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Abstract 
Computational systems can use sociocultural knowledge to 
understand human behavior and interact with humans in 
more natural ways. However, such systems are limited by 
their reliance on hand-authored sociocultural knowledge and 
models. We introduce an approach to automatically learn 
robust, script-like sociocultural knowledge from crowd-
sourced narratives. Crowdsourcing, the use of anonymous 
human workers, provides an opportunity for rapidly acquir-
ing a corpus of examples of situations that are highly 
specialized for our purpose yet sufficiently varied, from 
which we can learn a versatile script. We describe a semi-
automated process by which we query human workers to 
write natural language narrative examples of a given 
situation and learn the set of events that can occur and the 
typical even ordering.  

Introduction   
One of the major limitations to computational systems is 
their lack of sociocultural knowledge. Instilling compu-
tational systems will enable them to comprehend human 
behaviors and interact with humans in more natural ways. 
Unfortunately, social and cultural models are notoriously 
hard to model by hand. For example, a simple model of 
restaurant behaviour uses 87 rules (Mueller 2007). A 
simulation game about attending a prom (McCoy et al. 
2010) required 5,000 rules to capture the social dynamics 
associated with that situation. We propose that virtual 
autonomous agents acquire sociocultural knowledge 
automatically. Today, virtual agents reside in a rich 
information ecosphere that contains a wealth of 
information, including the World Wide Web and human 
beings via means of crowdsourcing.  
 Crowdsourcing is the outsourcing of complicated 
tasks—typically tasks that cannot be performed by 
artificial intelligence algorithms—to a large number of 
anonymous workers via Web services (Howe 2006, Quinn 
& Bederson 2011). Crowds can be used to collect 
knowledge about how the world works. In this paper, we 
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demonstrate a technique by which a computational system 
can deputize a crowd to provide sociocultural knowledge 
in a format that is easy to computationally consume. We 
propose a set of requirements that a solution to 
crowdsourcing sociocultural knowledge must meet: 
1. Cost-effective. The time and cost of knowledge 

acquisition should be minimized by automating the 
construction of knowledge structures. 

2. Natural crowd interactions. We should allow inputs in 
natural language. Processing natural language can be 
simplified by instructing workers to use restricted 
vocabulary and simplified language structures. 

3. Capture situation variations. There may be variations 
and alternatives to common sociocultural situations.  

4. Robust. Workers may skip steps, use ambiguous 
language, or describe events outside the scope of the 
situation. The system should reason about uncertainty 
and remain robust under noisy inputs. 

5. Proactive. Knowledge learned from a crowd may not 
be complete. The system should identify opportunities 
for active learning or disambiguation and use 
additional rounds of crowdsoucing to improve results. 

 We automatically learn narrative scripts for a given 
sociocultural situation, such as going to a restaurant or 
going on a date to a movie theatre. Scripts (Schank and 
Abelson 1977) are procedural knowledge structures that 
encode the events that can occur during a situation and the 
expected ordering of events. While scripts could be 
constructed completely through human computation, we 
prefer to automate as much of the script acquisition from 
example narratives because (a) providing linear narratives 
is intuitively simpler than manipulating complex knowl-
edge structures, and (b) narratives are natural means of 
conveying the social and cultural knowledge we wish to 
acquire. Our algorithms are designed to take into account 
the variability in worker narratives, attempting to 
distinguish between unreliable narrative accounts from 
natural variations in the situation. By leveraging the 
crowd and its collective understanding of social 
constructs, we can learn a potentially unlimited range of 
scripts regarding how humans generally believe real-
world situations unfold. 



Related Work 
Recent work on commonsense reasoning has sought to 
acquire propositional knowledge from a variety of sources. 
LifeNet (Singh & Williams 2003) is a commonsense 
knowledge base about everyday experiences constructed 
from 600,000 propositions asserted by the general public. 
However, this technique tends to yield spotty coverage 
(Singh and Williams 2003). Gordon et al. (2011) describe 
an approach to mining causal relations from millions of 
blog stories. While commonsense reasoning is related to 
automated story understanding, these systems do not 
attempt to create script-like knowledge representations.  

