
Toward Automated Exploration of Interactive Systems
M ark O. Riedl

Department of Computer Science
North Carolina State University

EGRC-CSC Box 7534
Raleigh, NC 27695-7534
moriedl@unity.ncsu.edu

Robert St. Amant
Department of Computer Science
North Carolina State University

EGRC-CSC Box 7534
Raleigh, NC 27695-7534

stamant@cs.ncsu.edu

ABSTRACT
The ease with which a user interface can be navigated
strongly contributes to its usability. In this paper we
describe preliminary results of a project aimed at making
the evaluation of user interfaces from this perspective more
routine. We have designed a system to carry out an
autonomous, exploratory navigation through the graphical
user interface of interactive, off-the-shelf software
applications. The system is not a robust tool, but rather a
proof of concept that can exhibit interesting behaviors.
The traversal process generates a representation of the
connectivity of the user interface, as well as navigational
paths to specific commands. The reasoning component of
the system is based on the ACT-R architecture, while the
perceptual and motor components of the system are built
on top of the SegMan perception/action substrate. We
present the design of the system and its use in exploring a
simple user interface.

Keywords
Cognitive models, interface agents, interface evaluation.

INTRODUCTION
User interfaces are generally designed to be learnable [5],
in the sense that a curious user can learn at least some of a
system's functionality through experimentation, by trying
out its operations to see the results. This process teaches
the user about the capabilities of the system and the way it
decomposes the domain into separate areas of
functionality. Ideally, all of a system's functionality should
be accessible in this fashion (though in practice, especially
in complex problem domains, this goal may be
unattainable.) In operational terms, learnability is closely
tied to the navigational properties of an interface.

Exploration is demanded by the design of menu-based
systems, in which operations are organized hierarchically
and information is made available incrementally, through
the selection of these operations. As a very simple

example, to open a document in Microsoft Notepad a user
must enter the name of the document into the Open
dialog. A user experienced with Notepad will know that
the File menu contains a menu option called "Open" and
that selecting this option will activate the Open dialog. A
less knowledgeable user may still be able to infer this
information from knowledge about other applications, and
even a complete novice may learn it by trial and error. It
is a reasonable assumption that all users must resort to
exploratory navigation at some point in their use of an
unfamiliar application. The prevalence of this activity
makes it worthwhile to understand the navigational
properties of an interface in human information processing
terms.

A good deal of research has been devoted to analyzing the
navigation properties of interfaces, especially for hypertext
systems, from the perspectives of design and evaluation
(e.g., browsing strategies [4, 6]). Our particular interest is
in the design of automated systems to assist in evaluation.
While the navigational process as outlined above can
easily be grasped by even novice users, it poses a more
difficult and interesting problem for an automated system;
questions arise in several areas.

• System issues, e.g., can the low-level actions necessary
for interface navigation be carried out by an automated
process?

• Task analysis issues, e.g., which navigation paths are
most important? Are all navigation paths relevant?

• Cognitive issues, e.g., what knowledge (procedural and
declarative) is necessary for navigation to take place?
How does navigation augment or modify existing
knowledge?

We have developed a system, based on the ACT-R
cognitive architecture, that autonomously carries out a
limited form of exploratory navigation, in an unmodified
interactive system. Production systems such as those based
on ACT-R [1] and Soar [9] are well-adapted to the task of
exploration. A production system as implemented in an
ACT-R model encodes facts the agent knows about the
world, or declarative knowledge, and production rules that
transform declarative knowledge into behavior. The
agent's behavior alters the state of the world, new
declarative knowledge is generated, and new productions
are used to generate behavior. Cognitive models like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’02, January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001…$5.00.

ACT-R also have the ability to learn. The assumptions
that a human agent might make when exploring a novel
application interface can be encoded into declarative
knowledge in a model. The actions that a human agent
might make when manipulating the interface are encoded
into production rules. A well-designed cognitive model
should be able to start with a minimal amount of
declarative knowledge about the user interface and a
simple set of productions and, through exploring an
application's interface, develop a declarative representation
of the interface and how it operates.

