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ABSTRACT
Games often interweave a story and series of skill-based
events into a complete sequence—a mission. An automated
mission generator for skill-based games is one way to synthe-
size designer requirements with player differences to create
missions tailored to each player. We argue for the need for
predictive, data-driven player models that meet the require-
ments of: (1) predictive power, (2) accounting for temporal
changes in player abilities, (3) accuracy in the face of little
or missing player data, (4) efficiency with large sets of data,
and (5) sufficiency for algorithmic generation. We present
a tensor factorization approach to modeling and predicting
player performance on skill-based tasks that meets the above
requirements and a combinatorial optimization approach to
mission generation to interweave an author’s preferred story
structures and an author’s preferred player performance over
a mission—a kind of difficulty curve—with modeled player
performance.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games; K.8.0 [Personal Computing]: General—
Games

General Terms
Algorithms, Measurement, Design, Human Factors

Keywords
Procedural Content Generation, Optimization, Player Mod-
eling

1. INTRODUCTION
Games typically involve a sequence of skill-based tasks,

such as combat or puzzle-solving, motivated by story. While
games are often designed with a fixed progression of task
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difficulty, there have been calls for dynamic tailoring of dif-
ficulty on a per-player basis [13]. Dynamic difficulty adap-
tation is a challenging problem; given the current broad di-
versity of player background skills, preferences, and moti-
vations, this matching is typically difficult or impossible to
achieve with any single, fixed progression. The solution is
Procedural Content Generation (PCG), in which a system
automatically creates game content algorithmically, with or
without the involvement of a human designer. Just-in-time
PCG, in which the algorithm uses information about a player
that cannot be known a priori, is well suited for customiza-
tion of player experiences and dynamically creating numer-
ous variations to promote replayability.

In this paper, we explore just-in-time content tailoring to
dynamically adjust the difficulty of a game and provide mo-
tivating context for the adjustments provided. Specifically,
we look to solve two related problems: challenge tailoring
and challenge contextualization. Challenge tailoring is the
problem of matching the difficulty of skill-based challenges
over the course of a game to match player abilities. Chal-
lenge contextualization is the problem of providing appropri-
ate motivating story context for the skill-based challenges.
We motivate an approach to these problems with a simple
role-playing game in which skill-based challenges manifest
as combat with monsters (see Figure 1), which are contex-
tualized through common role-playing game activities such
as quests and interactions with non-player characters. The
solution to the challenge tailoring and challenge contextual-
ization problems in this domain is a mission, a sequence of
events to occur in the game world, interleaving skill-based
combat with story-based background motivation. Borrow-
ing the term from Dormans [5], missions are brief “chapters”
of gameplay that are composed of sequences of events that
are a subset of the complete game plotline (see Figure 2).

Just-in-time content tailoring requires a model of the player
and a means to use this model to adjust content to fit the
player [24, 25]. We identify five criteria for player models
for the purposes of content tailoring:

1. Predictive power—capturing expected player behav-
ior or experience when given a known task or situation

2. Accuracy—correctly inferring player behavior or ex-
perience with high confidence, particularly when faced
with partial/missing player data or small amounts of
player data; transferring information between players
is also desirable

3. Efficiency—scaling to large sets of data: fine-grained,
long-term, and including many players



Figure 1: Example battle between player team
(right) and monsters (left).

4. Generative sufficiency—usable in generative mod-
els as parameters or evaluation methods; contrasted
with abstract class labels or theoretical constructs

5. Temporal—capturing changes in player behavior and
experience over the course of experiences; capable of
forecasting several steps into the future and incorpo-
rating interactions among individual experiences along
a trajectory

Many existing PCG techniques have used theory-driven mod-
els guided by designer intuition or a qualitative model of
player experience. This has limited these efforts to domains
where players are well-understood and cleanly fit into par-
ticular a priori known categories. When such categories and
theories are lacking, we believe that tailored content gener-
ation systems require data-driven player models based on
empirical data connecting the effects of content to player
responses [22]. Such player models incorporate bottom-up
information from players into the system design. Account-
ing for temporal variations in player models (e.g. learning
to play the game over time or shifting preferences over time)
can further enhance generation by predicting player changes
in the future and creating sequences of content tailored to
these expected changes.

