
Automated Scenario Generation: Toward Tailored and
Optimized Military Training in Virtual Environments

Alexander Zook, Stephen Lee-Urban,
Mark O. Riedl

College of Computing
Georgia Institute of Technology

Atlanta, Georgia, USA

{a.zook, lee-urban, riedl}@gatech.edu

Heather K. Holden, Robert A. Sottilare,
Keith W. Brawner

U.S. Army Research Laboratory
Orlando, Florida USA

{heather.k.holden, robert.sottilare,
keith.w.brawner}@us.army.mil

ABSTRACT
Scenario-based training exemplifies the learning-by-doing
approach to human performance improvement. In this paper, we
enumerate the advantages of incorporating automated scenario
generation technologies into the traditional scenario development
pipeline. An automated scenario generator is a system that creates
training scenarios from scratch, augmenting human authoring to
rapidly develop new scenarios, providing a richer diversity of
tailored training opportunities, and delivering training scenarios
on demand. We introduce a combinatorial optimization approach
to scenario generation to deliver the requisite diversity and quality
of scenarios while tailoring the scenarios to a particular learner’s
needs and abilities. We propose a set of evaluation metrics
appropriate to scenario generation technologies and present
preliminary evidence for the suitability of our approach compared
to other scenario generation approaches.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education—Computer-assisted instruction (CAI). I.2.1 [Artificial
Intelligence]: Applications and Expert Systems—Games.

General Terms
Algorithms, Design, Theory.

Keywords
Scenario Generation, Military Training, Optimization.

1. INTRODUCTION
Virtual simulations and other game-like virtual worlds are
progressively being adopted for “serious” purposes, such as
training and education. Computer-based training systems and
games share many similarities: both involve a progression of skill-
based activities of increasing complexity and difficulty. These
activities are often structured through a narrative, mission, quest,
or scenario. In this paper we argue for a combinatorial
optimization search approach to selecting and ordering events in a
training scenario being generated from scratch for use in a virtual
training environment. We motivate the need for increased
automation of narrative and scenario generation, present

desiderata for an automated scenario generation system, describe
our particular optimization search approach, and provide an
analysis of our approach relative to other possible approaches.

Scenario-based training has individuals or small teams assume the
role of an expert for the purposes of practicing skills and
knowledge in realistic situations in a learning-by-doing approach
to performance improvement. The term “scenario” can refer to
many different things. In this paper we define a scenario to be a
sequence of events that is expected to unfold over a period of
time, which if executed will require a trainee to perform a given
set of skills. We focus on scenario-based training in virtual
environments from a military perspective; the typical use of a
scenario in military training contexts is to create the appearance
that the trainee is on a mission or is otherwise engaged in an
operation in which the given skills will become pertinent within a
larger, realistic context. Our approach, however, generalizes to
games and other situations where individuals use a set of skills
within an authored context—e.g. performing skill-base quests
within a larger story arc.

In the military, more training is always desirable, but force
generation cycles—the time between deployments that can be
devoted to training and improvement—are often short. While
scenario-based training is the accepted norm and can be highly
effective, it is also costly and inefficient, requiring significant
resources: time, space, confederate role players to play
oppositional or neutral entities, and scenario developers.
Computer-based training, in which scenarios unfold in a virtual
environment, can make training more cost-effective and more
frequent, especially when using non-player characters (NPCs) to
fill non-trainee roles such as opponent forces. However, scenarios
must first be written. As long as scenarios are written by human
subject matter experts, the fundamental bottleneck to training
remains the number, diversity, and appropriateness of scenarios
that can be played in computer-based learning environments.

In this paper, we present an approach and preliminary results on a
scenario generation system. A scenario generator is a
computational system that solves the problem of producing a
training scenario—a sequence of events expected to unfold in a
training environment—given knowledge about learning
objectives, learner attributes, and domain knowledge. Automated
scenario generation has several advantages over human-crafted
scenario development. (1) Automated scenario generation can
augment existing human-based scenario development practices to
make more training scenarios available, thereby increasing the
frequency at which training can occur in virtual environments. (2)
Automated scenario generation can tailor scenarios to individuals
based on their needs and abilities, thereby increasing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Foundations of Digital Games’12, May 30th–June 1st, 2012, Raleigh,
North Carolina, USA.
Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

effectiveness of trainee experiences in the virtual environments.
(3) Scenario generation can produce content on demand so that
learners do not need to wait for human instructional designers to
prepare additional training materials.

We model scenario generation as an optimization process: find the
sequence of events that maximizes a set of criteria including: the
balance of training events of desired types, tailored difficulty,
plausible mission context, and the use of affect-building and
dramatic events. Specifically we use a genetic algorithm to
generate ordered sequences of events (scenarios) from authored
domain knowledge regarding scenario events, orderings among
groups of events, and the impact of events and groups of events
on the quality of a scenario. Unlike other comparable systems that
use planning to find the sequence of actions that transitions an
initial state to goal situation [4; 8; 9; 10] our approach makes
more effective use of the evaluation criteria to choose the right set
of scenario events to respond to trainee individual differences, and
can create a greater diversity of scenarios. Our system is
demonstrated in the military training domain of tactical field
care—the decisions about when and how to administer first aid in
combat situations.

