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ABSTRACT 
Scenario-based training exemplifies the learning-by-doing 
approach to human performance improvement. In this paper, we 
enumerate the advantages of incorporating automated scenario 
generation technologies into the traditional scenario development 
pipeline. An automated scenario generator is a system that creates 
training scenarios from scratch, augmenting human authoring to 
rapidly develop new scenarios, providing a richer diversity of 
tailored training opportunities, and delivering training scenarios 
on demand. We introduce a combinatorial optimization approach 
to scenario generation to deliver the requisite diversity and quality 
of scenarios while tailoring the scenarios to a particular learner’s 
needs and abilities. We propose a set of evaluation metrics 
appropriate to scenario generation technologies and present 
preliminary evidence for the suitability of our approach compared 
to other scenario generation approaches. 

Categories and Subject Descriptors 
K.3.1 [Computers and Education]: Computer Uses in 
Education—Computer-assisted instruction (CAI). I.2.1 [Artificial 
Intelligence]: Applications and Expert Systems—Games. 

General Terms 
Algorithms, Design, Theory. 

Keywords 
Scenario Generation, Military Training, Optimization. 

1. INTRODUCTION 
Virtual simulations and other game-like virtual worlds are 
progressively being adopted for “serious” purposes, such as 
training and education. Computer-based training systems and 
games share many similarities: both involve a progression of skill-
based activities of increasing complexity and difficulty. These 
activities are often structured through a narrative, mission, quest, 
or scenario. In this paper we argue for a combinatorial 
optimization search approach to selecting and ordering events in a 
training scenario being generated from scratch for use in a virtual 
training environment. We motivate the need for increased 
automation of narrative and scenario generation, present 

desiderata for an automated scenario generation system, describe 
our particular optimization search approach, and provide an 
analysis of our approach relative to other possible approaches. 

Scenario-based training has individuals or small teams assume the 
role of an expert for the purposes of practicing skills and 
knowledge in realistic situations in a learning-by-doing approach 
to performance improvement. The term “scenario” can refer to 
many different things. In this paper we define a scenario to be a 
sequence of events that is expected to unfold over a period of 
time, which if executed will require a trainee to perform a given 
set of skills. We focus on scenario-based training in virtual 
environments from a military perspective; the typical use of a 
scenario in military training contexts is to create the appearance 
that the trainee is on a mission or is otherwise engaged in an 
operation in which the given skills will become pertinent within a 
larger, realistic context. Our approach, however, generalizes to 
games and other situations where individuals use a set of skills 
within an authored context—e.g. performing skill-base quests 
within a larger story arc. 

In the military, more training is always desirable, but force 
generation cycles—the time between deployments that can be 
devoted to training and improvement—are often short. While 
scenario-based training is the accepted norm and can be highly 
effective, it is also costly and inefficient, requiring significant 
resources: time, space, confederate role players to play 
oppositional or neutral entities, and scenario developers. 
Computer-based training, in which scenarios unfold in a virtual 
environment, can make training more cost-effective and more 
frequent, especially when using non-player characters (NPCs) to 
fill non-trainee roles such as opponent forces. However, scenarios 
must first be written. As long as scenarios are written by human 
subject matter experts, the fundamental bottleneck to training 
remains the number, diversity, and appropriateness of scenarios 
that can be played in computer-based learning environments.  

In this paper, we present an approach and preliminary results on a 
scenario generation system. A scenario generator is a 
computational system that solves the problem of producing a 
training scenario—a sequence of events expected to unfold in a 
training environment—given knowledge about learning 
objectives, learner attributes, and domain knowledge. Automated 
scenario generation has several advantages over human-crafted 
scenario development. (1) Automated scenario generation can 
augment existing human-based scenario development practices to 
make more training scenarios available, thereby increasing the 
frequency at which training can occur in virtual environments. (2) 
Automated scenario generation can tailor scenarios to individuals 
based on their needs and abilities, thereby increasing the 
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effectiveness of trainee experiences in the virtual environments.  
(3) Scenario generation can produce content on demand so that 
learners do not need to wait for human instructional designers to 
prepare additional training materials. 

We model scenario generation as an optimization process: find the 
sequence of events that maximizes a set of criteria including: the 
balance of training events of desired types, tailored difficulty, 
plausible mission context, and the use of affect-building and 
dramatic events. Specifically we use a genetic algorithm to 
generate ordered sequences of events (scenarios) from authored 
domain knowledge regarding scenario events, orderings among 
groups of events, and the impact of events and groups of events 
on the quality of a scenario. Unlike other comparable systems that 
use planning to find the sequence of actions that transitions an 
initial state to goal situation  [4; 8; 9; 10] our approach makes 
more effective use of the evaluation criteria to choose the right set 
of scenario events to respond to trainee individual differences, and 
can create a greater diversity of scenarios. Our system is 
demonstrated in the military training domain of tactical field 
care—the decisions about when and how to administer first aid in 
combat situations.  