The work described in this paper is part of a more
comprehensive project in automated interface evaluation.
Cognitive modeling architectures (e.g., ACT-R, Soar, and
EPIC [8]) are now mature enough to produce reliable
predictions about user performance, prior to evaluation
with real users. The application of these models to specific
problems, however, requires significant expertise in
modeling, task analysis, and interface design. Our long-
term goal is to build what we call Cognitive Model
Interface Evaluation (CMIE) tools, systems that support
the display of the user interface, experimental control over
the cognitive model and its simulation runs, feedback on
model execution, model execution diagnostics, and simple
display facilities for model traces [11]. The system and the
embedded cognitive model that we describe below
constitute a step in the direction of a practical CMIE tool.

THE COGNITIVE MODEL
The ACT-R architecture is well-suited to the exploration
of a user interface, in part because it explicitly divides
knowledge into declarative and procedural elements. The
declarative elements are chunks of factual knowledge
stored in working memory. The procedural elements are
production rules that operate on declarative chunks to
generate behavior and to generate new chunks of
knowledge. ACT-R models have been applied to many
cognitive problems, such as counting and arithmetic, in
which productions generate new declarations until a chunk
that stores the answer to the problem is generated.

ACT-R also contains perceptual and motor modules that
allow models to handle tasks of searching and attending to
a computer display, under some implementation
restrictions. The motor module simulates hand and finger
movements for manipulation of a keyboard and a mouse,
while the perceptual module searches and attends to
features on the display. Production rules describe how the
perceptual module should focus attention on perceptual
elements in the computer display, and how the motor
module should execute appropriate responses to the
display. ACT-R models have been applied to simple
problems, such as scanning menus for target elements, as
well as to more complex problems, such as simulations of
driving behavior.

The cognitive model we have designed explores a
graphical user interface in real-time. It builds directly on
well-understood models of low-level cognitive tasks. The
model scans the display for meaningful visual features, the
way a model might scan a menu list of words for a target
word. Simple cognitive transformations are made to
interpret how particular visual features might be used;
widgets are identified and catalogued. The model chooses
a widget and moves the mouse to click on that visual
feature. We flesh out this brief description in the sections
below.

A metaphor for exploring the user interface
An application's interface in the Windows graphical
display commonly consists of a main window and some
number of pull-down menus. Pull-down menus
themselves look like windows, small bounded regions
rendered to appear raised above the application's display.
Menus can be thought of as separate from the main
window, revealing functionality that was previously
hidden. In our cognitive model, the graphical user
interface is treated as a set of distinct screens that are
causally connected but graphically separate. In this way
the graphical user interface for a specific application
becomes like a set of rooms, a common user interface
metaphor. Each room has individual characteristics, such
as the items it contains, that distinguish it from other
rooms. Doorways provide a mechanism for transition
between rooms. In the graphical user interface each
window, dialog, or menu constitutes a screen that
corresponds to a room. The features unique to each screen
are familiar widgets: strings of text, buttons, etc. Some
widgets are special in that their use causes a transition to a
new screen. This is true of pull-down menus, for example;
clicking on the string of a pull-down menu causes the
appearance of a new screen containing a list of menu
options. Some menu options cause transitions to new
screens by causing dialog windows to appear.

Though the rooms metaphor is useful, it is not exact down
to the lowest level of detail. In particular, transitions are
not necessarily reflexive. For example, to transition to the
Open dialog screen, we must transition to the file-menu
screen by clicking on the "File" string and then transition
to the Open dialog screen by clicking the "Open" string.
Clicking on the "Open" string causes the menu screen to
disappear and the Open dialog to appear. Closing the
Open dialog does not cause a transition back to the file
menu screen, but back to the main application screen, from
which we started.