We propose a tensor factorization approach based on col-
laborative filtering as a data-driven means of modeling and
predicting player performance on skill-based events such as
computer game combat. This approach captures temporal
variations in the relationship between player abilities and
task features in influencing player performance, for build-
ing player skill models meeting the above five criteria. Our
player model is incorporated into a mission generation algo-
rithm, based on a genetic algorithm, that balances tailoring
content to players with designer-specified content require-
ments and preferences [27]. Our system is thus capable of

...
enter(town)
arrest(guards, companion)
battle(guards)
reveal-history-foe(companion, wizard)
...
enter(palace)
search(castle, wizard)
guard(acid-monsters, wizard)
battle(acid-monsters)
capture(wizard)
...
meet(king)
ask-rescue(king, princess)
find-clue(princess)
enter(dungeon)
battle(ice-beasts)
free(princess)
...

Figure 2: An example of a single mission containing
three challenge events (in bold).

producing a variety of missions tailored for any given player
while still meeting high-level designer intentions.

2. RELATED WORK
Research on generating or adapting games to players has

investigated both generating content and modeling players.
Procedural content generation (PCG) research has devel-
oped systems to construct or adapt content—including puz-
zles, platformer game levels, racetracks, and game stories—
from a given set of domain content using a variety of algo-
rithms (for reviews, see [22, 25]). Previous work on PCG
in the role-playing game genre includes generating missions
and levels [5, 8, 10, 19].

Player modeling research has investigated techniques to
extract player preferences or skills given their activities in
a game (e.g. [1, 14, 18, 23]). Most systems, however, have
relied on theory-driven player models based on designer ex-
perience or qualitative theory that lack direct connections
to the behavior of players during play. For example, Thue,
et al. [21], Seif El-Nasr [6], and Magerko [11] model play-
ers of an interactive story using vectors of various archety-
pal player classes. Other researchers have applied data-
driven techniques including evolutionary computing and ma-
chine learning methods to model players. Pedersen et al.
[14] collect preferences from players of a platformer game
through a questionnaire and train a neural network to pre-
dict player emotional states based on player behavior and
game features. Weber, Mateas, and Jhala [23] model player
retention using an ensemble of regression algorithms and
a ranking of features according to their individual impact
on player retention. Harrison and Roberts [7] model the
temporal relationships among acquiring achievements in a
massively-multiplayer online role-playing game using corre-
lations between achievements for different players at differ-
ent times. Yu and Riedl [26] use a collaborative filtering ap-
proach to predict preferences for subsequences of a choose-
your-own-adventure story. Our player modeling approach
differs from those above in that it is both data-driven and in-
corporates temporal variations in player performance—that
is, our technique, based on tensor factorization, allows us to
model change in a player’s skill over time.

Educational data mining (EDM) researchers have explored
a variety of models to capture player skills and preferences
in the context of learning tasks (for a review, see [4]). While



we focus on games for entertainment, the fact that play-
ers learn a set of skills while playing makes EDM relevant.
Among EDM approaches to player modeling, collaborative
filtering techniques are most relevant to the current discus-
sion as they meet the five requirements of predictive power,
accuracy with partial data, efficiency with large data sets,
sufficiency for algorithmic input, and accounting for tempo-
ral change. Recent advances have extended these models to
handle temporal factors [9, 20]. Mapping to standard col-
laborative filtering terminology, players are treated as users,
particular tasks they execute (e.g. a mathematics problem)
as items, and the performance on the task as the rating.