There has been interest in learning script-like knowledge 
from large-scale corpora such as news corpora and other 
online sources of textual information (Bean and Riloff 
2004; Brody 2007; Chambers and Jurafsky 2009; Girju 
2003; Kasch and Oates 2010). Unlike other natural 
language processing techniques that learn correlations 
between sentences, these systems attempt to find 
relationships between many events. In particular, the 
technique by Chambers and Jurafsky (2009) attempts to 
identify related event sentences and learn partially ordered 
before relations between events.  

While corpus-based script learning can be very 
powerful, it also suffers from two limitations. First, the 
topic of the script to be learned must be represented in the 
corpus. Thus, one would not expect to learn the script for 
how to go on a date to a movie theatre from a news article 
corpus. Second, given a topic, a system must determine 
which events are relevant to the script. Given a corpus with 
a sufficient number of examples of the topic, a system can 
eventually determine relevance of any event with 
confidence. Ideally, one has a highly specialized corpus for 
each situation one wishes to learn a script for, but such 
specialized corpora rarely exist.  

Jung et al. (2010) extract procedural knowledge from 
eHow.com and wikiHow.com where humans enter how-to 
instructions for a wide range of topics. Although these 
resources are sufficient for humans, for computational 
systems, the coverage of topics is sparse (very common 
situations are missing). Further, instructions use complex 
language, conflate steps and recommendations, and often 
involve complex conditionals. 
 In the Restaurant Game, Orkin and Roy (2009) use 
traces of people in a virtual restaurant to learn a 
probabilistic model of restaurant activity. Because The 
Restaurant Game is an existing virtual game, Orkin and 
Roy have an a priori known set of actions that can occur in 
restaurants (e.g., sit down, order, etc.). Boujarwah et al. 
(2011) and Boujarwah, Abowd, and Arriaga (2012) 
propose an approach in which workers use natural 
language to describe event sequences for a given situation 
such as going to a restaurant.  Building off the restaurant 

game, they learn a probabilistic model of event transitions 
starting from natural language instead of known event 
types. While promising, their approach is slow and costly 
due to multiple rounds of crowdsourcing and does not 
produce a generalized model. Our work further builds off 
their work by represent knowledge in a more generalized 
fashion—as scripts—and attempting to automate as much 
of the script learning process as possible. 

Crowdsourcing Narrative Examples 
To learn a script for a particular, given situation we use the 
following three-step process. First, we query crowd 
workers to provide linear, natural language narratives of 
the given situation. Second, we identify the events—the 
primitive activities that comprise the script. We identify 
sentences in the crowdsourced narratives that describe the 
same thing and enumerate these common steps as the 
events. Third, we construct the script. These steps are 
described in subsequent sections of this paper. 

For our purposes, a script, regardless of situation, is a set 
of before relations, B(e1, e2), between events e1 and e2 
signifying that e1 occurs before e2. These relations capture 
causal information, which are important for narrative 
comprehension (Graesser, Singer, and Trabasso 1994) and 
facilitate many story understanding tasks. A set of before 
relations allows for partial orderings, which can allow for 
variations in legal event sequences for the situation. 

Our approach starts with a query to a Crowdsourcing 
Web service such as Amazon Mechanical Turk, requesting 
people to write short narratives about a particular situation. 
After some amount of time, a small, highly specialized 
corpus of examples of how the task can be carried out is 
acquired. To facilitate the learning of events and the 
probabilistic before relations, our system includes precise 
instructions to the anonymous workers that make the 
script-learning task easier. First, we ask that workers to use 
proper names for all the characters in the task. This allows 
us to avoid pronoun resolution problems. We provide a 
cast of characters for common roles, e.g., for the task of 
going to a fast-food restaurant, we provide named 
characters in the role of the restaurant patron, the cashier, 
etc. Currently, these roles must be hand-specified, although 
we envision future work where the roles are extracted from 
online sources of general knowledge such as Wikipedia. 