We believe our approach readily generalizes to other 
entertainment-based games due to the flexible domain knowledge 
structures employed and the general way in which player's 
abilities are modeled. Training scenarios are intimately related to 
missions and quests within role-playing games, adventure games, 
first-person shooter games, and so on, where a narrative 
contextualizes the need to employ increasingly complex skills 
such as combat or puzzle solving. To the extent that computer 
games seek to personalize game play and narrative structure, we 
believe computer games may benefit from our system in similar 
ways. 

This paper provides the following contributions. First, we provide 
desiderata for automated scenario generation (Section 2). Second, 
we describe work on a system that solves the problem of 
automatically generating training scenarios through optimization 
(Section 4). Third, we present a set of evaluation criteria for 
scenario generation systems (Section 5) and analyze our work to 
date. 

2. DESIDERATA FOR SCENARIO-BASED 
TRAINING  
Scenario-based live-exercise training is the gold standard for 
military training, but can also be very expensive. In scenario-
based exercises trainees learn to apply knowledge, develop skills, 
and master concepts under conditions that are representative of 
the environment in which they will operate in the real world.  
Scenarios are designed to provide an experience that closely 
approximates what will occur in real world operations with the 
added benefit that the events in a scenario are also tied directly to 
training objectives. Sequences of scenarios are often designed 
with increasing complexity to gradually improve trainee 
performance.  For example, initial scenarios may focus on well-
defined tasks with few of the stressors that are present in the 
operational environment.  Later scenarios may include more 
complex or ill-defined tasks where decision-making can be 
exercised and stressors orthogonal to skills compete for attention.  

Computer-based training games and simulations complement live 
training by allowing low-cost use outside of formal training 
environments. While computer-based training enables more 
frequent training, it is limited by the number of unique training 

scenarios available for trainees to practice with. This limitation is 
compounded when training scenarios are tailored to the specific 
abilities of a learner. Figure 1 shows the basic scenario 
development pipeline in which a human scenario developer, using 
knowledge about learning objectives and the real world, crafts 
scenarios that can be used in virtual games and simulations. 
Ideally, the learner’s attributes should be changed (positively) due 
to the learner’s exposure to the virtual environment and scenario.  

Scenarios for computer-based learning environments can be 
consumed faster than they can be produced resulting in a scenario 
development bottleneck. Automated scenario generation is one 
way to overcome the scenario development bottleneck. A scenario 
generator integrates into the human authoring scenario 
development pipeline as shown in Figure 2. An automated 
scenario generator system uses computational representations of 
learning objectives, world knowledge, and learner attributes to 
construct tailored scenarios for a learner. The inclusion of learner 
attributes, in the form of a learner model, is what enables the 
augmented scenario development pipeline to tailor learning 
experiences. Note the cycle created between scenario generator, 
execution environment, and learner attributes: as the learner 
grows in abilities, the system can adjust its scenarios in lockstep. 
Learning objectives and world knowledge can be altered to meet 
changing learning needs or real-world conditions. 

We argue that a scalable scenario generation system should have 
the following capabilities: 

• Replayablility. Skill mastery is correlated with the ability to 
generalize across numerous realistic experiences, thus a greater 
number of scenarios exercising the same skills is desirable [3]. 
While computer-based training enables more frequent training, 
it is limited by the number of unique training scenarios 
available for trainees to practice with. There are rapidly 
diminishing returns when one trains on the same scenario 
multiple times—individuals memorize the scenario instead of 
learning the underlying concepts. To minimize diminishing 
returns of repeated scenarios, a scenario generation system 
must be capable of generating numerous distinct variations 
from a given set of input parameters. 

• Tailoring to individuals. Scenarios are typically developed to 
average trainee abilities, delivering sub-optimal experiences for 
above-average or below-average trainees. Applying the theory 
of Zone of Proximal Development [16] to any given scenario 
designed for the average learner, above-average individuals 

 
Figure 1. The basic scenario development pipeline. 

 
Figure 2. The augmented scenario development pipeline. 
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will experience boredom and below-average individuals will 
experience frustration. Tailoring scenarios to individuals or 
small groups can alleviate this skill mismatch and more 
effectively customize scenarios to the specific needs and 
abilities of individuals. To achieve this capability, a scenario 
generation system must incorporate learner differences into the 
system. 