Building the cognitive model around the screens-as-rooms
metaphor provides a useful representation of the
application's interface when exploration is terminated.
The representation of the application's interface in the
agent's memory is of screens and the widgets that cause
transition. Figure 1 shows a partial dump of the ACT-R

memory after exploration. Main-screen is the main
application window, Newscreen782 is the file menu, and
Newscreen1586 is the open file dialog. The widgets that
enable transition between the screens are Newmenu660,
the "File" string that causes the file menu to pull down,
Newstring842, the "Open" string in the file menu that
causes the appearance of the Open dialog, and
Newcloser907 is the "Cancel" button in the Open dialog.
The full representation would include a catalog of all
transitional widgets as well as non-transitional widgets
found on each screen. Figure 2 is a graphical
representation of the declarative knowledge presented in
Figure 1. The dialog on the top left is an application we
will use for examples throughout this paper. The
hierarchical order of the screens is explicitly captured, as
are the transitional mechanisms. The pathways through
the application's interface can easily be reconstructed from
the model's internal representation.

Widget identification
The screens-as-rooms metaphor abstracts away some of the
complexity of building a model that can identify and focus
attention on windows and menus. However, the task of
identifying widgets, especially those that will cause
transition from one screen to the next, remains. We
assume that the screen is segmented into visual features

pre-attentively before the cognitive model ever considers
the meaning of these visual features. Thus the cognitive
model is presented with visual objects that consist of
entities such as words, rectangles, icons, and so forth. The
process of segmenting the graphical user interface is
handled by an independent system (SegMan, as described
below) tied into the ACT-R perceptual module. The ACT-
R model needs only to direct attention to these visual
objects and apply productions to the visual objects in order
to catalog them. For simplicity's sake, the model
categorizes all visual objects as widget or non-widget.
Visual objects categorized as widgets are further
categorized as transitional or non-transitional.

The identification of transitional widgets is essential to
task of exploration. This identification is simplified by
conventions of the Windows interface. Widgets that cause
the appearance of dialog windows are often labeled with
strings ending with ellipses, indicating that unseen
functionality is to be revealed when the widget is activated.
Widgets so labeled are automatically cataloged as
transitional widgets. This convention is not by itself
sufficient enough for the model to identify all transitional
widgets. Pull-down menus are transitional widgets but do
not use ellipses. Instead, the transitional nature of menus
is implied by the location of strings of text at the top of the
window, in the visually distinct area of the menu bar.
Special production rules can identify menus as transitional
widgets by applying a heuristic that tests whether strings
are within the bounds of the menu bar, an approximation
of the heuristic a human user might use to identify a string
of text as a menu. Finally, there are widgets that do not
follow the ellipses convention and are not menus. Further
heuristic productions are based on a simple set of

Figure 2. Graphical representation of declarative
knowledge after exploration.

Mai n- Scr een
 i sa SCREEN
 pr ev ni l
 t ype Per si st ent
 cur r ent t

Newscr een782
 i sa SCREEN
 t r i gger Newmenu660
 pr ev Mai n- Scr een
 t ype Tr ansi ent
 cur r ent ni l

Newscr een1586
 i sa SCREEN
 t r i gger Newst r i ng842
 pr ev Newscr een782
 t ype Per si st ent
 cur r ent ni l

Newcl oser 908
 i sa WI DGET
 name “ cancel ”
 scr een Newscr een1586
 obj Text 896
 got o Mai n- Scr een
 ki nd Cl oser

Newmenu660
 i sa WI DGET
 name “ f i l e”
 scr een Mai n- Scr een
 obj Text 629
 got o Newscr een782
 ki nd Menu

Newst r i ng842
 i sa WI DGET
 name “ open”
 scr een Newscr een782
 obj Text 806
 got o Newscr een1586
 ki nd St r i ng

Figure 1. Declarative representation of an
application inter face after exploration.

vocabulary terms that tend to identify transitions. Terms
like "Properties," "Options," and "Setup" usually cause the
appearance of dialog windows even if they do not contain
ellipses. Other terms like "Cancel" and "OK" usually
cause screen transitions by closing the current window or
dialog. This vocabulary set is a plausible replacement for
the contextual understanding that even a novice human
user can rely upon.

