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Abstract. Alternate Reality Games (ARGs) are interactive narrative
experiences that engage the player by layering a fictional world over the
real world. Mobile ARGs use geo-location aware devices to track players
as they visit real-world locations to progress the story. ARG stories are
often geo-specific, requiring players to visit specific locations in the world
and, as a result, ARGs are played infrequently and only by those who live
within proximity of the locations that the stories reference. We present a
solution to the geo-specificity problem called location translation, which
transforms ARG stories from one geographical location to another, mak-
ing them playable anywhere. We show that location translation addresses
fundamental scalability challenges that arise from geo-specificity.

1 Alternate Reality Games

Alternate Reality Games (ARGs) have recently emerged as a new genre of games.
ARGs are interactive narrative experiences that engage the player by layering a
fictional world over the real world; as players act in the real world their actions
influences the state of the fictional world. With the advent of geo-location aware
mobile devices, ARGs make use of the actual, physical world as the environment
for which the game plays out [B]. Typically, a game master runs the game and
monitors players from remote in order to make adjustments to the narrative arc
or trigger branching points as necessary. Many ARGs utilize confederate actors
planted throughout the physical world to interact with players.

The ARG genre is limited in two significant ways. First, supporting an ARG
is effort-intensive on the part of human game masters and confederates. Second,
ARG stories can be geo-specific—they reference real world geographical locations
and landmarks requiring visits to these places to advance the narrative. Conse-
quently, a particular ARG story is fixed to a specific region of the real world; a
story set in New York City cannot be played in London without substantial re-
authoring. Taken together, the scalability limitations result in a situation where
ARGs are played infrequently and can only be played by those who live within
proximity of the region in which the game story is set.

How can one reduce the need for human confederate actors and game mas-
ter? The use of virtual agents, exemplified by the tour guides described by Lim
and Aylett [3], can replace confederate actors. However, such systems do not
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overcome geo-specificity limitations; agents can only perform in the vicinity of
fixed landmarks. Efforts are under way to automate game mastering as well. The
Spyfeet mobile ARG [0] uses a rule-base implemented in Inform7™ to control
game progression. The Spyfeet story does not reference specific geographical lo-
cations and instead requires certain activities such as finding an NPC that has
been mapped to an arbitrary geo-location. Likewise, the Backseat Playground
[1] is a mobile ARG system that triggers story elements based on features of the
local environment as one rides in the back seat of a car. Backseat Playground
story content also does not make specific reference to location or landmark.

Location geo-specificity grounds the play experience by linking story content
to physical space, but at the cost of limiting who can play. In this paper, we
present an approach to overcoming the geo-specificity limitation through the
use of location translation, an intelligent process in which the locations specifi-
cally referenced by a mobile ARG story are transformed to a new area so that
any game instance can be played anywhere. Our location translation process is
couched in the WEQUEST ARG platform [4] that automates the game master
and confederate actor roles. WEQUEST allows ARG stories to reference specific
geographical landmarks and uses location translation to make the game playable
to people in other areas, thus directly resolving geo-specificity limitations.

2 Location Translation

In WEQUEST [4], ARG stories are represented by a dependency graph, a di-
rected, acyclic graph (DAG) where the nodes correspond to story events and
arcs impose constraints on story event visitation order. Inspired by classic Role-
Playing Games (RPGs), story events involve engaging in dialogue with virtual
Non-Player Characters (NPCs) and using or acquiring virtual inventory items.
Story event nodes reference specific GPS coordinates that a player is required
to be within a certain radius of for the interaction to occur. Arcs between nodes
represent dependencies that must be fulfilled for a particular event to fire. A de-
pendency graph is a basic technique for managing lock-and-key style game play;
for an event to occur, it must be “unlocked” by completing all other events it de-
pends upon. Unlike finite state machines, dependency graphs can easily support
branching stories, partial ordering of events, and parallel multiplayer events.
Location translation maps locations in the old game story to analogous lo-
cations in a new city where the user intends to play. To formalize the problem,
consider an original story set in one area as a number of locations L derived
from a dependency graph. For each location L; in the original story, there can
be n; analogous candidate locations in the vicinity of the target area, denoted
M; ; for j = 1..n;. The goal of the translation process is to select one location
M; ; for each L; such that: (a) the analogical similarity between any locations in
the original and translated graphs is maximized, irrespective of geography, and
(b) the difference in distances between adjacent locations in stories is minimized
when geography is considered. These requirements are often in conflict as the
most analogically similar locations may not be conveniently located relative to
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Fig.1. An ARG story translated from one part of a city to another. Blue lines are
dependency arcs. Red lines show analogical matches between locations.