Mission generation shares much in common with story
and quest generation, in which a system autonomously pro-
duces a linear or branching sequence of events to play out
in the game world. Generation of sequential content has of-
ten been approached as a planning problem, in which the
system searches for a sequence of operations to transform a
given domain from an initial state to a goal state, with the
final sequence being the generated content. Porteous, et al.
[15] developed a system that organizes a set of given key ele-
ments of a story along a dramatic arc and subsequently fills
gaps between these events using a planning system. Li and
Riedl’s [10] system uses partial order planning to adapt quest
plans to a set of player-specified requirements for events to
include or exclude from an initial quest.

Alternative approaches to content generation for stories
have explored the use of machine learning and evolutionary
computation techniques. Roberts et al. [16] used a rein-
forcement learning technique—targeted-trajectory distribu-
tion Markov Decision Processes—to direct an agent to con-
struct appropriate stories from a space of possible stories
given sequences of player actions. Sorenson and Pasquier
[19] combine a feasible-infeasible 2-population genetic al-
gorithm with constraint satisfaction techniques to generate
challenge-based game levels. As with the planning systems
above, these efforts are based on a priori known models
of player experiences: TTD-MDP’s rely on author specified
distributions, and Sorenson and Pasquier’s challenge metric
is predefined by an author and tuned using level exemplars
independent of player performance. We integrate our player
model into a combinatorial optimization approach—using
a genetic algorithm—that integrates given author-specified
evaluation criteria with player performance-derived crite-
ria [27]. We advance previous work by incorporating dy-
namic models of players into the generation process while
also leveraging additional knowledge of how players learn
over time.

3. TAILORING GAME MISSIONS
Our goal is to generate missions—sequences of skill-based

challenge events and story events. Challenge events are tasks
that assess player skills, such as battles that assess player
combat abilities or spatial puzzles that assess player spatial
problem-solving abilities. In contrast, story events provide
motivating plot or character developments for a game world,
such as narrated plot points or conversations with charac-
ters. Generating missions requires solving both the chal-
lenge tailoring problem and challenge contextualization prob-
lem. The challenge tailoring problem requires finding a se-
quence of skill-based challenge events that produces a given
progression of predicted player performance. To determine
whether a particular sequence of challenges is appropriate,

player model

mission performance

performance 
curve

domain 
knowledge

Mission generator

Author

Performance modeler

Player

Figure 3: Framework for model training and mission
generation.

the game designer specifies a performance curve—a progres-
sion of player performance over the course of a mission—to
guide generation. For example, a performance curve describ-
ing a reduction of player performance over time can create
the feeling of increasing challenge. Designers may specify
any form of performance curve desired, representing arbi-
trary shapes such as fluctuating peaks and valleys or a rise
and subsequent drop in performance.

In missions, skill-based challenge events, such as battles,
do not exist in isolation from the other aspects of game
play. The challenge contextualization problem is the cre-
ation of story content that motivates game play in between
challenges, sets up challenges, and varies the game play to
increase replayability. The fragments of a single, full mis-
sion shown in Figure 2 contain numerous story events that
contextualize the battles. Challenge contextualization is a
simplified form of story generation. Whereas story gener-
ation provides causally linked narratives that incorporate
a sequence of required events and end with a given conse-
quence, challenge contextualization provides interesting in-
teractions with characters and short-term quests to moti-
vate the player’s activities without concern for a coherent
overarching narrative. In challenge contextualization, con-
textualizing story events are selected and instantiated from
a set of known possible event types.

Our framework for mission generation is shown in Fig-
ure 3. Given an author-specified performance curve plus
additional required domain knowledge, the mission genera-
tor constructs a mission—a sequence of story and challenge
events—to be played through by the player. Actual perfor-
mance on challenge events is tracked and once the mission
is complete, the player model is updated for the next time
a mission is generated.

We demonstrate our challenge tailoring and challenge con-
textualization system on a custom game designed to test our
algorithms. The game consists primarily of a sequence of
battles in the model of traditional turn-based role-playing



games (RPGs). Battles are interspersed with periods where
players can interact with NPCs and go on quests that serve
as opportunities to set up and contextualize the battles. Our
game domain was constructed to focus on deliberative tasks
during combat such that players are forced to make the best
choice of action for the given situation while having limited
time to consider the options available.