Model validity
While the techniques and productions used in the
exploratory ACT-R model are based on simpler, validated
models, there is no guarantee that our model is also a valid
representation of a human user performing the same
exploring task. Our representational choices are consistent
with higher-level representations of exploratory navigation
(e.g. Spence's model [15]), but the model itself has not
been validated with respect to human performance. This is
not unusual in cognitive modeling research, in cases where
a model is used as a proof of concept or to elucidate a
plausible reasoning process, though it does reflect the
maturity of the work. In our case, validation and
performance tuning are open questions for further
research.

MODEL PROCESSING
ACT-R provides perceptual and motor modules for
interaction with a computer display. ACT-R models do
not interact directly with the computer display, however,
but instead rely on modifications to the user interface
management systems (UIMS) for input and output. One of
our goals is to build a system that can explore a real
application running on the Windows graphical desktop, in
a cognitively plausible manner. To do this, the model
needs to segment the actual running graphical display in
real-time and convert the display into visual objects that
the ACT-R model could understand. SegMan, a successor
to the VisMap system [18, 17], is designed to segment the
graphical user interface using simple pattern-matching
templates and procedural relationships in order to segment
the pixels of the display into meaningful groups that
represent letters, words, buttons, windows, and icons. The
implementation details of the SegMan system have been
presented elsewhere; suffice it to say that it does a

reasonable job of identifying the features of the graphical
user interface that are relevant to its usage. Using the
SegMan system enables us to connect the ACT-R model
directly to the state of the Windows graphical user
interface from the same perspective as a human user.

Screen segmentation
To interface the SegMan system with the ACT-R
perceptual model, we first constrain SegMan to segment
only within the bounds of the current "screen" that the
cognitive model is considering, eliminating all distracting
information from consideration. This is done to make the
implementation of the cognitive model easier, so that it
does not have to determine the bounds of application
window itself. Windowing applications present
themselves in a way that naturally constrains the user's
attention by presenting its windows and sub-windows in a
stack. Even if the sub-windows are not occluding previous
windows, the top-most window still forces the user's
attention because all windows lower in the stack are inert.
We assume that any agent that uses the graphical user
interface will be capable of constraining its focus of
attention to within the bounds of the field of view
associated with the top-most window in the application's
stack.

The SegMan system uses segmentation to determine which
window or menu is top-most. Within the real estate of the
top-most screen, the SegMan system further segments the
display to identify all the words and their positions relative
to the screen bounds. These strings are passed on to the

(p at t end- t o- menu
 =goal >
 i sa f i nd- obj ect
 ki nd menu
 =l oc>
 i sa vi sual - l ocat i on
 t i me now
 at t ended ni l
 scr een- y (l ess- t han 35)
 ==>
 ! send- command! : VI SI ON
 move- at t ent i on : l ocat i on =l oc
 =goal >
 l ast l oc =l oc)

Figure 3. Production to find a menu str ing.

(p f ound- wi dget - menu
 =goal >
 i sa f i nd- obj ect
 ki nd menu
 l ast l oc =l oc
 =l oc>
 i sa vi sual - l ocat i on
 at t ended t
 =obj >
 i sa vi sual - obj ect
 scr een- pos =l oc
 val ue =val ue
 =vocab>
 i sa vocabul ar y
 name =val ue
 ki nd menu
 =scr een>
 i sa scr een
 cur r ent t
 t ype per si st ent
 =st at e>
 i sa modul e- st at e
 modul e : VI SI ON
 modal i t y f r ee
 l ast - command move- at t ent i on
 ==>
 =newmenu>
 i sa wi dget
 name =val ue
 scr een =scr een
 obj =obj
 ki nd menu
 ! pop!)

