
A General Level Design Editor for Co-creative Level Design

Matthew Guzdial, Jonathan Chen, Shao-Yu Chen, and Mark O. Riedl
School of Interactive Computing
Georgia Institute of Technology

mguzdial3@gatech.edu, jonathanchen@gatech.edu, shao-yu.chen@gatech.edu, and riedl@cc.gatech.edu

Abstract

In this paper we describe a level design editor designed as an
interface to allow different AI agents to creatively collaborate
on level design problems with human designers. We intend
to investigate the comparative impacts of different AI tech-
niques on user experience in this context.

Introduction
Co-creation refers to the practice of pairing together human
and artificial intelligent (AI) designers to collaborate on the
same design task. In this paper we describe a general level
design editor for co-creative level design. By general we re-
fer to the tool’s ability to slot in different AI agents in the
co-creative design activity. For example, the system could
go from a AI level design agent driven by convolutional neu-
ral nets to one driven by genetic algorithms. Further we note
that the tool is general to tile-based 2D games, though we
use Super Mario as a test case. With this tool we intend to in-
vestigate the comparative effects of different AI techniques
on the human designer’s experience. During this demo we
hope to solicit expert feedback on the tool as we prepare for
a human subjects test with both novice and expert level de-
signers.

Related Work
Co-creation as a framework for human-computer interac-
tion exists across many fields and under many names, such
as mixed-initiative design (Schaffner and Meyer 2006) or
human-robot interaction (Goodrich and Schultz 2007). In
the field of games there have been many intelligent, co-
creative design tools (Young and Riedl 2003; Smith, White-
head, and Mateas 2010; Bauer, Cooper, and Popovic 2013;
Butler et al. 2013; Yannakakis, Liapis, and Alexopoulos
2014; Machado, Nealen, and Togelius 2017). These tools
vary in terms of their focus, such as visualizing stealth in
levels (Tremblay et al. 2013), and their intended audience,
such as children (Banerjee et al. 2016). However, as far as
the authors are aware, these design tools generally focus on
a single AI approach to inform the intelligence of the intel-
ligent tools.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A diagram of the intended flow of control through
the system.

Danesh (Cook, Gow, and Colton 2016), a tool to help
designers use procedural content generation, represents the
most similar tool to our level editor. It allows for multiple
different AI approaches. However, there is a difference in fo-
cus, Danesh’s AI approaches do the majority of design work
with a user acting as a curator rather than an equal partner.
Further, our editor focuses on comparing different AI ap-
proaches’ performance on the same task while Danesh uses
different AI approaches to generate different content.

Editor Interface Overview
The primary design question for our level editor was how
to facilitate the interaction between human and AI designer.
At first we considered real-time interaction. In this format
the agent would make suggestions for additions each time
the human designer changed the level. We recognized that
this could prove annoying to human designers making rapid
changes. Further, some AI techniques may require more pro-
cessing time in effect causing lagging or long load times.

We note a similarity between a human designer waiting
on an AI designer’s edits and players dealing with latency
in games. Drawing on literature on design approaches for
combatting latency (Claypool and Claypool 2006; Shea et
al. 2013), we decided on a turn-based approach. We visual-
ize the format of this interaction in Figure 1. The player/user
starts all actions, prompting the AI level editor for suggested
additions to the level. Further, while the user can make addi-



Figure 2: A screenshot of the level editor.

tions and deletions (including removing the AI’s work), the
AI designer is only capable of making additions, in order to
minimize user frustration.

We visualize the final level editor interface in Figure 2. We
note that beyond the previous design decisions we took in-
spiration from 2015’s Super Mario Maker (Nintendo 2015).
While our level editor allows for level components from any
2D tile-based game, we make use of level components from
the Super Mario series at present. Thus it follows to emu-
late the design experts behind Super Mario in their attempt
to create an approachable level design interface.

Figure 2 represents all of the features of the level design
interface. At the top of the image one can see the run button
that allows designers to play the current level design, along
with saving, loading, and clearing functionality. At the bot-
tom of the screen one can see a minimap and a palette of
level components that users can paint onto the grid in the
middle, that represents the current level. A large end turn
button on the right allows the designer to give up agency to
the AI designer. After a brief “thinking” pop-up to indicate
that the AI designer is processing the current level the level
design editor animates the agent’s suggested additions ap-
pearing on the screen one-by-one, to give the illusion that
the AI designer is using the same interface.

AI Level Design Agents
In this section we discuss two of the AI level design agents
implemented in our system: Guzdial and Riedl’s probabilis-
tic level design model (Guzdial and Riedl 2016) and Sum-
merville and Mateas’ LSTM Super Mario Bros. level gener-
ator (Summerville and Mateas 2016). We note that we have
explored many AI techniques for level design agents as part
of the Co-creative level design tool, but lack the space for a
full break down of each and every one. Instead we will note
both how the two systems listed above integrate into the tool
and how the other AI systems do in general.