Battles consist of a sequence of discrete turns taken by
characters on a player team and enemy team. On each
turn, the player (or enemy) character has a set of available
actions—magical spells—that they may select among (see
Table 1). The player’s team consists of four characters each
with a different subset of spells they may use; the player has
10 seconds to cast a spell before his or her turn is skipped.
Each battle presents a different enemy team of four enemies.

Each spell is associated with a type that defines its effec-
tiveness against opponents of a particular type. For exam-
ple, a fire type spell is effective against an ice type character
and ineffective against a water type character. We vary spell
effectiveness into three levels: super-effective, effective, and
ineffective. Table 1 presents the effectiveness matrix of spell
types cast on particular character types. As an example,
a player may battle an enemy ice beast. In this case, since
the ice beast is ice type, casting a fire spell is super-effective,
casting an earth spell is merely effective, and casting a light-
ning spell is ineffective. Each player character in the game
was designed to have a partially overlapping set of spells,
while each battle is generated with varying sets of enemy
types. This situation forces players to make choices based
on what is available to them and learn which spells are most
effective in a given situation. Spell naming was intention-
ally obscure to require players to learn the effectiveness ma-
trix over play, rather than using pre-existing knowledge of
game conventions. The player’s skill at the game consists of
knowing which spell to choose for each of his or her teams’
characters to perform against any given enemy.

Each mission consists of a sequence of 10 battles. Each
battle yields data on each spell the player cast on each turn,
enabling us to model player proficiency at selecting the best
available spell in each situation. The battle interface is
shown in Figure 1. Our game system allows us to record:
which spells a player casts, how long they spend deciding to
cast a spell, which opponent they target, the battle and turn
number in which the action was taken, and the effectiveness
of that spell. As spells vary in the amount of damage they in-
flict players will vary in the length of their play traces based
on their spell choices. Our system is able to accommodate
these length variations by using a data structure that allows
for play traces up to the maximum length observed, with
shorter traces having missing values for unobserved future
time points.

4. PLAYER MODEL
Solving the challenge tailoring problem requires a model

of the player and a set of desired performance requirements.
We focus on the player modeling task of predicting player
performance in future battles given a player’s history.

We approach this task using collaborative filtering, specif-
ically tensor factorization. Collaborative filtering, which
learns to make predictions from similarities across a large
number of people, is a well-known technique for making ac-
curate predictions with relatively little data about any one
particular individual. It thus meets our first four player

model requirements: predictive power, accuracy, efficiency,
and generative sufficiency. Collaborative filtering techniques
are particularly powerful in combining data across users.
With initial data from one set of users these models can
predict new user performance on a given task based on aver-
ages across other users on similar tasks. Thus, collaborative
filtering models can provide principled baseline predictions
without existing data on a new user, and improve on these
predictions by incorporating additional data on that user’s
performance.

Tensors generalize matrices to add additional dimensions
to the matrix structure, moving from the two-dimensional
arrangement of a matrix to higher orders. Tensors that add
a time dimension extend collaborative filtering to make pre-
dictions about how a player is expected to change in the
future, thus handling the fifth criteria, temporality. We
use tensor-based collaborative filtering to predict player per-
formance for different possible parameterizations of battles
across time, thus modeling skill improvement.

Our mission generator takes as input both predicted player
performance and a designer-specified performance curve, such
as that shown in Figure 4. Battles with appropriate param-
eterizations are selected to match the desired performance
level at the desired point in time and sequenced to produce
a full progression of player performance. Players then play
through the mission, yielding performance ratings that the
performance modeler uses to update the player model for
the next round of mission generation.