• Adaptation to new conditions in the world. Scenarios have a 
“shelf life,” they become less effective as new tactics, 
techniques, and procedures are adopted to respond to an ever-
changing world. A scenario generation system must be capable 
of being re-configured to account for changes to missions that 
the scenarios are meant to emulate, new training objectives, and 
new challenges. This is enabled by easily configurable 
knowledge structures. 

We employ a genetic algorithm to meet these scenario generation 
criteria, enabling rapid creation of a diversity of scenarios that 
incorporate author and learner requirements into the generation 
results. Our flexible knowledge structures enable authors to easily 
configure new requirements for scenarios or new domain 
knowledge. 

3. RELATED WORK 
Computer-based technologies for training and education are used 
in all aspects of government, industry, and educational 
institutions.  Intelligent Tutoring Systems (ITSs) attempt to 
computationally replicate the effectiveness of one-on-one human 
tutoring, making educational remediation more personalized and 
adaptive to an individual trainee.  In STEM (science, technology, 
engineering, and mathematics) education, Intelligent Tutoring 
Systems (ITS) have been shown to effectively increase student 
proficiency by an average of one standard deviation [15]. Game-
based intelligent tutors are especially beneficial for the U.S. 
Military, where training must be highly interactive, immersive, 
engaging, adaptive, and challenging.  Examples of successful 
game-based tutoring systems in the Military include the Tactical 
Action Officers trainer [1] and the Tactical Iraqi game-based 
language and cultural skills learning environment [7]. In STEM 
education, Crystal Island [12] combines ITS and serious games to 
teach middle school biology by balancing remediation, problem-
solving, and narrative engagement. 

VanLehn [14] characterizes tutoring systems as employing outer 
and inner loops of interaction with a learner. The outer loop 
selects the next task for the learner to perform based on 
information about the learner, including traits, learning goals and 
needs. The inner loop closely monitors every action the learner 
takes while performing the given task and uses this information to 
update a model of the learner and provide directed feedback. 
Scenario-based training under the guidance of an intelligent 
system can be considered a form of tutoring. A scenario generator 
functions as outer-loop problem generation. Any performance-
based feedback operating during scenario execution could 
function as the inner-loop remediation. The outer loop process is 
the primary interest area of this paper. 

Hullett and Mateas [5] describe a system that generates training 
scenarios in a firefighting domain. In this system scenario 
generation is equivalent to generation of a partially collapsed 
building that trainees must navigate to rescue victims; the scenario 
is the environment as opposed to the events and activities that are 
expected to occur. Our system generates the sequence of events 
expected to occur as the trainee attempts to perform a role. This 
allows us to reason about the set of skills that must be performed 

and dramatic arc, and also to optimize the experience according to 
the learner’s needs. While we do not generate the world the 
scenario unfolds in, systems such as those demonstrated by 
Hartsook et al. [2] illustrate methods to incorporate world 
generation into story generation systems.  

A form of experience tailoring can be achieved through an 
interactive technology called drama management (or, experience 
management [10] in the case of serious games). Drama 
management uses computational techniques to guide a user 
toward a set of specified objectives by acting through virtual 
characters to change the virtual world’s state. The Automated 
Story Director [10] uses a planner to generate a branching story 
structure where all branches lead toward learning objectives. The 
Adaptive Educational Interactive Narrative System [4] reactively 
selects the next learning objective and plans forward to it. In both 
systems, scenario branches are generated in response to physical 
necessity and are not tailored to the individual. The learner will 
have repeated experiences if he or she makes similar decisions.  

The Interactive Storytelling Architecture for Training (ISAT) [6] 
also uses interactive narrative to facilitate combat medic training. 
ISAT reactively selects training scenes (particular events such as 
administering a tourniquet) based on a skill model of the learner. 
Once a training scene is selected, additional scenes may be 
sequenced to preserve coherence, although there is otherwise little 
notion of mission. Both ISAT and our system use a learner model 
to adapt to the learner’s needs. Our approach differs by 
constructing the full sequence of scenario events ahead of time in 
order to create more realistic scenarios involving training and 
non-training events.  

Niehaus, Li, and Riedl [8] propose a system that makes small 
changes to existing, hand-authored scenarios to more closely 
conform to learner needs. This approach theoretically achieves 
greater tailoring of training scenarios than hand-authoring alone. 
However, as a form of case-based planning, it requires a large 
case-base of hand-authored scenarios to begin with. Further, the 
system is dependent on having a given initial and goal world 
states, which may not be practical. Our system employs 
knowledge structures (see below) that are more easily configured 
than initial and goals states to meet the ever-changing nature of 
training domains and trainee knowledge. 