any neighboring locations. Figure [T] shows an example of an ARG story and its
translation to a different part of the same city (disallowing self-matching).

2.1 Translation Search Algorithm

Our location translation process searches for the optimal candidate M;; for
each location L;, given a dependency graph. Viewing game instance transla-
tion as an optimization problem, we solve the location translation problem with
dynamic programming, an optimization algorithm specifically designed to ex-
ploit the optimal substructure property through an inductive process that runs
in O(npmax * |L|). The solutions to subproblems are cached to avoid repetitious
computation. Our dynamic programming implementation determines the suit-
ability of any given candidate M; ; for original location L; by computing the cost
of M; ; given the optimal solutions for locations prior to M; ; in the dependency
graph. Because dependency graphs can branch arbitrarily, we extend dynamic
programming to account for multiple branching subproblems. See Figure

A cost function evaluates a candidate location M; ; based on similarity of
M; ; to the original location L; plus the difference in distances between the
candidate and its dependency graph predecessors as compared to the original
dependency graph when locations are positioned geographically. Specifically,
cost(Mi ;) = 3 gepep(ns ;) (|length(edged,j) - length(edgeorig)I) + - where
Dep(M,; ;) returns the nodes that candidate M; ; are dependent on according to
the dependency graph, edgeq ; is a edge in the new graph between the current
candidate location and the candidate selected as the solution to a subproblem,
edgeorig is the corresponding edge in the original dependency graph, and sim is
the probability ([0..1]) that two locations in two different cities are similar. Thus,
as similarity decreases, cost increases exponentially. The constant k is a tunable
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Input: A list of locations L, origin and target cities cityi, citys, and a set of similarity
matricies.
Output: A list of locations S determined to be analogous to those in L.
let S« C «— M « (;
for i = 1 to number of locations |L|, consistent with the dependency graph do
let M; <« candidates(L;, city:1, citys, type(L;));
for j = 1 to number of candidates |M;| do
let cost «— 0;
for | = 1 to number of parents of M; ; in dependeny graph do
cost «— cost + length difference of edge between M; ; and S;;
cost < cost + (k/similarity(L;, M; j, city:, citya, type(L;)));
if cost < C; then
Si — M 55
C; «— cost;

Fig. 2. Modified dynamic programming for location translation.

factor that penalizes dissimilarity relative to edge difference. The dynamic pro-
gramming algorithm selects candidates in the target city that minimize cost.

2.2 Location Similarity

How do we compute the analogical similarity between locations in different cities?
Our approach to finding analogies uses statistical correlations based on informa-
tion about locations retrieved websites such as Citysearch™ and Yelp™ that
allow their users to write reviews of restaurants, shops, and other landmarks.
We make the assumption that the words people use to describe their experi-
ences at these locations captures latent (e.g., hidden) salient features (cf., [2])
of the place and that natural language processing algorithms can analyze and
compare word usage to derive similarity between places. When this assumption
holds, term-frequency vector similarity techniques can be used to compute the
distance between texts—in our case, texts containing user reviews of locations.
Our approach to identifying similar locations based on reviews is most similar to
the phrase-similarity computation technique of Sahami and Heilman [7], which
compares term-frequencies vectors between documents retrieved from Google™".
Our technique, however, uses web-retrieved reviews as a document corpus instead
of the entire Web Wide Web, and compares locations instead of phrases.