While we employ our model’s predictions to generate full
missions (as described in Section 5), these results can also
be employed to predict player performance over single events
and make adaptations to an existing mission or incremen-
tally build a mission. For single event predictions tensor
factorization models include temporal shifts in player per-
formance over time and thus provide a more nuanced view
of player performance than the static models of traditional
matrix factorization and related approaches. While our cur-
rent approach employs offline training and adaptation re-
cent work in machine learning has developed techniques for
online training for matrix factorization that applies to our
problem [12]. We first present our matrix factorization ap-
proach to player performance modeling, then describe our
genetic algorithm approach to mission generation.

4.1 Matrix Factorization
Matrix factorization techniques model player performance

by considering the relationships between players and tasks
with respect to the observed performance ratings. Perfor-
mance ratings are decomposed into sets of latent factors de-
scribing underlying features of players and tasks. Task fac-
tors describe a latent space of features possessed by a task.
Player factors describe a latent space of capabilities of play-
ers at those task factors. Performance predictions are made
using an inner product of these latent factors [20].

Formally, we have sets of players (“users”) U , tasks (“items”)
I, and performance scores P . Player performance data for
a given task is collected in a U × I matrix with entries cor-
responding to the performance of player u on task i. In
the time-varying case (three-dimensional tensor) we add a
dimension to the matrix corresponding to the time of obser-
vations T . The resulting tensor Z = U × I × T is a tensor
of player u’s performance on task i at time t. This tensor is
decomposed into a set of factors according to:



Table 1: Spell Effectiveness Matrix
Attack ↓ Defense → fire water acid ice lightning earth force undeath

fire 1 0 1 2 1 2 1 0
water 2 1 0 1 0 1 2 1
acid 1 2 1 0 1 0 1 2
ice 0 1 2 1 2 1 0 1

lightning 1 2 1 0 1 0 1 2
earth 0 1 2 1 2 1 0 1
force 1 0 1 2 1 2 1 0

undeath 2 1 0 1 0 1 2 1

Z ≈
KX

k=1

λkwk ◦ hk ◦ qk

where ◦ is the outer product, λk are positive weights on the
factors, wk are player factors, hk are task factors, and qk

are time factors. K is the rank of approximation made by
the decomposition, keeping the set of the K most important
factors. Tensors may incorporate variable-length traces of
player data by ensuring the T dimension is the length of the
longest player trace, with other players having missing data
for time points they have not yet acted in. Prediction on
these missing future tasks becomes:

p̂uiT∗ =

KX
k=1

wukhikΦT∗k

where p̂uiT∗ is predicted performance of player u on task i
at the current time T ∗ and:

ΦT∗k =

PT∗−1
t=T∗−L qtkpt

L

with L defining the number of previous time steps to use
for performance. ΦT∗k are averaged performances of play-
ers over the last L times performing this task, based on
the factors describing the time of the task and the observed
performance. Future performance is predicted by taking a
weighted sum of the latent factors describing the player,
task, and averaged performances. The weight factors are
derived using root mean square error for optimization by
stochastic gradient descent.

Prediction can be improved by including bias terms to
account for baseline features of both the players and tasks.
This alters the model to:

p̂uiT∗ = µ+ bu + bi +

KX
k=1

wukhikΦT∗k

where µ is the global average performance on a task, bu is
a bias term encoding the proficiency of a player, and bi is
a bias term encoding the difficulty of a task. The player
and task biases are computed as the averaged performance
differences from the global average over all players or tasks,
respectively.

In our game we collect player data on actions taken during
combat. Each data point consists of a tuple (u, i, t, p) where
u is the player, i is the task, t is the turn number in the full
play trace, and p is the performance. i is recorded as a con-
catenation of the enemy being attacked and the particular
spell being cast. As an example, casting an earth spell on

an ice beast would be recorded as “ice beast-earth”. Perfor-
mance ratings are based on the defined spell efficacy matrix
above—super-effective, effective, and ineffective are mapped
to 2, 1, and 0, respectively. For the above case, the full tu-
ple may be (player01, ice beast-earth, 15, 1) when player01
performs the earth spell as her 15th action and where cast-
ing earth is effective and thus scored 1. Given this data we
model and predict player performance based on the tensor
factorization techniques outlined above.