Scenario generation shares many similarities with story 
generation, particularly methods that use planning (cf., [9] and 
[11] for recent work in this area). Planners search for a sequence 
of operations that transform an initial world state into on in which 
a goal situation holds. The work by Porteous et al. [9] is especially 
relevant because it attempts to order several a priori given key 
elements based on a theory of dramatic arc, and then fills in the 
events between with a planner. Our system automatically 
determines which key learning events should be in the scenario 
based on a learner model and then arranges those key events along 
with interstitial events that may have a direct impact on the 
context under which the key learning events are experienced. 
Because our system is not based on planning, it has the advantage 
over planning-based approaches of being able to produce a variety 
of solutions from the same set of input parameters.  

Our approach deviates from the more standard, planning-based 
approach to scenario and story generation. A planner solves the 
problem of transforming a world from an initial state to one in 
which a goal situation holds. While many have argued that 
planning is a good model for story creation, we observe 
mismatches between planning algorithms and the objectives of 



tailored scenario generation described in Section 2. First, the 
primary purpose of a planner is to find a sequence of 
actions/events that transform the initial state into a goal state. As a 
formalization of solution correctness, all else is secondary. 
Beyond correctness, plan optimality is measured by plan length 
and/or plan operator cost. Such formalizations marginalize the 
importance of author and learner criteria when developing 
scenario plans. Second, although search control heuristics can 
make planning search more efficient, it is challenging to 
implement complicated planning heuristics for ill-defined 
domains. A heuristic injects knowledge about which parts of the 
search space to explore first, but a planner will still terminate if a 
sound solution is found and none of the heuristics are met. Thus 
tailoring knowledge or goals may not be met unless explicitly 
represented. Third, global evaluation criteria require complete 
event sequences, which are only present at the leaves of a 
planner’s search space, resulting in numerous, expensive 
sequences of backtracking behavior. Unfortunately, many of the 
evaluation criteria we propose are global in nature. In contrast, our 
combinatorial optimization approach sees a complete potential 
solution on every iteration. Finally, even if optimality assumptions 
are changed (as in [11]) or violated, a planner still requires an a 
priori known initial state and goal situation. Knowing the initial 
state and goal state requires the human user to know something 
about the nature of the mission to be generated. In scenario-based 
training, the mission is an excuse to practice a certain set of skills; 
it is thus hard to identify and enumerate relevant concrete initial 
and goal world states. Poorly chosen initial and goal states might 
inhibit scenario generation, as in the case where the goal state is a 
subset of the initial state.  

4. OPTIMIZATION-BASED SCENARIO 
GENERATION  
In this section we describe our scenario generation approach. The 
scenario generator is designed to operate in any domain in which 
the trainee must practice skills in the context of a larger mission. 
We demonstrate the system in the context of tactical field care, in 

which a trainee must make snap decisions under potentially 
ambiguous situations about whether and how to administer 
medical care to him/her-self or to others. To provide a realistic 
context under which decisions about which life-saving skills must 
be performed, our scenario generator produces a mission 
reminiscent of actual operations, and embeds tactical field care 
situations within. Using a learner model, the system can select 
events to practice skills at the appropriate level of challenge and 
can also vary the non-skill events to create dilemma situations 
where it may be more or less clear which decisions to make or 
skills to perform. Figure 3 shows a screenshot of the virtual 
environment for tactical field care that we developed to test and 
demonstrate out scenario generator. 

The goal of our scenario generation system is to find the best 
sequence of events that (a) creates the appearance of a realistic 
mission, (b) achieves a set of training objectives suitable for a 
given individual trainee, and (c) is tailored to the individual 
trainee’s abilities. In addition, it is desirable to be able to create a 
variety of scenarios so that training can be performed multiple 
times without repetition. Given this problem definition, we base 
our scenario generation system on combinatorial optimization 
search. Combinatorial optimization search attempts find one or 
more structures that maximize a given evaluation function. It is 
particularly suitable for problems where there are many soft 
requirements that describe ideal relationships between different 
aspects of the structure, but few binary requirements such as 
necessitated goal states. Combinatorial optimization also operates 
well in domains with a rich variety of potential substructures that 
constrain and interact with one another but may not be well 
known a priori.  
Our scenario generation system specifically employs a genetic 
algorithm to search for the best solution. A genetic algorithm 
starts with a population of randomly generated potential solutions 
and attempts to modify and/or combine aspects of different 
members of the population to improve the fitness of the 
population according to the given evaluation function. We detail 
our scenario generator’s knowledge representations and other 
knowledge sources, evaluation function, and algorithm in the 
subsequent sections.  