We believe our approach readily generalizes to other
entertainment-based games due to the flexible domain knowledge
structures employed and the general way in which player's
abilities are modeled. Training scenarios are intimately related to
missions and quests within role-playing games, adventure games,
first-person shooter games, and so on, where a narrative
contextualizes the need to employ increasingly complex skills
such as combat or puzzle solving. To the extent that computer
games seek to personalize game play and narrative structure, we
believe computer games may benefit from our system in similar
ways.

This paper provides the following contributions. First, we provide
desiderata for automated scenario generation (Section 2). Second,
we describe work on a system that solves the problem of
automatically generating training scenarios through optimization
(Section 4). Third, we present a set of evaluation criteria for
scenario generation systems (Section 5) and analyze our work to
date.

2. DESIDERATA FOR SCENARIO-BASED
TRAINING
Scenario-based live-exercise training is the gold standard for
military training, but can also be very expensive. In scenario-
based exercises trainees learn to apply knowledge, develop skills,
and master concepts under conditions that are representative of
the environment in which they will operate in the real world.
Scenarios are designed to provide an experience that closely
approximates what will occur in real world operations with the
added benefit that the events in a scenario are also tied directly to
training objectives. Sequences of scenarios are often designed
with increasing complexity to gradually improve trainee
performance. For example, initial scenarios may focus on well-
defined tasks with few of the stressors that are present in the
operational environment. Later scenarios may include more
complex or ill-defined tasks where decision-making can be
exercised and stressors orthogonal to skills compete for attention.

Computer-based training games and simulations complement live
training by allowing low-cost use outside of formal training
environments. While computer-based training enables more
frequent training, it is limited by the number of unique training

scenarios available for trainees to practice with. This limitation is
compounded when training scenarios are tailored to the specific
abilities of a learner. Figure 1 shows the basic scenario
development pipeline in which a human scenario developer, using
knowledge about learning objectives and the real world, crafts
scenarios that can be used in virtual games and simulations.
Ideally, the learner’s attributes should be changed (positively) due
to the learner’s exposure to the virtual environment and scenario.

Scenarios for computer-based learning environments can be
consumed faster than they can be produced resulting in a scenario
development bottleneck. Automated scenario generation is one
way to overcome the scenario development bottleneck. A scenario
generator integrates into the human authoring scenario
development pipeline as shown in Figure 2. An automated
scenario generator system uses computational representations of
learning objectives, world knowledge, and learner attributes to
construct tailored scenarios for a learner. The inclusion of learner
attributes, in the form of a learner model, is what enables the
augmented scenario development pipeline to tailor learning
experiences. Note the cycle created between scenario generator,
execution environment, and learner attributes: as the learner
grows in abilities, the system can adjust its scenarios in lockstep.
Learning objectives and world knowledge can be altered to meet
changing learning needs or real-world conditions.

We argue that a scalable scenario generation system should have
the following capabilities:

• Replayablility. Skill mastery is correlated with the ability to
generalize across numerous realistic experiences, thus a greater
number of scenarios exercising the same skills is desirable [3].
While computer-based training enables more frequent training,
it is limited by the number of unique training scenarios
available for trainees to practice with. There are rapidly
diminishing returns when one trains on the same scenario
multiple times—individuals memorize the scenario instead of
learning the underlying concepts. To minimize diminishing
returns of repeated scenarios, a scenario generation system
must be capable of generating numerous distinct variations
from a given set of input parameters.

• Tailoring to individuals. Scenarios are typically developed to
average trainee abilities, delivering sub-optimal experiences for
above-average or below-average trainees. Applying the theory
of Zone of Proximal Development [16] to any given scenario
designed for the average learner, above-average individuals

Figure 1. The basic scenario development pipeline.

Figure 2. The augmented scenario development pipeline.

Authoring
World

knowledge

Game/
Simuation

Learning
Objectives

Learner
Attributes

Authoring

World
Knowledge

Scenario
Generation

Game/
Simulation

Learning
Objectives

Learner
Attributes

will experience boredom and below-average individuals will
experience frustration. Tailoring scenarios to individuals or
small groups can alleviate this skill mismatch and more
effectively customize scenarios to the specific needs and
abilities of individuals. To achieve this capability, a scenario
generation system must incorporate learner differences into the
system.

• Adaptation to new conditions in the world. Scenarios have a
“shelf life,” they become less effective as new tactics,
techniques, and procedures are adopted to respond to an ever-
changing world. A scenario generation system must be capable
of being re-configured to account for changes to missions that
the scenarios are meant to emulate, new training objectives, and
new challenges. This is enabled by easily configurable
knowledge structures.