When the user pressed the ‘End Turn’ button the system
creates a grid-based representation of the current level as
seen in Figure 3. This grid is a 2D map with string values,
with the string values corresponding to the file name of the
tile that was placed there (e.g. ”Coin” for coins, ”Ground”
for ground, etc). Notably in Figure 3 we only include the
first two letters of this string value. The grid is sent to a

Figure 3: A comparison of the level design editor display
and the same section in the grid-based representation.

server that transforms the grid to the representation required
for the current AI level design assistant. For example, a list
of shapes for Guzdial and Riedl, and a 1D sequence for the
Summerville and Mateas. This parser is hand-authored for
each AI assistant, though notably many approaches can take
an untransformed grid.

Once the level design assistant has a representation of the
current level is queried for additions. Because all of the ap-
proaches we make use of can function as autonomous level
designers, this is accomplished by feeding in the current
level representation and taking as output an updated version
of the same level. For the Guzdial and Riedl assistant, the
system adds level components above a hand-defined proba-
bility threshold. For Summerville and Mateas we query the
system for each currently empty tile of the level. We run an
inverted form of the hand-authored transformative parser on
the outputted, updated level in order to get a grid-based level
back. By comparing the 2D map of string values from the
original input level and updated output level in this grid rep-
resentation we gather a list of changes of the form (x,y,string
value). This list of additional level components are passed
back to the level editor and displayed as visualized back in
Figure 1.

Planned User Study
We created this system with the goal of comparing different
AI approaches within a level design framework. For exam-
ple consider a Convolutional Neural Network (CNN)-based
AI agent compared to a Long Short-Term Memory (LSTM)
Recurrent Neural Network-based AI agent. Because a CNN
makes decisions based on local windows of information and
a LSTM can make decisions based on longer-dependencies,
a CNN level designer might make suggestions that make
more sense to a human co-designer, but an LSTM may make
decisions that appear more surprising.

We intend to use a within-users study in which designers
interact with multiple AI assistants (2-3) to produce levels,
and then ask each designer to rank each AI assistant accord-
ing to a set of features. We chose rankings over ratings (?)
due to the advantages of ranking over rating systems. We in-
tend to ask users to rank on a set of features that requires



users to reflect on the level design tool as software (ease of
use, confusion, etc.) and as a partner (creativity of sugges-
tions, value of suggestions, etc). We hope to gain feedback
from the community and solidify these features during the
workshop.

Discussion
In this paper we describe the design for a general level de-
sign editor for co-creative level design. During the demo we
hope to demonstrate the quality of the level editor along with
the experience of interacting with several different AI level
design agents. We plan to take any advice or suggestions
forward towards an eventual user study of novice and expert
users to investigate the comparative effects of different AI
agents on human designer experience.

Acknowledgments
The authors would like to thank Adam Summerville for his
work and insight on the initial version of this project and all
the members of the Entertainment Intelligence Lab.

References
Banerjee, R.; Yip, J.; Lee, K. J.; and Popović, Z. 2016. Em-
powering children to rapidly author games and animations
without writing code. In Proceedings of the The 15th In-
ternational Conference on Interaction Design and Children,
230–237. ACM.
Bauer, A. W.; Cooper, S.; and Popovic, Z. 2013. Automated
redesign of local playspace properties. In FDG, 190–197.
Butler, E.; Smith, A. M.; Liu, Y.-E.; and Popovic, Z. 2013.
A mixed-initiative tool for designing level progressions in
games. In Proceedings of the 26th annual ACM symposium
on User interface software and technology, 377–386. ACM.
Claypool, M., and Claypool, K. 2006. Latency and player
actions in online games. Communications of the ACM
49(11):40–45.
Cook, M.; Gow, J.; and Colton, S. 2016. Danesh: Help-
ing bridge the gap between procedural generators and their
output. In Proc. PCG Workshop.
Goodrich, M. A., and Schultz, A. C. 2007. Human-robot
interaction: A survey. Foundations and trends in human-
computer interaction 1(3):203–275.
Guzdial, M., and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Machado, T.; Nealen, A.; and Togelius, J. 2017. Cicero:
Computationally intelligent collaborative environment for
game and level design. In Proceedings of the 3rd Compu-
tational Creativity and Games Workshop. ACC.
Nintendo. 2015. Super Mario Maker. Nintendo Entertain-
ment System.
Schaffner, J., and Meyer, H. 2006. Mixed initiative use
cases for semi-automated service composition: A survey. In
Proceedings of the 2006 international workshop on Service-
oriented software engineering, 6–12. ACM.

Shea, R.; Liu, J.; Ngai, E. C.-H.; and Cui, Y. 2013.
Cloud gaming: architecture and performance. IEEE network
27(4):16–21.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
A mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, 209–216. ACM.
Summerville, A., and Mateas, M. 2016. Super Mario
as a string: Platformer level generation via LSTMs. Di-
GRA/FDG.
Tremblay, J.; Torres, P. A.; Rikovitch, N.; and Verbrugge, C.
2013. An exploration tool for predicting stealthy behaviour.
IDP 13.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In FDG.
Young, R. M., and Riedl, M. 2003. Towards an architec-
ture for intelligent control of narrative in interactive virtual
worlds. In Proceedings of the 8th international conference
on Intelligent user interfaces, 310–312. ACM.