Figure 4. Production to incorporate a valid menu
feature into internal representation

ACT-R perceptual module as text features. At this time all
other features except text are disregarded. This is done
because widgets in the graphical user interface tend to be
labeled textually. Thus, searching for the string, "OK",
can identify the "OK" button. Not all features have text
labels. Icon buttons in the toolbar is a prime example of
this exception. It should be noted, however, that the
functionality provided by buttons on the toolbar is almost
always available in the pull-down menus. We are able to
utilize a significant portion of any standard Windows
application when only considering textual information.

Production rules
The declarative portion of the ACT-R model's memory is
broken into chunks where a chunk can be any piece of
factual information and all the parameters that describe it
or a goal that needs to be accomplished and all the
parameters that explicitly describe the goal. The
production rules are memorized procedures about how to
process goals. A production rule fires when the goals and
the declarative facts in declarative memory match a
specific activation pattern. For example, the find-
something-to-explore production fires if, and only if, there
is an unfinished goal to explore the interface and when
there is a transitional widget on the current screen that has
not been explored yet. The find-something-to-explore
production fires, resulting in a new declarative goal being
generated: to click on the unexplored transitional widget
and record the changes that place on the display. This
new goal and any new chunks created in memory will
cause other productions to fire, such as the use-widget
production. Through the selection of production rules and
their manipulations of declarative memory, the following
pattern of behavior emerges:

1. Serially attend to every text feature on the current
screen and create new declarative chunks for
transitional widgets.

2. Choose a transitional widget that has not been
explored.

3. Move mouse to the chosen widget.

4. Click on the widget and create a new screen chunk.

5. Repeat.

This pattern causes the agent to explore the application
interface in a depth-first-like fashion. Fortunately, most
applications do not provide many levels of sub-screens and
have a low branching factor. Furthermore, almost all sub-
screens provide some widget that closes the screen,
providing the agent with the ability to backtrack. The
exception to this is menus. Menu screens (Menu screens
are referred to as transient screens because they disappear
when an action is taken, as opposed to windows and
dialogs which are referred to as persistent screens which
do not disappear until commanded) disappear once used,
so backtracking from a screen spawned by a menu screen

necessarily requires the agent to backtrack two levels
instead of the customary one level. Because of this,
exploration of the application interface cannot be strictly
depth-first. The agent must, after backtracking two levels
past a menu screen, retrace its steps back to the menu
screen in order to fully explore all additional transitions
from the menu screen. We illustrated an example of this
in the scenario where the agent navigates to the Open
dialog screen. Upon closing the Open dialog screen, the
agent is returned to the main screen. If the agent had not
yet explored the ``Print setup'' option on the file menu
screen, it must return to the file menu screen by retracing
its steps. Fortunately, the agent can rely on its internal
model of the interface.

Serially attending to widgets on the current screen is very
similar to finding a visual target in a field of visual
distractors. The production to shift attention to a menu
means that the model must pick out a string of text from
the sensory buffer (implemented in the low-level ACT-R
perceptual module) that meets certain qualifications. That
qualification is a visual feature that is text and is less than
35 pixels from the top of the screen. Figure 3 shows the
production to shift attention to a menu string. Once the
perceptual attention has been drawn to a candidate, the
model can confirm that the attended visual feature is in
fact a valid menu by comparing it to the vocabulary that
has stored in declarative memory. If the attended visual
feature is determined to be a menu, then a new declarative
chunk is created to represent that visual feature. Figure 4
shows the production to incorporate a valid menu into the
agent's internal declarative representation of the interface.

Choosing an unexplored widget to explore is trivial in
ACT-R. On the left-hand side of the production we
specify the criteria for a widget that has not been explored
yet. ACT-R will automatically bind a declarative chunk
that satisfies the established criteria. A widget that has not
been explored has a null goto field, indicating that we do
not know what screen we will transition to. With the
unexplored widget chunk bound to a variable, we can push
a new goal to click on that widget onto the stack. The
production to the left in binds an unexplored widget and
creates the sub-goal to click on that widget. It is important
to indicate that the unexplored widget that we bind is not a
widget that will close the screen because we do not want to
backtrack to a previous screen before we have exhausted
the unexplored widgets on the current screen. Another
important aspect of the explore-screen production is that it
also pushes the goal to register the next screen onto the
ACT-R goal stack. This will ensure that when the widget
is clicked the next goal to be considered will be to serially
scan the screen for widgets. This sets up the child screen
so that it can be explored and, since the explore goal is not
removed from the goal stack, the explore-screen
production will again become valid for the child screen,