We employ a genetic algorithm to meet these scenario generation
criteria, enabling rapid creation of a diversity of scenarios that
incorporate author and learner requirements into the generation
results. Our flexible knowledge structures enable authors to easily
configure new requirements for scenarios or new domain
knowledge.

3. RELATED WORK
Computer-based technologies for training and education are used
in all aspects of government, industry, and educational
institutions. Intelligent Tutoring Systems (ITSs) attempt to
computationally replicate the effectiveness of one-on-one human
tutoring, making educational remediation more personalized and
adaptive to an individual trainee. In STEM (science, technology,
engineering, and mathematics) education, Intelligent Tutoring
Systems (ITS) have been shown to effectively increase student
proficiency by an average of one standard deviation [15]. Game-
based intelligent tutors are especially beneficial for the U.S.
Military, where training must be highly interactive, immersive,
engaging, adaptive, and challenging. Examples of successful
game-based tutoring systems in the Military include the Tactical
Action Officers trainer [1] and the Tactical Iraqi game-based
language and cultural skills learning environment [7]. In STEM
education, Crystal Island [12] combines ITS and serious games to
teach middle school biology by balancing remediation, problem-
solving, and narrative engagement.

VanLehn [14] characterizes tutoring systems as employing outer
and inner loops of interaction with a learner. The outer loop
selects the next task for the learner to perform based on
information about the learner, including traits, learning goals and
needs. The inner loop closely monitors every action the learner
takes while performing the given task and uses this information to
update a model of the learner and provide directed feedback.
Scenario-based training under the guidance of an intelligent
system can be considered a form of tutoring. A scenario generator
functions as outer-loop problem generation. Any performance-
based feedback operating during scenario execution could
function as the inner-loop remediation. The outer loop process is
the primary interest area of this paper.

Hullett and Mateas [5] describe a system that generates training
scenarios in a firefighting domain. In this system scenario
generation is equivalent to generation of a partially collapsed
building that trainees must navigate to rescue victims; the scenario
is the environment as opposed to the events and activities that are
expected to occur. Our system generates the sequence of events
expected to occur as the trainee attempts to perform a role. This
allows us to reason about the set of skills that must be performed

and dramatic arc, and also to optimize the experience according to
the learner’s needs. While we do not generate the world the
scenario unfolds in, systems such as those demonstrated by
Hartsook et al. [2] illustrate methods to incorporate world
generation into story generation systems.

A form of experience tailoring can be achieved through an
interactive technology called drama management (or, experience
management [10] in the case of serious games). Drama
management uses computational techniques to guide a user
toward a set of specified objectives by acting through virtual
characters to change the virtual world’s state. The Automated
Story Director [10] uses a planner to generate a branching story
structure where all branches lead toward learning objectives. The
Adaptive Educational Interactive Narrative System [4] reactively
selects the next learning objective and plans forward to it. In both
systems, scenario branches are generated in response to physical
necessity and are not tailored to the individual. The learner will
have repeated experiences if he or she makes similar decisions.

The Interactive Storytelling Architecture for Training (ISAT) [6]
also uses interactive narrative to facilitate combat medic training.
ISAT reactively selects training scenes (particular events such as
administering a tourniquet) based on a skill model of the learner.
Once a training scene is selected, additional scenes may be
sequenced to preserve coherence, although there is otherwise little
notion of mission. Both ISAT and our system use a learner model
to adapt to the learner’s needs. Our approach differs by
constructing the full sequence of scenario events ahead of time in
order to create more realistic scenarios involving training and
non-training events.

Niehaus, Li, and Riedl [8] propose a system that makes small
changes to existing, hand-authored scenarios to more closely
conform to learner needs. This approach theoretically achieves
greater tailoring of training scenarios than hand-authoring alone.
However, as a form of case-based planning, it requires a large
case-base of hand-authored scenarios to begin with. Further, the
system is dependent on having a given initial and goal world
states, which may not be practical. Our system employs
knowledge structures (see below) that are more easily configured
than initial and goals states to meet the ever-changing nature of
training domains and trainee knowledge.

Scenario generation shares many similarities with story
generation, particularly methods that use planning (cf., [9] and
[11] for recent work in this area). Planners search for a sequence
of operations that transform an initial world state into on in which
a goal situation holds. The work by Porteous et al. [9] is especially
relevant because it attempts to order several a priori given key
elements based on a theory of dramatic arc, and then fills in the
events between with a planner. Our system automatically
determines which key learning events should be in the scenario
based on a learner model and then arranges those key events along
with interstitial events that may have a direct impact on the
context under which the key learning events are experienced.
Because our system is not based on planning, it has the advantage
over planning-based approaches of being able to produce a variety
of solutions from the same set of input parameters.