To bypass an early period of identical predictions across
players we begin all players with a fixed initial mission that
serves both as a tutorial and initial source of player data.
The player model is trained using this data (approximately
100 data points per player, requiring 15 minutes of game-
play) and existing data from all other players and then used
to predict player performance and generate a mission. Col-
laborative filtering techniques minimize the amount of per-
user data required by leveraging data from other users to
generate baseline predictions and rapidly improve perfor-
mance with additional data. For example, Yu et al. [26]
achieved over 90% accuracy for new users with 9 data points
per new user using training data from 31 users with 18 data
points per training user. We expect our additional data for
training users should compensate for the additional com-
plexity of our tensor model. The model is updated after a
player completes each mission and used to generate the next
mission. We anticipate reducing training frequency when
data sets become large to avoid substantial delays in mission
generation. Reducing model update frequency is acceptable
as larger data sets enable more information to be shared
between players and thus enable more accurate predictions
without additional data from the new player.

4.2 Performance Modeling
To generate a mission our system requires a set of skill-

based challenge events (combat) associated with particular
skill (spell) types and a designer-specified performance curve
of desired player performance over the full mission. Figure
4 shows an example of a target performance curve, speci-
fying that the designer wishes to have player performance
decrease during combat over the course of the mission. The
solid line depicts the author-specified desired levels of player
performance over the course of the mission. This particular
curve approximates a mission that will appear to steadily
increase in difficulty. Dotted lines depict the predicted per-
formance of players over the mission and black boxes depict
combat events within the mission, with intervening periods
occupied by non-combat events. The particular parameter-
ization of combat events in Figure 4 results in player B’s
predicted performance to be nearer the author’s intended
performance profile than that of player A.

Other curves may be used to approximate the shape of an



Figure 4: Example performance curve illustrating
desired and predicted player performance. Boxes
indicate skill-based (combat) events set at different
times in the mission. The solid curve depicts desired
performance over the course of the mission. Dashed
curves depict performances for two different players
on these events.

Aristotelian dramatic arc, or create rhythms of alternating
periods of low and high performance, or capture common
design heuristics such as having high early performance, a
middle period of low performance, and a final increase in
performance that gives the player a sense of mastery.

Note that we model player performance, instead of game
difficulty. Player performance is directly observable during
play in the form of the choices made in given circumstances
and evaluated by the game that directly “scores” these ac-
tions. In our game domain these scores come in the form
of combat attacks being super-effective, effective, or ineffec-
tive; the notion generalizes to any actions that have some
implications for how well a player is doing. For example:
in a shooter game performance may be measured through
player firing accuracy, in a racing game performance may be
measured by time to complete track segments, or in a puz-
zle game performance may relate to the number of moves
players take to complete particular parts of puzzles.

Content difficulty is not necessarily equivalent to perfor-
mance as many factors impact player performance beyond
difficulty alone, such as ambiguity in the context, level of
player attention or fatigue, prior player knowledge, or fa-
miliarity with interface controls. Further, difficulty itself
may be multidimensional, subdividing into terms based on
speed of actions, precision of action timing and execution,
or complexity of action composition. To bypass these com-
plications we focus on the task of performance prediction,
where we assume some of the latent factors may implicitly
describe the notion of difficulty. Our system is able to ac-
commodate multiple performance notions through training
separate tensor factorizations for these separate dimensions.

Given a set of challenge events and an an author-specified
performance curve, a mission generation system can use the
player model to predict a player’s performance on the chal-
lenge events and compare the predicted performance to the
author’s desired performance. The selection, spacing, and
parameterization of challenge events to reduce the discrep-
ancy between performance model and predicted player per-
formance is described in the next section.