causing further depth-first browsing. The production will
continue to fire repeatedly as long as there are unexplored
widgets on the current screen, after which point, a new
productive will become valid. The production to the right
in Figure 5 chooses a widget that will close the current
window once all other widgets on the current window have
been explored.

The productions to move and click the mouse on
transitional widgets are straightforward. Each widget
chunk in declarative memory has a corresponding location
in the visual array. Moving the cursor requires the agent
to recognize that the mouse cursor's location in the visual
array is not the same as the widget's location in the visual
array. A command is sent to the motor module to move
the hand – which is holding the mouse – so that the mouse
cursor's location is that of the widget's position. Clicking
on the widget, likewise, requires a production to send a
command to the motor module to click the mouse button.
Once the widget has been clicked upon, the same
production that initiated the click command must create a
new chunk to represent the new screen that appears.
Depending on what kind of widget has been clicked on,
the new screen could be a window or dialog (a persistent
screen), or a menu (a transient screen). Different
productions are required for each possibility. Aside from
the type of screen chunk that is added to declarative
memory, there is no other difference between the
production that clicks on a menu widget and the
production that clicks on a regular string widget.

Altogether, the model contains 42 productions of the types
discussed above. Working memory is initially loaded with
22 chunks representing widget and screen types,
vocabulary, and goals. At the end of the exploration of the
application shown in Figure 2, over 700 items have been
processed by working memory.

Limitations
The current exploration system suffers from a number of
limitations of varying severity. The first limitation is that

its cognitive model's productions were designed with the
``typical'' Windows application in mind. The typical
Windows application uses a standard set of widgets and
obeys certain conventions. Applications such as Adobe
Photoshop could not be explored with the current system
because of its rampant use of non-standard widgets, non-
standard toolbars, and the use of multiple open
documents. Even running in a typical application, the
exploration model is limited by its reliance on conventions
and on its built-in vocabulary. If the conventions, such as
the use of ellipses, are violated, the model will fail to
recognize transitional widgets. If the model's vocabulary
is used in unanticipated ways, the model will see
transitional widgets where there are none.

The exploration model relies heavily on its understanding
of conventions and vocabulary, at least partly because the
current implementation is unable to distinguish an entirely
new screen from an existing screen that has just changed.
Often clicking on widgets in the screen will cause the
screen features to change. New widgets could appear or
text within the screen could change radically enough that
the model might not be able to find a sufficient number of
similarities. The flip side of this limitation is that if a
child window is spawned, it might be too similar to the
previous screen to be regarded as a new screen. In order to
simplify the domain, the model tries to identify those
widgets that will cause transitions to other screens. We
believe that making that determination is easier than
determining which screen we are in at any given time,
given that a screen can be highly dynamic. To determine
which widgets are transitional widgets requires the system
to possess more background knowledge however, and the
sufficiency of the background knowledge is limited by the
designer's ability to predict new situations.

For similar reasons, our approach also cannot handle
tabbed dialogs and other interaction scenarios in which
clicking a widget causes a change in the state of a window
without generating an entirely new window.

(p expl or e- scr een
 =goal >
 i sa expl or e
 =scr een>
 i sa scr een
 cur r ent t
 r egi st er ed t
 =obj ect >
 i sa wi dget
 scr een =scr een
 got o ni l
 - ki nd cl oser
 ==>
 =newgoal - use- wi dget >
 i sa use- wi dget
 t ar get =obj ect
 =newgoal - r egi st er >
 i sa r egi st er - wi dget s
 ! push! =newgoal - r egi st er
 ! push! =newgoal - use- wi dget)

(p f i ni shed- expl or i ng- i n- per si st ent
 =goal >
 i sa expl or e
 =scr een>
 i sa scr een
 cur r ent t
 t ype per si st ent
 =obj ect >
 i sa wi dget
 scr een =scr een
 - got o ni l
 =cl oser >
 i sa wi dget
 scr een =scr een
 ki nd cl oser
 got o =
 ==>
 =newgoal >
 i sa use- wi dget
 t ar get =cl oser
 ! push! =newgoal)

Figure 5. Productions for explor ing unexplored widgets and for closing the screen.