Story A Story B 

a. John drives to the restaurant. 
b. John stands in line. 
c. John orders food. 
d. John waits for his food. 
e. John sits down. 
f. John eats the food. 
… 

a. Mary looks at the menu. 
b. Mary decides what to order. 
c. Mary orders a burger. 
d. Mary finds a seat. 
e. Mary eats her burger. 
… 

Figure 1. Fragments of crowdsourced narratives. 



Second, we ask workers to segment the narrative into 
events such that each sentence contains a single activity. 
We refer to each segmented activity as a step. Third, we 
ask workers to use simple natural language such as using 
one verb per sentence. Figure 1 shows two narratives about 
the same situation.  

Event Learning 
Event learning is a process of determining the primitive 
units of action to be included in the script. Unlike Orkin 
and Roy (2009) where the set of possible actions are 
known in advance, we must learn the events from natural 
language descriptions. We must overcome several chal-
lenges. First, there may be different ways to perform a task 
and therefore narratives may have different steps, or the 
same steps but in different order. Second, different workers 
may have used different words to describe the same steps. 
Third, crowdsourced narratives may omit steps. By 
working from natural language descriptions of situations, 
we learn the salient concepts used by a society to represent 
and reason about common situations. 

Our approach is to automatically cluster steps from the 
narratives based on similarity between sentences such that 
clusters come to represent the consensus events that should 
be part of the script. There are many possible ways to 
perform clustering; below we present the technique that 
leverages the simplified language use encouraged by our 
crowdsourcing technique. The semantic similarity between 
steps from different narratives is computed with the main 
verb, the main actor, and the verb patient if any. Based on 
this similarity, steps are clustered in order to identify the 
core set of events. 

Semantic Similarity Computation  
Based on the results of the Stanford parser (Klein and 
Manning 2003), we identify the actor, verb, and the most 
salient non-actor noun using a rule-based approach. For 
each verb or non-actor noun, we perform word-sense 
disambiguation to identify the best WordNet synset 
(Pedersen and Kolhatkar 2009). After that, we use the 
WordNet Gloss Vector technique (Patwardhan and 
Pedersen 2006) to compute the cosine similarity metric for 
any two weighted term vectors for the desired synsets, 
which is the semantic similarity [0…1] between two verbs 
or two nouns.  

Event Clustering 
We model event learning as an unsupervised clustering of 
steps, making use of the semantic information pre-
computed above. The resultant clusters are the events that 
can occur in the given situation.  

Event clustering is performed in two stages. In the first 

stage, we make initial cluster assignments of steps from 
different narratives using shallow information. For each 
pair of steps from the same narrative, we record a no-link 
constraint, prohibiting these two steps from being placed 
into the same cluster. For each pair of steps from different 
narratives that have identical verbs and nouns, we record a 
must-link constraint, requiring that these two steps be 
placed within the same cluster. From this information, we 
produce an initial assignment of steps to clusters that 
respects all constraints.  

In the second stage, we iteratively improve the cluster 
quality through the application of the k-Medoids clustering 
algorithm. While k-Means cluster is the more common 
unsupervised clustering algorithm, we find our combined 
set of similarity measures does not readily allow for a 
mean value to be computed for a set of narrative steps. 
Clustering is performed based on similarity between steps, 
computed as the weighted sum of the following elements: 
• Semantic similarity of verbs 
• Semantic similarity of nouns. 
• The difference in event location—we compute a 

step’s location as the percentage of the way through 
a narrative. 

Event location helps disambiguate semantically similar 
steps that happen at different times, especially when a 
situation is highly linear with little variation. Note that we 
automatically set the similarity score to 1.0 if there is a 
must-link constraint between steps and 0.0 if there is a no-
link constraint between steps.  