4.1 Scenario and Knowledge Representation  
The scenario generator is responsible for creating the set of events 
that comprise a training scenario. We model a scenario as a totally 
ordered (i.e. linear sequence) series of story events. An event is a 
primitive element that describes a small number of actions. 
Example events include various ways in which characters can 
engage in combat, treat injuries, engage in non-combat related 
mission activities (e.g., patrol), and socialize with other characters 
in the mission. A fragment of a tactical field care scenario is 
shown in Figure 4. Note the use of social events such as build-
affinity and bullied to set up a dilemma situation where the learner 
must choose who will receive medical care and then apply the 
appropriate procedure.  

There are several types of knowledge required to generate such a 
scenario: an event template library, required events, ordering 
constraints, and evaluation grammar. The event template library 
contains the set of all possible events that can occur in a scenario. 
Each event is defined by an event type and a set of parameters that 
determine the aspects of the event including: the characters 
participating in the event, impact of the event on the affinity of 
characters for one another, types of injury sustained by characters 
in the event, context of the training (while the player is under fire 
or after combat), and type of the event (socializing, engaging in 

 
Figure 3. The tactical field care virtual environment. The 

scenario triggered an ambush in order to wound one of the 
player’s virtual teammates (circled). 



combat, or mission-specific). It also describes parameterized 
preconditions and postconditions of each event type used only in 
the post-processing stage. During generation, the system may 
select and instantiate event templates into the scenario. This 
entails selecting a template and filling it with appropriate values 
given for each event slot. Events in which skills are practiced, 
called skill events, are annotated so that the learner model can 
determine how they will impact the particular trainee when 
instantiated into a scenario.  

Required events are events that must be in the scenario for it to 
achieve necessary learning objectives. For example, if we wish a 
learner to practice deciding when and how to treat a leg wound on 
a teammate after the team is safe from fire, then required events 
can be used to force an event of treat-leg-wound to be present in 
the scenario. Required events can be partially-instantiated, 
meaning that certain optional parameters, such as who needs the 
care can be discovered opportunistically later. Required events 
can enforce learning objectives as the example above, but can also 
place requirements on the nature of the mission the trainee will 
experience (e.g., presence-patrol) or the types of danger 
encountered (e.g., an improvised explosive attack). 

Ordering constraints may be specified in advance to provide hard 
rules that particular sub-sequences of events must occur in a 
particular order. For example, a scenario may be required to 
ensure that all events of applying the skill of administering a 
tourniquet to the leg are preceded by a teammate sustaining a leg 
wound injury: get-shot(c, t, i=leg-wound) < give-care(c, 
s=tourniquet) 

The evaluation grammar specifies a set of soft ordering 
constraints and hierarchical compositions of ordering constraints 
to make graded assessments of the structure of a scenario. 
Constraints in the evaluation grammar encode dramatic or 
pedagogical preferences for training scenarios used during 
scenario evaluation. The grammar informs the system of familiar 
subsequences that it might not otherwise recognize as favorable, 
such as common ways in which a presence patrol mission unfolds 
or common social patterns. A scenario in which most events are 
matched against the evaluation grammar is considered superior to 
scenarios in which fewer events are explained by the grammar. 
The genetic algorithm thus favors the use of more canonical 
sequences. However, since the grammar imposes soft constraints, 
the generator is able to violate the stereotypical situations in order 
to maximize other factors and increase the overall quality of the 
scenario. Figure 5 shows a fragment of evaluation grammar. Rules 
can be sequences or “OR” clauses. Italics denote abstract symbols 
while non-italics denote events expected to be instantiated in a 

scenario. Event parameters are tracked by the grammar when 
necessary to enforce consistent parameter usage (e.g., characters) 
across many events. The fragment of grammar in Figure 5 
specifies that a good pattern of events includes the player building 
affinity for a particular character (e.g., make-friends) and then 
having that character become wounded. Likewise, a common 
social convention has a character give thanks for medical 
attention.  

4.2 Evaluation Functions 
A scenario is evaluated using a set of functions that examine the 
global sequence of scenario events to determine its overall quality. 
Our system currently employs a set of encoded functions to assess 
developments of the dramatic arc and inclusion of training skills. 
The current set of functions includes:  

• Character use: to avoid character proliferation, scenarios that 
maintain a small cast of repeatedly used characters are scored 
more highly. 

• Event type use: scenarios that employ a variety of types of 
events are scored more highly. 

• Event type flow: grouping the types of events used over the 
course of the scenario (e.g., having clustered sequences of 
combat events or social events) is scored more highly [17]. 

• Affinity use: a running affinity level score calculated over the 
course of events compared to various combat situations 
characters are involved in; injuring characters that have built 
affinity with the player beforehand is scored highly. 

• Scenario length: scenarios closer to the specified duration are 
scored more highly. 

• Evaluation grammar: the structure of preferred event 
orderings; more events accounted for by higher-level rules are 
scored higher. 