5. MISSION GENERATION
The mission generator creates sequences of events con-

sisting of story events interspersed with challenge events.
In the case of our RPG domain, challenge events are bat-

tles consisting of combinations of enemies meant to have
players achieve particular levels of performance on partic-
ular skills, as determined by player model predictions and
a given performance curve. Challenge tailoring is thus the
parameterization of the sequence of battles based on how
closely a specific sequence matches the performance curve.
Challenge tailoring involves solving the exact parameteri-
zation of each battle in the sequence and determining the
timing of each battle. Our mission generator is designed
to apply to any domain where player performance can be
assessed with respect to a set of concrete tasks used repeat-
edly in the course of a larger sequence. The full details of
our mission generator are described by Zook et al. [27].

To solve the challenge tailoring problem a system must
compose a sequence of battles that matches predicted player
performance to a desired performance curve. To solve the
challenge contextualization problem a system must inter-
sperse story events within a given sequence of combat events,
ensuring these events meet author requirements and pref-
erences. Since challenge tailoring and challenge contextu-
alization are highly interrelated—adding story events im-
pacts timing of battles and thus impacts performance curve
matching—we solve the two problems simultaneously.

When solving these problems we seek both to provide
designers some control over generation and to create mul-
tiple distinct missions from a given set of input to meet
the general PCG goal of enhancing replayability without de-
signer effort. In this paper we focus on the task of fitting
player performance to the performance curve expressing a
designer’s intended course of performance. Our previous
work describes methods to incorporate designer control over
domain content and the evaluation of story content [27].

The mission generator attempts to find the best sequence
of events that incorporates the set of performance skills and
performance curve, authored story content and evaluation,
and player performance predictions. To meet these diverse
requirements we use combinatorial optimization, specifically
a Genetic Algorithm (GA). Genetic algorithms attempt to
find one or more structures that maximize a given evalua-
tion function. They are particularly suitable for problems
where there are many soft requirements that describe ideal
relationships between different aspects of the structure, but
few binary requirements such as necessitated goal states.

A genetic algorithm starts with a population of randomly
generated potential solutions—in this case missions—and
attempts to modify and/or combine aspects of different mem-
bers of the population to improve the fitness of the popu-
lation according to the given evaluation function. Our GA
uses an evaluation function involving a number of weighted
components. The first component addresses challenge tai-
loring by matching a designer-specified performance curve
to predicted player performance. That is, given a perfor-
mance curve and player model, the GA is able to evaluate
each mission event sequence created in terms of the distance
between predicted player performance and designer-desired
player performance in battles. The GA thus searches for
the optimal fit between battles and desired performance by
varying the parameterization and timing of battles over the
mission. Scenarios are penalized using a Euclidean distance
metric summing over all battles to encourage a smooth con-
vergence toward battles meeting designer specifications. The
other components of the evaluation function include numeric
evaluation functions and an evaluation grammar. The nu-



meric functions assess story aspects such as frequency with
which characters are reused and story length. The evalua-
tion grammar encodes author preferences over combinations
of events, such as having players receive a quest and subse-
quently receive clues on how to complete the quest. Addi-
tional details are provided in our previous paper [27]. Ensur-
ing global properties of items is a difficult problem for GAs;
we employ a planner to post-process the results produced
by our GA to meet this global coherence need, similar to
using constraint-satisfaction approaches in other GA-based
systems [19].

As an example, the system may be given the performance
curve in Figure 4 that specifies decreasing player perfor-
mance across four battles during the mission. In addition,
the system is provided knowledge of ice king and fire fairy
monsters. Given a player with a history of initially casting
super-effective spells on the fire fairy but later mostly cast-
ing effective or ineffective spells on fire fairies, the system
will generate predictions that over time player performance
against fire fairies will decay. If the player also has a his-
tory of casting super-effective spells against the ice king the
player model will predict the player to remain at a relatively
high level of performance, assuming that most other play-
ers show a similar pattern of learning and mastering spell
effectiveness. From this information the system would gen-
erate a combat sequence starting with a battle against an
ice king and with a battle late in the sequence against a
fire fairy. Once a player plays through one of the generated
missions the system updates the player predictions to reflect
the new model and generates a new set of missions based on
the updated player performance predictions.