K-Medoid clustering requires k, the number of clusters, 
to be known. We use a simple technique to sample 
different values, starting with the average narrative length, 
searching for a solution that minimizes intra-cluster 
variance while maximizing the extra-cluster distance. 

Experiments and Results  
To evaluate our event learning algorithm, we collected two 
sets of narratives for the following situations: going to a 
fast food restaurant, and taking a date to a movie theatre. 
While restaurant activity is a fairly standard situation for 
story understanding, the movie date situation is meant to be 
a more accurate test of the range of socio-cultural 
constructs that our system can learn. Our experience 
suggests that on Mechanical Turk, each story can be 
acquired at the cost of $0.40 to $1.00. Table 1 shows the 
attributes of each specialized corpus. 

For each situation, we manually created a gold standard 
set of clusters against which to calculate precision and 

Table 1. Crowdsourced data sets. 
Situation Num. 

stories 
Mean num. 

steps 
Unique 
verbs 

Unique 
nouns 

Fast food restaurant 30 7.6 55 44 
Movie theatre date 38 10.7 71 84 

 



recall. Table 2 presents the results of event learning on our 
two crowdsourced corpora, using the MUC6 cluster 
scoring metric (Vilain et al. 1995) to match actual cluster 
results against the gold standard. These values were 
obtained using parameter optimization to select the optimal 
weights for the clustering similarity function. The ideal 
weights for a given situation, naturally, depend on 
language usage and the degree to which variability in event 
ordering can occur. Table 2 shows how each portion of our 
algorithm helps to increase accuracy. Initial cluster seeding 
makes use of shallow constraint information. The semantic 
similarity columns show how phrase expansion improves 
our clusters. Event location further increases cluster 
accuracy by incorporating information contained in the 
implicit ordering of events from the example narratives. 
For each set of results, we show the average precision, 
recall, and F1 score for the best weightings for verb, noun, 
and event location similarity components. 

Noting the differences between data sets, the movie date 
corpus has a significantly greater number of unique verbs 
and nouns, longer narratives, and greater usage of 
colloquial language. Interestingly, the movie date corpus 
contains a number of non-prototypical events about social 
interactions (e.g., John attempts to kiss Sally) that appear 
rarely. The greater number of clusters containing few steps 
has a negative effect on recall values; a larger number of 
narratives would ameliorate this effect by providing more 
examples of rare steps. By crowdsourcing a highly 
specialized corpus, we are able to maintain precision in the 
face of a more complicated situation without restricting 
worker ability to express their conception of the salient 
points of the situation.  

While we believe that our event learning process 
achieves acceptably high accuracy rates, errors in event 
clustering may impact overall script learning performance 
(the effects of clustering errors on script learning will be 
discussed in a later section). To improve event-clustering 
accuracy, we can adopt a technique to improve cluster 
quality using a second round of crowdsourcing, similar to 
that proposed by Boujarwah, Abowd, and Arriaga (2012). 
Workers can be tasked with inspecting the members of a 
cluster and marking those that do not belong. If there is 
sufficient agreement about a particular step, it is removed 
from the cluster. A second round of crowdsourcing is used 
to task workers to identify which cluster these “un-
clustered” steps should be placed into. Crowdsourcing is 
often used to improve on artificial intelligence results (von 
Ahn 2005) and we can increase clustering accuracy to near 

perfect in this way. However, in the long term our goal is 
minimize the use of the crowd so as to speed up script 
acquisition and reduce costs. 

Plot Graph Learning 
Once we have the events, the next stage is to learn the 
script structure. Following Chambers and Jurafsky (2009) 
we learn before relations B(e1, e2) between all pairs of 
events e1 and e2. Chambers and Jurafsky train their model 
on the Timebank corpus (Pustejovsky et al. 2003), which 
uses temporal signal words. Because we are able to 
leverage a highly specialized corpus of narrative examples 
of the desired situation, we can probabilistically determine 
ordering relations between events directly from the crowd-
sourced narrative examples. The result of this process is a 
script-like structure called a plot graph (Weyhrauch 1997), 
a partial ordering of events that defines a space of possible 
event sequences that can unfold during a given situation.  