• Learner model: to tailor the training scenario, we use a learner 
model to reason about how the learner will respond to skill 
events in the scenario. The learner model maps skill events (and 
other features such as affinity) to a performance value. A 
performance curve is computed for the scenario and compared 
to a given, target curve (see Figure 6). 

All of these functions take parameters provided by an author 
specifying the thresholds used for assessment (e.g., target 
difficulty curve, target scenario length, etc.) and relative 
weighting of the features. A scenario’s fitness is determined by 
the weighted linear sum of all evaluation functions.  

Our combinatorial optimization search approach to scenario 
generation is domain-independent in the sense that the evaluation 
critiera can be swapped out for different criteria, although we 
believe our current set is relatively general. A majority of domain 
specific information is captured in the evaluation grammar, which 
can be easily re-authored. 

… 
dilemma → pity OR single-save OR keep-cover 
social → ct OR bl  
pity → bsc OR asc 
bsc → build-aff(c), get-shot(c), give-care(c) 
single-save → build-aff(c1), lose-aff(c2), get-shot(c1),  

get-shot(c2), give-care(c2), die(c1) 
ct → give-care(c), get-thanked(c) 
… 

Figure 5. Fragment of the evaluation grammar. 

 

… 
 Presence-patrol (market) 

Make-friends (private) 
Bullied (sergeant) 
Search-house (…) 
… 
Ambush (…) 
Get-shot (private, severe-leg-wound) 
Get-shot (sergeant, sucking-chest-wound) 
Enemy-retreat (…) 
Give-care (sergeant, chest-compression) 
Get-thanked (sergeant) 
Die (private) 
Medical-evac (…) 
… 

Figure 4. Fragment of a tactical field care scenario. 

 



The learner model evaluation function is the primary way in 
which scenarios are tailored to an individual. The learner model 
evaluation function identifies all the skill events in the scenario 
and evokes a learner model to predict the learner’s performance 
on the skill events. The prediction is compared to an author-
specified target curve indicating a desired trajectory of learner 
performance over the scenario. Figure 6 depicts a monotonically 
decreasing target performance that may convey the sense of 
increasing difficulty. Other curves may be authored to create 
different learner experiences. 

Note that our learner model captures learner performance, not 
scenario difficulty. Learner performance is directly observable and 
can be evaluated according to pedagogical criteria, whereas 
scenario difficulty is a subjective experience related to 
performance but does not necessarily correspond to performance 
levels or learning. Many factors outside of performance may 
impact the feeling of difficulty, including task ambiguity, learner 
fatigue, or a learner’s prior knowledge. To avoid these 
complications we employ a performance measure defined by the 
domain author that scores learner actions on skill events according 
to pedagogical criteria. As an example, performance scores for 
treating a leg-wound may be: high if a tourniquette is used within 
a short time window, moderatate if a tourniquette is used after a 
minor delay, and low if the tourniquette is not used. Acquisition 
of this learner model data is beyond the scope of this paper. 

4.3 Scenario Generation Process 
Our scenario generation process employs a genetic algorithm. 
Genetic algorithms are an optimization technique commonly used 
in domains where quality of resulting products can be easily 
assessed but methods for describing the process of generating 
these products are poorly understood or time-consuming. Genetic 
algorithms are defined by a method to evaluate candidate products 
(here scenarios) along with a fixed set of operations to change 
particular elements of the product. A genetic algorithm (GA) 
proceeds by generating a pool of candidate solutions (called the 
population). The GA iteratively alters and evaluates the members 
of this population, typically keeping a subset of high-quality 
solutions and discarding and replacing low-quality solutions. The 
GA halts when it achieves a desired number of solutions of a 
desired quality. 

The process begins by reading in author-specified domain 
knowledge that details the types of events possible and required in 
the scenario, ordering constraints on those events, and 
specifications for evaluation functions. An initial population of 
potential scenarios is generated including all required events and a 
random subset of optional events, with the required orderings on 
these events enforced. The iterative process performs one of four 
possible alterations to the scenarios over each step:  

• Addition: Instantiates an event template and inserts it into 

the scenario at a random location.  

• Deletion: Removes a random event from the scenario. 

• Mutation: Randomly alters a parameter of a randomly 
chosen event in the scenario. 

• Cross-over: Given a pair of scenarios in the population, 
randomly swap the first n events in one scenario with the 
first m events of the other scenario.  

Evaluation of the scenario employs the fitness function described 
in the previous section to assess the quality of each member of the 
population. The top 10% of scenarios are retained unchanged, the 
bottom 10% are discarded and replaced with newly generated 
scenarios, with the remaining scenarios altered across iterations. 
The alteration and evaluation cycle repeats until the maximum 
fitness among the population makes no substantial gains for 100 
iterations.  