Our approach deviates from the more standard, planning-based
approach to scenario and story generation. A planner solves the
problem of transforming a world from an initial state to one in
which a goal situation holds. While many have argued that
planning is a good model for story creation, we observe
mismatches between planning algorithms and the objectives of

tailored scenario generation described in Section 2. First, the
primary purpose of a planner is to find a sequence of
actions/events that transform the initial state into a goal state. As a
formalization of solution correctness, all else is secondary.
Beyond correctness, plan optimality is measured by plan length
and/or plan operator cost. Such formalizations marginalize the
importance of author and learner criteria when developing
scenario plans. Second, although search control heuristics can
make planning search more efficient, it is challenging to
implement complicated planning heuristics for ill-defined
domains. A heuristic injects knowledge about which parts of the
search space to explore first, but a planner will still terminate if a
sound solution is found and none of the heuristics are met. Thus
tailoring knowledge or goals may not be met unless explicitly
represented. Third, global evaluation criteria require complete
event sequences, which are only present at the leaves of a
planner’s search space, resulting in numerous, expensive
sequences of backtracking behavior. Unfortunately, many of the
evaluation criteria we propose are global in nature. In contrast, our
combinatorial optimization approach sees a complete potential
solution on every iteration. Finally, even if optimality assumptions
are changed (as in [11]) or violated, a planner still requires an a
priori known initial state and goal situation. Knowing the initial
state and goal state requires the human user to know something
about the nature of the mission to be generated. In scenario-based
training, the mission is an excuse to practice a certain set of skills;
it is thus hard to identify and enumerate relevant concrete initial
and goal world states. Poorly chosen initial and goal states might
inhibit scenario generation, as in the case where the goal state is a
subset of the initial state.

4. OPTIMIZATION-BASED SCENARIO
GENERATION
In this section we describe our scenario generation approach. The
scenario generator is designed to operate in any domain in which
the trainee must practice skills in the context of a larger mission.
We demonstrate the system in the context of tactical field care, in

which a trainee must make snap decisions under potentially
ambiguous situations about whether and how to administer
medical care to him/her-self or to others. To provide a realistic
context under which decisions about which life-saving skills must
be performed, our scenario generator produces a mission
reminiscent of actual operations, and embeds tactical field care
situations within. Using a learner model, the system can select
events to practice skills at the appropriate level of challenge and
can also vary the non-skill events to create dilemma situations
where it may be more or less clear which decisions to make or
skills to perform. Figure 3 shows a screenshot of the virtual
environment for tactical field care that we developed to test and
demonstrate out scenario generator.

The goal of our scenario generation system is to find the best
sequence of events that (a) creates the appearance of a realistic
mission, (b) achieves a set of training objectives suitable for a
given individual trainee, and (c) is tailored to the individual
trainee’s abilities. In addition, it is desirable to be able to create a
variety of scenarios so that training can be performed multiple
times without repetition. Given this problem definition, we base
our scenario generation system on combinatorial optimization
search. Combinatorial optimization search attempts find one or
more structures that maximize a given evaluation function. It is
particularly suitable for problems where there are many soft
requirements that describe ideal relationships between different
aspects of the structure, but few binary requirements such as
necessitated goal states. Combinatorial optimization also operates
well in domains with a rich variety of potential substructures that
constrain and interact with one another but may not be well
known a priori.
Our scenario generation system specifically employs a genetic
algorithm to search for the best solution. A genetic algorithm
starts with a population of randomly generated potential solutions
and attempts to modify and/or combine aspects of different
members of the population to improve the fitness of the
population according to the given evaluation function. We detail
our scenario generator’s knowledge representations and other
knowledge sources, evaluation function, and algorithm in the
subsequent sections.

4.1 Scenario and Knowledge Representation
The scenario generator is responsible for creating the set of events
that comprise a training scenario. We model a scenario as a totally
ordered (i.e. linear sequence) series of story events. An event is a
primitive element that describes a small number of actions.
Example events include various ways in which characters can
engage in combat, treat injuries, engage in non-combat related
mission activities (e.g., patrol), and socialize with other characters
in the mission. A fragment of a tactical field care scenario is
shown in Figure 4. Note the use of social events such as build-
affinity and bullied to set up a dilemma situation where the learner
must choose who will receive medical care and then apply the
appropriate procedure.

There are several types of knowledge required to generate such a
scenario: an event template library, required events, ordering
constraints, and evaluation grammar. The event template library
contains the set of all possible events that can occur in a scenario.
Each event is defined by an event type and a set of parameters that
determine the aspects of the event including: the characters
participating in the event, impact of the event on the affinity of
characters for one another, types of injury sustained by characters
in the event, context of the training (while the player is under fire
or after combat), and type of the event (socializing, engaging in

Figure 3. The tactical field care virtual environment. The

scenario triggered an ambush in order to wound one of the
player’s virtual teammates (circled).

combat, or mission-specific). It also describes parameterized
preconditions and postconditions of each event type used only in
the post-processing stage. During generation, the system may
select and instantiate event templates into the scenario. This
entails selecting a template and filling it with appropriate values
given for each event slot. Events in which skills are practiced,
called skill events, are annotated so that the learner model can
determine how they will impact the particular trainee when
instantiated into a scenario.