Initial Script Construction 
Script construction is the process of identifying the plot 
graph that most compactly and accurately explains the set 
of crowdsourced narrative examples. Each possible before 
relation between a pair of events is a hypothesis (i.e.  
B(e1, e2) = true or B(e2, e1) = true) that must be verified. 
For every pair of events e1 and e2 we count the observation 
of evidence for and against each hypothesis. Let s1 be a 
step in the cluster representing event e1, and let s2 be a step 
in the cluster event representing event e2. If s1 and s2 
appear in the same input narrative, and s1 appears before s2, 
then we consider this as an observation in support of  
B(e1, e2) = true. If s2 appears before s1 in the same 
narrative, this observation supports B(e2, e1) = true.  

The probability of a particular hypothesis h is ph = k/n 
where n is the number of observations and k is the 
observations that support h. We also measure the 
confidence of each hypothesis (cf. Wang 2009); a small 
number of observations for a hypothesis will result in low 
confidence. We cannot assume prior distributions of 
orderings between arbitrary events, so we use the 
imprecise Dirichlet model (Walley 1996) to represent the 
uncertainty of opposing relations as the interval between 
the most pessimistic and the most optimistic estimates. The 
upper and lower estimates of the probability are ��� �
�� � �� �� � �� and ��� � � �� � ��, respectively, where the 
parameter s can be considered as a number of observations 
whose outcomes are hidden. Our confidence in a 

Table 2. Precision, Recall, and F1 Scores for the restaurant and movie data sets. 

Situation Gold std. 
num. events 

Initial seed clusters Semantic similarity Semantics + Location 
Pre. Recall F1 Pre. Recall F1 Pre. Recall F1 

Fast food restaurant 21 0.780 0.700 0.738 0.806 0.725 0.763 0.814 0.739 0.775 
Movie theatre date 56 0.580 0.475 0.522 0.725 0.580 0.645 0.763 0.611 0.679 

 



probability is �� � � � ��� � ��� � � � ���� � ��.  
We select relations for the plot graph in which the prob-

ability and confidence exceed thresholds Tp, Tc � [0,1], 
respectively. Tp and Tc apply to the entire graph and 
provide an initial estimate of the best plot graph. However, 
a graph which better explains the crowdsourced narratives 
may be found if the thresholds could be locally relaxed for 
particular relations. Below, we introduce a measure of plot 
graph error and an algorithm for iteratively improving the 
plot graph to minimize the error. 

Plot Graph Improvement  
Since a plot graph encodes event ordering, we introduce an 
error measure based on the expected number of interstitial 
events between any pair of events. The error is the 
difference between two distance measures, DG(e1, e2) and 
DN(e1, e2). DN(e1, e2) is the normative distance from e1 to e2 
averaged over the entire set of narratives, computed as  the 
average of the distance between two steps s1 and s2 in a 
narrative that belong to e1 and e2, respectively. DG(e1, e2) is 
the distance of e1 and e2 on the graph, which is also the 
minimum number of events that must occur between e1 and 
e2 in all totally ordered sequences consistent with the 
before relations of the plot graph. The mean squared graph 
error (MSGE) for the entire graph is: 

���� � �
� �� ��� �� � �� ��� ��

�

�������
�

where P is the set of all ordered event pairs (e1, e2) such 
that e2 is reachable from e1 or that they are unordered. 

We utilize this error measure to improve the graph based 
on the belief that DN represents the normative distance we 
expect between events in any narrative accepted by the plot 
graph. That is, typical event sequences in the space of 
narratives described by the plot graph will have  
DG(e1, e2) � DN(e1, e2) for all events. A particularly large 
|DN(e1, e2) – DG(e1, e2)| may indicate that some edges with 
low probability or confidence could be included in the 
graph to make it closer to user inputs and reduce the 
overall error.  