4.4 Post-Processing Stage 
Although we argue that combinatorial optimization search is the 
best algorithmic fit for scenario generation, planning has one key 
advantage over combinatorial optimization search: planners can 
easily guarantee the binary property of causal coherence. Causal 
coherence is the extent to which any event is necessitated by prior 
events [13]. Global binary constraints such as causal coherence 
are difficult and expensive to achieve using combinatorial 
optimization search as they introduce sharp discontinuities in the 
space of scenario qualities. Consider ensuring consistent 
movement between locations: the trainee’s avatar could be on a 
presence patrol in part of a city and then suddenly be shot and 
wounded in another part of the city with no explanation for how 
he got there. Solving such inconsistencies adds little to the quality 
of the solution relative to the increase in search time for 
combinatorial optimization. At the end of the optimization stage, 
we have a sequence of events with undetermined causal 
coherence. To resolve coherence issues, our system uses partial-
order planner as a post-processing stage to ensure the proper 
causal linkages exist between the events selected for the scenario. 

The partial-order planner solves the problem of establishing the 
preconditions of all events in the sequence. The preconditions of 
all events in the scenario so far are posted as goals to the planner. 
During the process, new events may be instantiated into the 
scenario that link events to earlier events and resolve any causal 
inconsistencies. Most events inserted during this post-processing 
stage involve (a) location changes of the NPCs to establish 
coherence of events and to create and position enemy forces, and 
(b) ensuring entities possess the requisite resources to participate 
certain events. Because there is no initial world state, certain 
special events that create entities in the virtual environment—such 
as create-enemy-force—do not have any preconditions. These 
special actions, first proposed by Niehaus, Li, and Riedl [8], can 
be ordered prior to the first event in the scenario to essentially 
create the initial world state required by the optimal scenario.  

5. SYSTEM EVALUATION 
A scenario generator aims to provide a variety of tailored 
scenarios that meet the training needs of an individual. We 
propose the following metrics for success of a scenario generation 
system: (1) the quality of solutions as a function of running time, 
(2) the diversity of scenarios as a function of running time, and (3) 
the performance of a trainee and appropriateness of difficulty 
level when training on generated scenarios. In this section we 
apply the first two evaluation criteria to our optimization-based 
scenario generation system, and compare it to a hypothetical 

 
Figure 6. Illustration of the learner model evaluation. Due to 
individual differences, two individuals are shown to respond 

to the skill events (black boxes) differently. 



planning-based scenario generation system. We have not yet run 
studies of human skill learning with and without the scenario 
generation system.  

Scenario quality measures the extent to which the scenario meets 
the given success criteria. Pedagogical criteria include the extent 
to which the scenario meets a given set of learning objectives (i.e., 
does it train the right things?) and have the desired difficulty 
progression for an individual learner. Dramatic criteria include the 
extent to which the scenario creates a plausible mission context 
for the desired skills to be trained in. Our system applies an 
evaluation function (see Section 4.2) to every potential solution. 
Each iteration of the genetic algorithm produces a population of 
potential solutions, allowing us to easily measure the quality of 
the best individual in the population as well as the average quality 
of the population. Figure 7 (blue and red lines) illustrates the 
maximum and average fitness levels of our scenario generator 
over the course of 500 iterations using 100 individuals. The figure 
shows that the best result is achieved in a step-wise fashion; the 
generator rapidly achieves a high-quality solution initially then 
makes occasional, incremental improvements on this solution. 
Because this evaluation of quality uses the evaluation function 
employed in generation, an independent assessment of solution 
quality should also be conducted. 

Scenario diversity is a measurement of variations among the 
content of scenarios. An effective scenario generator should 
produce many scenario options from the same set of input 
parameters. The scenarios generated for a given input 
specification should have substantial differences from each other 
in order to provide varied contexts in which a learner can practice 
skills. As with quality, assessing a scenario generator should 
explore the diversity among scenarios within a population as the 
scenario is provided greater time and/or memory for results. 

We operationalize scenario diversity using the Levenshtein edit 
distance. The edit distance is commonly used to capture the 

number of additions, deletions, or substitutions necessary to 
transform one string of characters into another. We implement the 
edit distance measure as the number of event changes in terms of 
symbol (e.g., changing “get-shot” to “give-care”) and parameters 
(e.g., changing “private” to “sergeant”) required to make two 
scenarios identical. This captures basic differences between events 
at the level of both the type of event and its content. Richer 
metrics for scenario diversity may exist that incorporate semantic 
or ontological knowledge of event parameter similarity, although 
any unbiased diversity metric will suffice for comparison between 
systems. 