Required events are events that must be in the scenario for it to
achieve necessary learning objectives. For example, if we wish a
learner to practice deciding when and how to treat a leg wound on
a teammate after the team is safe from fire, then required events
can be used to force an event of treat-leg-wound to be present in
the scenario. Required events can be partially-instantiated,
meaning that certain optional parameters, such as who needs the
care can be discovered opportunistically later. Required events
can enforce learning objectives as the example above, but can also
place requirements on the nature of the mission the trainee will
experience (e.g., presence-patrol) or the types of danger
encountered (e.g., an improvised explosive attack).

Ordering constraints may be specified in advance to provide hard
rules that particular sub-sequences of events must occur in a
particular order. For example, a scenario may be required to
ensure that all events of applying the skill of administering a
tourniquet to the leg are preceded by a teammate sustaining a leg
wound injury: get-shot(c, t, i=leg-wound) < give-care(c,
s=tourniquet)

The evaluation grammar specifies a set of soft ordering
constraints and hierarchical compositions of ordering constraints
to make graded assessments of the structure of a scenario.
Constraints in the evaluation grammar encode dramatic or
pedagogical preferences for training scenarios used during
scenario evaluation. The grammar informs the system of familiar
subsequences that it might not otherwise recognize as favorable,
such as common ways in which a presence patrol mission unfolds
or common social patterns. A scenario in which most events are
matched against the evaluation grammar is considered superior to
scenarios in which fewer events are explained by the grammar.
The genetic algorithm thus favors the use of more canonical
sequences. However, since the grammar imposes soft constraints,
the generator is able to violate the stereotypical situations in order
to maximize other factors and increase the overall quality of the
scenario. Figure 5 shows a fragment of evaluation grammar. Rules
can be sequences or “OR” clauses. Italics denote abstract symbols
while non-italics denote events expected to be instantiated in a

scenario. Event parameters are tracked by the grammar when
necessary to enforce consistent parameter usage (e.g., characters)
across many events. The fragment of grammar in Figure 5
specifies that a good pattern of events includes the player building
affinity for a particular character (e.g., make-friends) and then
having that character become wounded. Likewise, a common
social convention has a character give thanks for medical
attention.

4.2 Evaluation Functions
A scenario is evaluated using a set of functions that examine the
global sequence of scenario events to determine its overall quality.
Our system currently employs a set of encoded functions to assess
developments of the dramatic arc and inclusion of training skills.
The current set of functions includes:

• Character use: to avoid character proliferation, scenarios that
maintain a small cast of repeatedly used characters are scored
more highly.

• Event type use: scenarios that employ a variety of types of
events are scored more highly.

• Event type flow: grouping the types of events used over the
course of the scenario (e.g., having clustered sequences of
combat events or social events) is scored more highly [17].

• Affinity use: a running affinity level score calculated over the
course of events compared to various combat situations
characters are involved in; injuring characters that have built
affinity with the player beforehand is scored highly.

• Scenario length: scenarios closer to the specified duration are
scored more highly.

• Evaluation grammar: the structure of preferred event
orderings; more events accounted for by higher-level rules are
scored higher.

• Learner model: to tailor the training scenario, we use a learner
model to reason about how the learner will respond to skill
events in the scenario. The learner model maps skill events (and
other features such as affinity) to a performance value. A
performance curve is computed for the scenario and compared
to a given, target curve (see Figure 6).

All of these functions take parameters provided by an author
specifying the thresholds used for assessment (e.g., target
difficulty curve, target scenario length, etc.) and relative
weighting of the features. A scenario’s fitness is determined by
the weighted linear sum of all evaluation functions.

Our combinatorial optimization search approach to scenario
generation is domain-independent in the sense that the evaluation
critiera can be swapped out for different criteria, although we
believe our current set is relatively general. A majority of domain
specific information is captured in the evaluation grammar, which
can be easily re-authored.

…
dilemma → pity OR single-save OR keep-cover
social → ct OR bl
pity → bsc OR asc
bsc → build-aff(c), get-shot(c), give-care(c)
single-save → build-aff(c1), lose-aff(c2), get-shot(c1),

get-shot(c2), give-care(c2), die(c1)
ct → give-care(c), get-thanked(c)
…

Figure 5. Fragment of the evaluation grammar.

…
 Presence-patrol (market)

Make-friends (private)
Bullied (sergeant)
Search-house (…)
…
Ambush (…)
Get-shot (private, severe-leg-wound)
Get-shot (sergeant, sucking-chest-wound)
Enemy-retreat (…)
Give-care (sergeant, chest-compression)
Get-thanked (sergeant)
Die (private)
Medical-evac (…)
…

Figure 4. Fragment of a tactical field care scenario.

The learner model evaluation function is the primary way in
which scenarios are tailored to an individual. The learner model
evaluation function identifies all the skill events in the scenario
and evokes a learner model to predict the learner’s performance
on the skill events. The prediction is compared to an author-
specified target curve indicating a desired trajectory of learner
performance over the scenario. Figure 6 depicts a monotonically
decreasing target performance that may convey the sense of
increasing difficulty. Other curves may be authored to create
different learner experiences.