Location translation begins with a pre-processing phase in which a similarity
matriz is built that captures the probability that locations in disparate cities
are analogous. We further specialize the similarity matrices by type of location
(e.g., restaurant, park, salon, etc.). That is, each similarity matrix represents a
combination of C'ity x C'ity x T'ype. For each location of each type in each city, we
download all reviews from Citysearch™ through their API. Reviews are merged
into a single document representing the location. We remove stop-words, words
that are not nouns, (according to Wordnet), and common proper nouns (such as
the names of credit card companies). Removing non-noun words from reviews
avoids relating two places based on similar sentiment. While sentiment analysis is
useful for product recommendation, we require an objective account; noun-only
similarity is thus a simple form of feature-only comparison under the assumption
that nouns identify salient features of a place.
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Fig. 3. Similarity matrix construction for a pair of cities and a type of location.

Review documents are converted into term frequency vectors where each di-
mension in the vector is a term and the value for each term is computed by
Term-Frequency Inverse-Document Frequency (TFIDF), a common measure of
term importance based on term uniqueness across documents. The Cosine simi-
larity measure is used to determine similarity of document vectors by measuring
the angle between each pair of vectors. Applied to all pairs of locations from two
cities, the result is a similarity matrix with columns representing places in one
city, rows representing places in the other city, and cells containing the probabil-
ity that the two places are the same. See Figure 3| Repeating this process for all
pairs of cities and all types of locations produces |City x City x Type| matrices.

Reliable location translation requires reasonably accurate capture of semantic
similarities between locations. To evaluate the quality of the similarity computa-
tions, we randomly sampled 10 source restaurants from our dataset of locations.
For each source restaurant, we randomly sampled 10 target restaurants against
which to evaluate similarity. We asked 5 participants familiar with the city to
sort each list of targets based on their judgement of similarity to the source.
From participant data, we computed a gold standard ranking as follows. Treat-
ing each participant’s trial as a competition amongst target restaurants to be
the most similar to the source restaurant, we use the ELO tournament rating
method to determine a total order of target restaurants for each source restau-
rant. The ELO rating for a target restaurant is the aggregate number of other
restaurants ordered below it by participants. We then used similarity matrix
lookups to generate an ordered list of targets for each source (geography was
ignored). Thus, humans and WEQUEST performed the same ranking tasks.

To compare the WEQUEST similarity matrix ranking against the gold stan-
dard, we used the Kendall’s Tau rank correlation coefficient to assess the as-
sociation between ranked lists. We calculated an average 7 of 0.533 (where 1.0
indicates perfect agreement) across the 10 source restaurant comparisons, which
is significant at p = 0.0318 indicating that that the gold standard and generated
rankings tend to be highly associated. We note that, anecdotally, human par-
ticipant ranking becomes increasingly arbitrary when actual similarity between
locations is low, making the gold standard ELO values for low-similarity restau-
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rants unreliable. Thus, looking at the tops of the rankings, WEQUEST’s top pick
concurred with the gold standard’s top-pick 60% of the time, was in the top two
80% of the time, and was in the top three 100% of the time. Thus, accuracy
is highest when human-rated similarity is also high, which is significant con-
sidering that the optimization search must balance maximizing similarity with
minimizing distances; it doesn’t always pick the most similar location.

3 Conclusions

There is a lot of semantic knowledge to be harnessed from human-generated
natural language that can be brought to bear for the purposes of automating
creative tasks. Location translation is a form of analogical reasoning where we
promote game play by computing probabilistic similarities between locations in
different cities based on the words that people use to describe those places on
the World Wide Web. In WEQUEST we have applied location translation to au-
tomatically re-author ARG stories, making them playable anywhere, regardless
of geo-specific references to locations. This allows WEQUEST to overcome a sig-
nificant limitation to the adoption of ARGs as a mainstream form of interactive
entertainment: content geo-specificity. The ability to translate ARG stories from
one area to another, combined with end-user story authoring [4], has the poten-
tial to scale up the amount of content available to players, making ARGs more
accessible to mainstream audiences who desire real-world gaming experiences.
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