We implement a greedy, iterative improvement search 
for a plot graph that reduces mean square graph error 
(Figure 2). For each pair of events (e1, e2) such that e2 is 
reachable from e1 in the plot graph of directed edges, we 
search for all events E such that if ei � E were an 
immediate predecessor of e2 then DG(e1, e2) would be equal 
to DN(e1, e2). If there is a possible edge from ei to e2 (i.e., at 
least one observation that supports such an edge) then we 
strengthen the edge hypothesis by one observation. This 
intuition is illustrated in Figure 3 where the edge (dashed 
arrow) from event C to event B was originally 
insufficiently supported; adding the edge to the graph 
creates the desired separation between events A and B. This 
process repeats until no new changes to graph structure can 

be made that reduce the mean square graph error.  
We find this approach to be effective at reducing graph 

error when Tp relatively high (> 0.5) and Tc � 0.4. A 
conservative Tp initially discard many edges in favor of a 
more compact graph with many unordered events. A 
moderate Tc allows the improvement algorithm to 
opportunistically restore edges to the graph, making the 
graph more linear.  

Results and Discussion 
Figure 4 shows the plot graph learned for the fast food 
restaurant situation. This plot graph was learned from the 
gold standard clusters under the assumption that we can 
achieve near perfect clustering accuracy with a second 
round of crowdsourcing. The event labels are English 
interpretations of each event based on manual inspection of 
the sentences in each event. Some edges are omitted from 
the figure that do not affect the partial ordering. The 
asterisks in Figure 4 indicate edges that were added during 
graph improvement. 

The performance of the graph improvement algorithm is 
summarized in Table 3, which were averaged across 128 
different paremeter configurations. Note that it is not 
always possible to reduce graph errors to zero when there 
are plausible ordering varations between events. For 
example choose menu item and wait in line can happen in 
any order, introducing a systematic bias for any graph path 
across this pair. In general we tend to see ordered relations 
when we expect causal necessity, and we see unordered 
events when ordering variations are supported by the data.  

There are several ways in which errors during event 
learning (i.e., clustering) can impact plot graph generation. 
First, steps may be improperly clustered, thus introducing 

Q �� all of events (e1, e2) where e2 is reachable from e1 or unordered 
Foreach (e1, e2) � Q in order of decreasing DN(e1, e2) – DG(e1, e2) do: 
E ���all events such that for each ei � E, DG(e1, ei) = DN(e1, e2) – 1 
Foreach ei � E do: 

  If edge ei�e2 has probability and confidence less than Tp, Tc    
and will not create a cycle if added to the graph do: 

Strengthen the edge by adding one observation in support of it 
If ei�e2 now has probability and confidence greater than Tp, Tc  

and adding ei�e2 to the graph decreases MSGE do: 
 Add ei�e2 to the graph  

Return graph 

Figure 2. The plot graph improvement algorithm. 

 
Figure 3. Compensation for errors between pairs of events. 
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observations of ordering relations between otherwise 
unrelated events, possibly causing cycles in the plot graph. 
If the number of improperly clustered sentences is 
relatively small these relations have low probability and 
confidence and will be filtered out. Second, two distinct 
events may be merged into one event, causing ordering 
cycles in which all edges have high probability and 
confidence. When this happens, it is theoretically possible 
to eliminate the cycle by splitting the event cluster in the 
cycle with the highest inter-cluster variance. We have not 
yet implemented this procedure, however. Third, an event 
may be split into two clusters unordered relative to each 
other. This creates the appearance that an event must occur 
twice in a situation accepted by the script.  

