appearance of
we will use a PBCF-generated scoring distribution. full player agency. A DM built in this way is more capable

Player behavior is strongly affected by the story and the of bringing an enjoyable experience for the players.
wording of options, often yielding a strong preference for
a particular option at a particular plot point. For example,
in our training data omhe Abominable Snowmawe see Acknowledgments
that 84% of players prefer to transition from plot point 2 to  We gratefully acknowledge the support of the U.S. Defense
plot point 41. Upon closer inspection, this branch involves Advanced Research Projects Agency (DARPA).
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