Note that our learner model captures learner performance, not
scenario difficulty. Learner performance is directly observable and
can be evaluated according to pedagogical criteria, whereas
scenario difficulty is a subjective experience related to
performance but does not necessarily correspond to performance
levels or learning. Many factors outside of performance may
impact the feeling of difficulty, including task ambiguity, learner
fatigue, or a learner’s prior knowledge. To avoid these
complications we employ a performance measure defined by the
domain author that scores learner actions on skill events according
to pedagogical criteria. As an example, performance scores for
treating a leg-wound may be: high if a tourniquette is used within
a short time window, moderatate if a tourniquette is used after a
minor delay, and low if the tourniquette is not used. Acquisition
of this learner model data is beyond the scope of this paper.

4.3 Scenario Generation Process
Our scenario generation process employs a genetic algorithm.
Genetic algorithms are an optimization technique commonly used
in domains where quality of resulting products can be easily
assessed but methods for describing the process of generating
these products are poorly understood or time-consuming. Genetic
algorithms are defined by a method to evaluate candidate products
(here scenarios) along with a fixed set of operations to change
particular elements of the product. A genetic algorithm (GA)
proceeds by generating a pool of candidate solutions (called the
population). The GA iteratively alters and evaluates the members
of this population, typically keeping a subset of high-quality
solutions and discarding and replacing low-quality solutions. The
GA halts when it achieves a desired number of solutions of a
desired quality.

The process begins by reading in author-specified domain
knowledge that details the types of events possible and required in
the scenario, ordering constraints on those events, and
specifications for evaluation functions. An initial population of
potential scenarios is generated including all required events and a
random subset of optional events, with the required orderings on
these events enforced. The iterative process performs one of four
possible alterations to the scenarios over each step:

• Addition: Instantiates an event template and inserts it into

the scenario at a random location.

• Deletion: Removes a random event from the scenario.

• Mutation: Randomly alters a parameter of a randomly
chosen event in the scenario.

• Cross-over: Given a pair of scenarios in the population,
randomly swap the first n events in one scenario with the
first m events of the other scenario.

Evaluation of the scenario employs the fitness function described
in the previous section to assess the quality of each member of the
population. The top 10% of scenarios are retained unchanged, the
bottom 10% are discarded and replaced with newly generated
scenarios, with the remaining scenarios altered across iterations.
The alteration and evaluation cycle repeats until the maximum
fitness among the population makes no substantial gains for 100
iterations.

4.4 Post-Processing Stage
Although we argue that combinatorial optimization search is the
best algorithmic fit for scenario generation, planning has one key
advantage over combinatorial optimization search: planners can
easily guarantee the binary property of causal coherence. Causal
coherence is the extent to which any event is necessitated by prior
events [13]. Global binary constraints such as causal coherence
are difficult and expensive to achieve using combinatorial
optimization search as they introduce sharp discontinuities in the
space of scenario qualities. Consider ensuring consistent
movement between locations: the trainee’s avatar could be on a
presence patrol in part of a city and then suddenly be shot and
wounded in another part of the city with no explanation for how
he got there. Solving such inconsistencies adds little to the quality
of the solution relative to the increase in search time for
combinatorial optimization. At the end of the optimization stage,
we have a sequence of events with undetermined causal
coherence. To resolve coherence issues, our system uses partial-
order planner as a post-processing stage to ensure the proper
causal linkages exist between the events selected for the scenario.

The partial-order planner solves the problem of establishing the
preconditions of all events in the sequence. The preconditions of
all events in the scenario so far are posted as goals to the planner.
During the process, new events may be instantiated into the
scenario that link events to earlier events and resolve any causal
inconsistencies. Most events inserted during this post-processing
stage involve (a) location changes of the NPCs to establish
coherence of events and to create and position enemy forces, and
(b) ensuring entities possess the requisite resources to participate
certain events. Because there is no initial world state, certain
special events that create entities in the virtual environment—such
as create-enemy-force—do not have any preconditions. These
special actions, first proposed by Niehaus, Li, and Riedl [8], can
be ordered prior to the first event in the scenario to essentially
create the initial world state required by the optimal scenario.

5. SYSTEM EVALUATION
A scenario generator aims to provide a variety of tailored
scenarios that meet the training needs of an individual. We
propose the following metrics for success of a scenario generation
system: (1) the quality of solutions as a function of running time,
(2) the diversity of scenarios as a function of running time, and (3)
the performance of a trainee and appropriateness of difficulty
level when training on generated scenarios. In this section we
apply the first two evaluation criteria to our optimization-based
scenario generation system, and compare it to a hypothetical

Figure 6. Illustration of the learner model evaluation. Due to
individual differences, two individuals are shown to respond

to the skill events (black boxes) differently.

planning-based scenario generation system. We have not yet run
studies of human skill learning with and without the scenario
generation system.