Closely inspecting Figure 4, we note that before 
relations do not always imply strict causal necessity. For 
example, before placing an order at a fast-food restaurant 
one can wait in line or drive to drive-thru but not both. 
Either event is sufficient for placing an order. They both 
appeared in the graph because there are two main 
variations to the situation, walk-in and drive-through (this 

also accounts for the unordered leave restaurant and drive 
home events). On the other hand, reading the menu and 
waiting in line are both necessary for placing an ordering. 
To make coherent decisions when multiple paths through 
the graph exist, it is necessary to differentiate between 
causal necessity, causal sufficiency, and simple temporal 
precedence in future work. As crowd workers habitually 
omit events that are considered too obvious, we found it 
difficult to apply traditional probabilistic definitions of 
causality on the crowdsourced narratives. A promising 
direction is to ask crowd workers to provide causal 
information by answering questions about causal 
counterfactuals. Counterfactuals have been a valuable 
means of determining causal necessity and sufficiency and 
we propose to adapt the techniques of Trabasso and Sperry 
(1985). We expect to be able to minimize the number of 
questions asked to crowd workers by exploiting the 
temporal structures we already learned. 

Conclusions 
Human computation and crowdsourcing provides direct 
access to humans and the ways they express experiential 
knowledge. Guided by our five requirements for acquiring 
sociocultural knowledge, we demonstrated that we could 
obtain reasonable scripts of common sociocultural 
situations. Cost-effectiveness is due to automated aggre-
gation of worker effort. Natural interactions are achieved 
by allowing humans to express their knowledge intuitively 
as narrative. Our technique is tolerant of situational 
variations and can accommodate omitted events that are 
natural consequences of human elicitation of commonsense 
knowledge. Proactivity is left for future work, although we 
have identified how human computation can be 
advantageous. The potential contributions of our prelim-
inary work are (a) the use of stories as a means for 
knowledge transfer from human to computer via a 
specialized corpus, (b) the use of explicit instructions to 
crowd workers to control for natural language use, and (c) 
a procedure for compiling script-like knowledge structures 
from story examples. We believe that this is a first step 
toward rapidly and automatically acquiring functional 
sociocultural knowledge through the use of anonymous 
human storytellers. Our approach has the potential to 
significantly alleviate the knowledge-authoring bottleneck 
that has limited many practical intelligent systems. 
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Figure 4. A plot graph generated for the restaurant situation. 

Table 3. Error reduction for both situations. 