To evaluate our system’s ability to create diverse solutions, we 
compute the edit distance between all scenarios in the population. 
Both the average and maximum values across the population may 
be extracted. Figure 8 (blue and red lines) illustrates these values 
per iteration. These results indicate the generator gradually 
increases the diversity among population results. 

How does our approach compare to planning-based scenario 
generation approaches? Unfortunately a direct comparison is 
difficult or impossible because different systems require different 
input parameters, solve slightly different problems (i.e., have 
different definitions of scenario), and work for different domains. 
Ignoring differences such as how knowledge is represented and 
initial and goal states, we make the following general observations 
about how our system would compare to a typical planning-based 
system. Our suggested metrics—quality over time and diversity 
over time—require a time variable. Therefore we make the 
assumption that the hypothetical planning-based scenario 
generator can be run some number of times, retaining the search 
space from run to run so that it can generate n plans. We further 
assume the planner finds a complete plan every m iterations. Thus 
the playing field has been leveled in the sense that both the 
genetic algorithm and planner have a number of iterations.  

The orange line in Figure 8 shows the theoretical performance of 
a planner that generates n plans from the same search space, 
assuming a plan is found every m iterations. At first, there is only 
one plan, so diversity cannot be measured. Note that the 
anticipated behavior of the planner as described is a steady 
increase in diversity. We expect any given complete plan found to 
be “near” the most recent solution in the search space, resulting in 
small steps in diversity but a steady march toward greater 
diversity. This is opposed to the large initial diversity followed by 
steady increase that we observe in our approach.  

For complex, real-world scenario generation domains a planner 
will require a greater amount of time to generate a diversity of 
scenarios compared to a combinatorial optimization approach. In 
large and ill-defined domains this may require substantial time 
costs as the planner will more exhaustively search single local 
regions before switching between them. Combinatorial, 
nondeterministic and parallel approaches are able to explore 
multiple potential solutions simultaneously, generating greater 
initial diversity and more rapidly exploring multiple possible 
tailored scenarios that meet given learning goals. 

We expect the opposite behavior from a planner with regard to 
quality. Assuming the planner’s heuristic effectively guides the 
algorithm to the best solution first, a planner’s first plan should 
have the highest quality. Subsequent plans are expected to be of 
progressively lower quality as the planner is forced to continue 
finding plans against the direction of the heuristic function. In 
Figure 7, the orange line describes the theoretical ideal behavior 
of the planner with respect to quality. Note that in practice, when 

 
Figure 7: Population quality across iterations. 

 
Figure 8: Population diversity across iterations. 

 



planners are applied to ill-defined domains where heuristics are 
typically not known to be admissible one may find potential 
increases in quality as the space is more fully explored. The black 
dotted line in Figure 7 shows this phenomenon, which contrasts 
with our approach that starts out with a population of low quality 
solutions and marches toward a population of higher quality 
solutions as iterations increase.  

In practice this means a planner would be expected to yield a 
high-quality tailored scenario early, and produce several scenarios 
of roughly equivalent quality that are very similar. A 
combinatorial optimization process is more likely to provide 
lower-quality solutions initially, but to converge onto multiple 
different regions containing high-quality solutions. As such, we 
expect the combinatorial approach to iteratively refine multiple 
distinct scenarios that meet provided learning objectives, rather 
than explore variations on the same high-quality scenario. 

6. CONCLUSIONS 
In this paper we argue for combinatorial optimization search as 
the means for selecting and ordering events in a training scenario 
being generated from scratch. This approach has the potential to 
provide the greatest amount of diversity in solutions for a given 
set of input parameters. Further, this approach allows for the 
evaluation of the total course of events rather than building the 
scenario one event at a time. It easily incorporates a learner 
model, providing the opportunity to tailor the scenario, and 
provides a flexible means of providing knowledge about scenario 
structure, dilemma, and other training domain considerations. 
Preliminary analysis shows that our approach is capable of 
generating a rich diversity of scenarios over time, and also 
optimizes scenario quality over time. 

We envision this system extending to entertainment-based games 
that incorporate skill-based challenges and aesthetic narrative 
content, enabling games tailored to players while relieving 
constraints on game authors in developing a set of possible game 
narratives. This framework is particularly effective for games with 
decomposable parts of narrative content, such as quest-based story 
structures in role-playing games. 

As one adopts virtual technologies for training and games, the 
need for scenarios increases dramatically. In addition, tailoring of 
the scenario and learning environment to the needs and abilities of 
an individual learner can lead to more effective, on demand 
training opportunities. This requires augmenting the traditional 
human-based scenario development pipeline with a closed-loop 
scenario generation systems that incorporates learner attributes 
and theoretically leads to more effective training as learners have 
greater opportunities to train on more relevant scenarios.  
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