Scenario quality measures the extent to which the scenario meets
the given success criteria. Pedagogical criteria include the extent
to which the scenario meets a given set of learning objectives (i.e.,
does it train the right things?) and have the desired difficulty
progression for an individual learner. Dramatic criteria include the
extent to which the scenario creates a plausible mission context
for the desired skills to be trained in. Our system applies an
evaluation function (see Section 4.2) to every potential solution.
Each iteration of the genetic algorithm produces a population of
potential solutions, allowing us to easily measure the quality of
the best individual in the population as well as the average quality
of the population. Figure 7 (blue and red lines) illustrates the
maximum and average fitness levels of our scenario generator
over the course of 500 iterations using 100 individuals. The figure
shows that the best result is achieved in a step-wise fashion; the
generator rapidly achieves a high-quality solution initially then
makes occasional, incremental improvements on this solution.
Because this evaluation of quality uses the evaluation function
employed in generation, an independent assessment of solution
quality should also be conducted.

Scenario diversity is a measurement of variations among the
content of scenarios. An effective scenario generator should
produce many scenario options from the same set of input
parameters. The scenarios generated for a given input
specification should have substantial differences from each other
in order to provide varied contexts in which a learner can practice
skills. As with quality, assessing a scenario generator should
explore the diversity among scenarios within a population as the
scenario is provided greater time and/or memory for results.

We operationalize scenario diversity using the Levenshtein edit
distance. The edit distance is commonly used to capture the

number of additions, deletions, or substitutions necessary to
transform one string of characters into another. We implement the
edit distance measure as the number of event changes in terms of
symbol (e.g., changing “get-shot” to “give-care”) and parameters
(e.g., changing “private” to “sergeant”) required to make two
scenarios identical. This captures basic differences between events
at the level of both the type of event and its content. Richer
metrics for scenario diversity may exist that incorporate semantic
or ontological knowledge of event parameter similarity, although
any unbiased diversity metric will suffice for comparison between
systems.

To evaluate our system’s ability to create diverse solutions, we
compute the edit distance between all scenarios in the population.
Both the average and maximum values across the population may
be extracted. Figure 8 (blue and red lines) illustrates these values
per iteration. These results indicate the generator gradually
increases the diversity among population results.

How does our approach compare to planning-based scenario
generation approaches? Unfortunately a direct comparison is
difficult or impossible because different systems require different
input parameters, solve slightly different problems (i.e., have
different definitions of scenario), and work for different domains.
Ignoring differences such as how knowledge is represented and
initial and goal states, we make the following general observations
about how our system would compare to a typical planning-based
system. Our suggested metrics—quality over time and diversity
over time—require a time variable. Therefore we make the
assumption that the hypothetical planning-based scenario
generator can be run some number of times, retaining the search
space from run to run so that it can generate n plans. We further
assume the planner finds a complete plan every m iterations. Thus
the playing field has been leveled in the sense that both the
genetic algorithm and planner have a number of iterations.

The orange line in Figure 8 shows the theoretical performance of
a planner that generates n plans from the same search space,
assuming a plan is found every m iterations. At first, there is only
one plan, so diversity cannot be measured. Note that the
anticipated behavior of the planner as described is a steady
increase in diversity. We expect any given complete plan found to
be “near” the most recent solution in the search space, resulting in
small steps in diversity but a steady march toward greater
diversity. This is opposed to the large initial diversity followed by
steady increase that we observe in our approach.

For complex, real-world scenario generation domains a planner
will require a greater amount of time to generate a diversity of
scenarios compared to a combinatorial optimization approach. In
large and ill-defined domains this may require substantial time
costs as the planner will more exhaustively search single local
regions before switching between them. Combinatorial,
nondeterministic and parallel approaches are able to explore
multiple potential solutions simultaneously, generating greater
initial diversity and more rapidly exploring multiple possible
tailored scenarios that meet given learning goals.

We expect the opposite behavior from a planner with regard to
quality. Assuming the planner’s heuristic effectively guides the
algorithm to the best solution first, a planner’s first plan should
have the highest quality. Subsequent plans are expected to be of
progressively lower quality as the planner is forced to continue
finding plans against the direction of the heuristic function. In
Figure 7, the orange line describes the theoretical ideal behavior
of the planner with respect to quality. Note that in practice, when

Figure 7: Population quality across iterations.

Figure 8: Population diversity across iterations.

planners are applied to ill-defined domains where heuristics are
typically not known to be admissible one may find potential
increases in quality as the space is more fully explored. The black
dotted line in Figure 7 shows this phenomenon, which contrasts
with our approach that starts out with a population of low quality
solutions and marches toward a population of higher quality
solutions as iterations increase.

In practice this means a planner would be expected to yield a
high-quality tailored scenario early, and produce several scenarios
of roughly equivalent quality that are very similar. A
combinatorial optimization process is more likely to provide
lower-quality solutions initially, but to converge onto multiple
different regions containing high-quality solutions. As such, we
expect the combinatorial approach to iteratively refine multiple
distinct scenarios that meet provided learning objectives, rather
than explore variations on the same high-quality scenario.