Situation 
Error before 
Improvement 

Error after 
Improvement Avg. Error  

Reduction Avg. Min. Avg. Min. 
Fast food  4.05 1.23 2.31 0.85 42% 

Movie date 6.32 2.64 2.99 1.88 47% 



References 
Bean, D. and Riloff, E. 2004. Unsupervised Learning of 
Contextual Role Knowledge for Coreference Resolution. Proc. of 
2004 HLT/NAACL Conference. 
Boujarwah, F., Abowd, G., and Arriaga, R. 2012. Socially 
Computed Scripts to Support Social Problem Solving Skills. 
Proc. of the 2012 Conf on Human Factors in Computing Systems. 
Boujarwah, F., Kim, J.G., Abowd, G., and Arriaga,R. (2011). 
Developing Scripts to Teach Social Skills: Can the Crowd Assist 
the Author? In Proceedings of the AAAI 2011 Workshop on 
Human Computation. 
Brody, S. 2007. Clustering Clauses for High-level Relation 
Detection: An Information-theoretic Approach. Proc. 43rd Annual 
Meeting of the Association for Computational Linguistics.  
Chambers, N., and Jurafsky, D. 2009. Unsupervised Learning of 
Narrative Event Chains. Proceedings of ACL/HLT 2009. 
Girju, R. 2003. Automatic Detection of Causal Relations for 
Question Answering. Proceedings of the ACL 2003 Workshop on 
Multilingual Summarization and Question Answering—Machine 
Learning and Beyond. 
Gordon, A.S., Bejan, C.A., and Sagae, K. 2011. Commonsense 
causal reasoning using millions of personal stories. Proc. of the 
25th Conference on Artificial Intelligence. 
Graesser, A., Singer, M., and Trabasso, T. 1994. Constructing 
Inferences During Narrative Text Comprehension. Psychological 
Review, 101: 371-395. 
Howe, J. 2006. The Rise of Crowdsourcing. Wired Magazine, 
14.06, June 2006. 
Jung, Y., Ryu, J., Kim, K.-M., Myaeng, S.-H. (2010). Automatic 
Construction of a Large-Scale Situation Ontology by Mining 
How-to Instructions from the Web. Web Semantics: Science, 
Services and Agents on the World Wide Web, 8(2-3), pp. 110-124. 
Kasch, N., and Oates, T. 2010. Mining Script-like Structures from 
the Web. Proc. of the NAACL/HLT 2010 Workshop on 
Formailism and Methodology for Learning by Reading. 
Klein, Dan and Manning, Christopher D. 2003. Accurate 
Unlexicalized Parsing. Proceedings of the 41st Meeting of the 
Association for Computational Linguistics. 
McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M., 
Wardrip-Fruin, N. (2010). Comme il Faut 2: a fully realized 
model for socially-oriented gameplay. In Proceedings of the 3rd 
Workshop on Intelligent Narrative Technologies. 
Mueller, E.T. (2007). Modelling space and time in narratives 
about restaurants. Literary and Linguistic Computing, 22(1), pp. 
67-84. 
Orkin J. and Roy, D. (2009). Automatic Learning and Generation 
of Social Behavior from Collective Human Gameplay. Proc. of 
the 8th International Conference on Autonomous Agents and 
Multiagent Systems. 
Patwardhan, S. and Pedersen, T. 2006. Using WordNet-based 
Context Vectors to Estimate the Semantic Relatedness of 
Concepts. Proc. of the EACL Workshop on Making Sense of 
Sense. 
Pedersen, T. and Kolhatkar, V. 2009. WordNet::SenseRelate:: 
AllWords - A Broad Coverage Word Sense Tagger that 
Maximimizes Semantic Relatedness. Proc. of the ACL 2009 
Conference. 

Pustejovsky, J., Hanks, P. Saurí, R., See, A., Gaizauskas, R., 
Setzer, A. Radev, D. Sundheim, B., Day, D. Ferro, L. and Lazo, 
M. 2003. The TIMEBANK Corpus. Proc. of Corpus Linguistics.  
Quinn, A.J., Bederson, B.B. (2011). Human Computation: A 
Survey and Taxonomy of a Growing Field. In Proceedings of The 
ACM SIGCHI Conference on Human Factors in Computing 
Systems. 
Schank, R. and Abelson, R. 1977. Scripts, Plans, Goals, and 
Understanding: An Inquiry into Human Knowledge Structures. 
Lawrence Erlbaum Associates 
Singh, P., and Williams, W. 2003. LifeNet: A Propositional 
Model of Ordinary Human Activity. Proc. of the 2nd International 
Conference on Knowledge Capture. 
Trabasso, T. and Sperry, L. 1985. Causal relatedness and 
importance of story events. Journal of Memory and Language, 
24:595-611. 
Vilain, M., Burger, J., Aberdeen, J., Connolly, D., Hirschman, L. 
1995. A Model-Theoretic Coreference Scoring Scheme. In 
Proceeding of the 6th Conference on Message Understanding 
(MUC6). 
von Ahn, L. (2005). Human Computation. Ph.D. Dissertation, 
Carnegie Mellon University. 
Walley, P. 1996. Inferences from multinomial data: learning 
about a bag of marbles. Journal of the Royal Statistical Society, 
Series B (Methodological), 58 (1):3-57. 
Wang, P. 2009. Formalization of Evidence: A Comparative 
Study. Journal of Artificial General Intelligence 1:25-53. 
Weyhrauch, P. 1997. Guiding Interactive Fiction. Ph.D 
Dissertation, Carnegie Mellon University. 
 

 