6. TOWARD GENERATION OF FULLY RE-
ALIZED GAMES

Our future work involves evaluating the mission genera-
tion system. First, we intend to evaluate our tensor factor-
ization player model to assess how accurately it can predict
human player performance over time, and how many trials
and users are required to train the model for any particular
individual. Second, it is necessary to evaluate the extent to
which our particular data-driven player modeling approach
can affect noticeable change in a “closed-loop” system where
missions are generated and played. As Cook, Colton, and
Gow [3] note there can be differences between evaluation
function ratings and human player ratings. As the primary
function of performance evaluations is to tailor content to
author requirements for player actions we avoid issues of
player subjectivity by focusing on author goals. Third, we
plan to examine the relationship between perceived diffi-
culty, preference, and measured performance. Our study in-
corporates collecting player subjective ratings of perceived
battle difficulty and enjoyment in addition to performance
metrics to determine the extent to which our performance
metrics provide useful correlations to player experience.

Currently, our game is limited to a fixed virtual environ-
ment. Future work with our system will explore the gener-
ation of spatial game content. Spatial layout of role-playing
games has been previously explored [8, 19]. Hartsook et al.
[8] especially advocate a pipeline approach where a mission
is generated first, and then a space is constructed to support
that mission. We believe it may be more beneficial to take
spatial context into account when generating missions, as

the time to navigate a large virtual world will affect game
pacing and the way skill events align with a performance
curve. We anticipate modifications to both our modeling
and generation techniques due to the additional complex-
ity added by spatial information. Modeling methods require
appropriately abstracting spatial location, potentially apply-
ing kernel learning techniques found successful for complex
spatial modeling in the machine learning literature [17].

Additional advances to our mission generation approach
may involve altering the dynamics of the game itself—for
example, simplifying or complexifying the spell system with
additional spell types or levels of spell effectiveness. These
extensions could potentially alleviate boredom when play-
ers “master” a given game system or simplify a system that
proves too complex for novice players. We anticipate build-
ing on previous work looking at evolving game systems while
extending these efforts to alter complexity based on player
performance (cf., [2, 3]). These efforts also require adapting
NPC behavior appropriate to altered game rule sets.

7. CONCLUSIONS
We describe five criteria for data-driven player models—

predictive power, accuracy, efficiency, general sufficiency,
and temporality—that serve generation and demonstrate
techniques to create such models and incorporate them into
the process of generating game missions that combine com-
bat and story events. Player models should predict player
performance accurately, particularly when faced with large
amounts of data that may be only partially filled for a given
player. Temporal forecasting in player models is also a cen-
tral requirement for predictions to account for the ways
player performance or preferences fluctuate over time and
to enable generation of sequential content. We believe col-
laborative filtering algorithms in general meet the first four
criteria in a domain-independent fashion, especially when
data for any one player is sparse but data can be collected
for many players. We employ a particular form of matrix
factorization, called tensor factorization, to account for the
additional criteria of temporality. Future work includes eval-
uating the accuracy of our player modeling technique.

Mission generation solves the challenge tailoring and chal-
lenge contextualization problems by combining data-driven
player modeling with designer preferences such as the perfor-
mance curve and other knowledge about appropriate combi-
nations of story content. A genetic algorithm can incorpo-
rate a variety of competing factors into a single fitness func-
tion, meeting requirements from combat-related and story-
related content. Temporal performance models combined
with known combat content allows our mission generator to
tailor sequences of battles to steer player performance to-
ward an author-specified performance curve.

Procedural content generation techniques coupled with
data-driven player modeling techniques hold great promise
for automatically tailoring content to players’ skill levels and
preferences. We believe data-driven player modeling tech-
niques meeting the five criteria we outline will help real-
ize this potential and can expand efforts toward domain-
independent PCG and adaptation solutions.
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