6. CONCLUSIONS
In this paper we argue for combinatorial optimization search as
the means for selecting and ordering events in a training scenario
being generated from scratch. This approach has the potential to
provide the greatest amount of diversity in solutions for a given
set of input parameters. Further, this approach allows for the
evaluation of the total course of events rather than building the
scenario one event at a time. It easily incorporates a learner
model, providing the opportunity to tailor the scenario, and
provides a flexible means of providing knowledge about scenario
structure, dilemma, and other training domain considerations.
Preliminary analysis shows that our approach is capable of
generating a rich diversity of scenarios over time, and also
optimizes scenario quality over time.

We envision this system extending to entertainment-based games
that incorporate skill-based challenges and aesthetic narrative
content, enabling games tailored to players while relieving
constraints on game authors in developing a set of possible game
narratives. This framework is particularly effective for games with
decomposable parts of narrative content, such as quest-based story
structures in role-playing games.

As one adopts virtual technologies for training and games, the
need for scenarios increases dramatically. In addition, tailoring of
the scenario and learning environment to the needs and abilities of
an individual learner can lead to more effective, on demand
training opportunities. This requires augmenting the traditional
human-based scenario development pipeline with a closed-loop
scenario generation systems that incorporates learner attributes
and theoretically leads to more effective training as learners have
greater opportunities to train on more relevant scenarios.

7. ACKNOWLEDGMENTS
The project or effort described here has been sponsored by the
U.S. Army Research, Development, and Engineering Command
(RDECOM). Statements and opinions expressed do not
necessarily reflect the position or the policy of the United States
Government, and no official endorsement should be inferred.

8. REFERENCES
[1] Craighead, J. 2008. Distributed, game-based, intelligent

tutoring systems—the next step in computer based training?
Proceedings of the International Symposium on
Collaborative Technologies and Systems.

[2] Hartsook, K., Zook, A., Das, S., & Riedl, M.O. 2011.

Toward Supporting Stories with Procedurally Generated
Game Worlds. Proceedings of the 2011 IEEE Conference on
Computational Intelligence in Games.

[3] Hedlund, J., Antonakis, J. & Sternberg, R. 2003. Tacit
Knowledge and Practical Intelligence: Understanding the
Lessons of Experience. ARI Research Note 2003-04.

[4] Hodhod, R., Cairns, P. and Kudenko, D. 2011. Innovative
Integrated Architecture for Educational Games: Challenges
and Merits. In Transactions on Edutainment V. Springer.

[5] Hullett, K. & Mateas, M. 2009. Scenario generation for
emergency rescue training games. Proceedings of the 4th
International Conference on the Foundations of Digital
Games.

[6] Magerko, B., Stensrud, B., and Holt, L. 2006. Bringing the
schoolhouse inside the box – A tool for engaging,
individualized training. Proceedings of the 25th Army
Science Conference.

[7] Mills, C. & Dalgarno, B. 2007. A conceptual model for
game-based intelligent tutoring system. Proceedings of the
2007 Australasian Society for Computers in Learning in
Tertiary Education.

[8] Niehaus, J., Li, B. and Riedl, M.O. 2011. Automated
scenario adaptation in support of intelligent tutoring
systems. Proceedings of the 24th Conference of the Florida
Artificial Intelligence Research Society.

[9] Porteous, J., Teutenberg, J., Pizzi, D., & Cavazza, M.
2011. Visual programming of plan dynamics using
constraints and landmarks. Proceedings of the 21st
International Conference on Automated Planning and
Scheduling.

[10] Riedl, M.O. Stern, A., Dini, D., & Alderman, J. 2008.
Dynamic experience management in virtual worlds for
entertainment, education, and training. International
Transactions on Systems Science and Applications, 3(1).

[11] Riedl, M.O and Young, R.M. 2010. Narrative Planning:
Balancing Plot and Character. Journal of Artificial
Intelligence Research, 39, 217-267.

[12] Rowe, J.P., Shores, L.R., Mott, B.W., & Lester, J.C. 2011.
Integrating Learning, Problem Solving, and Engagement in
Narrative-Centered Learning Environments. International
Journal of Artificial Intelligence in Education, in press.

[13] Trabasso, T. and van den Broek, P. 1985. Causal thinking
and the representation of narrative events. Journal of
Memory and Language, 24, 612-630.

[14] VanLehn, K. 2006. The behavior of tutoring systems.
International Journal of Artificial Intelligence in Education
16.

[15] Verdú, E., Regueras, L.M., Verdú, M. J., De Castro, J.P., &
Pérez, M.A. 2008. Is adaptive learning effective? A review
of the research. In L. Qing, S. Y. Chen, A. Xu, & M. Li
(Eds.) Proceedings of the 7th International Conference on
Applied Computer & Applied Computational Science.

[16] Vygotsky, L. 1978. Mind and Society: The Development of
Higher Psychological Processes. Harvard University Press.

[17] Weyhrauch, P. 1997. Guiding Interactive Drama. Ph.D.
Thesis, Carnegie Mellon University.