A more general limitation arises from the tabula rasa
flavor of this approach. With no information about the
specific domain of an application, the system cannot take
actions that lead to states in which different sets of
operations are appropriate. A simple example of this
limitation can be seen if we consider Cut or Copy
operations: these are only active if some object is selected
in the application. Cut and Copy are immediate rather
than transitional operations, but they have analogs, for
example, in operations that allow the modification of
object properties. In the tasks to which we have put the
exploration system, it has generally worked in an open
application with no external document or other
information loaded. To be able to handle operations such
as Cut and Copy, the model would require an
understanding what it means to perform Cut and Copy
operations and when they are applicable. In the future, the
agent will allow such information to be provided during
initialization. In fact, the declarative background
knowledge should be customizable to any level of
expertise.

A different but equally general limitation lies in the
stability of the graphical user interface as a domain in
which autonomous agents, whether based on cognitive
models or not, can operate. If the domain is highly
unstable, then the agent is likely to mistake changes in the
Windows desktop that are unrelated to the operation of the
target application as being significant. Furthermore, if
unrelated elements in the Windows desktop occlude part of
the target application's interface, the agent can become lost
or confused. When the agent becomes confused or lost, the
ACT-R production system on which it is built will halt
because the cognitive model will have entered a state in
which no productions are valid.

Finally there are a few shortcomings in the specific
implementation we have built. Our system is still
relatively fragile, a proof of concept rather than a working
tool. Because of vocabulary and image processing
limitations, the system currently performs a single-level
traversal of arbitrary applications (i.e., examining the
contents of all top-level menus) completely, but with only
selective exploration of dialogs arising from some menu
items. Thus the only application that the system has
explored in detail is the example application shown in
Figure 2. We will soon have performed partial exploration
of Notepad, Internet Explorer, PowerPoint, and XEmacs.
The implementation problems are not conceptual, but
more a matter of bookkeeping, and we expect to be able to
address them in the short term. As another part of our
continuing development we are porting the
implementation to the most recent version of ACT-R, 5.0,
from its current use of ACT-R 4.0 and the perceptual-
motor extension, ACT-R/PM 1.0b5.

DISCUSSION
Given a system such the one we have described, we face
two questions: what kind of results can be generated, and
how should they be used?

The exploration process can provide summaries of the
navigational structure of an interface. For example, for
our sample application, if we treat the menu structure as a
graph to be traversed, with a closed application as the
starting node at depth 0, then we can produce summaries
such as the following:

Maximum depth: 4

Mean depth: 2.45

Maximum transitions: 6

Mean transitions: 2.3

For example, the main screen of the example application
has six transitions (menu headers) and leads through a
menu selection to a Print Setup dialog to a Print Options
dialog at the deepest point. From this kind of summary we
might identify unusual outliers or unexpected averages
when comparing screens within the application and
between similar applications. How depth and number of
transitions affects usability is highly dependent on the type
of application and the degree of expertise of the user.
However, if an application is known to have good
usability, its metrics can be compared to the metrics of
other similar applications as a means of determining how
these metrics relate to the usability of a certain class of
applications.

We can also generate a map of an application from which
paths from the starting screen to specific target strings can
be derived. This path information can be exported so that
other agents can be made aware of the layout of the
application. The user might ask of another computer
agent where functionality associated with the specific
string, “Play sounds,” can be found in the application.
The traversal of the map produces a path through the
Properties menu. Another possibility, not yet possible in
our system, is suggested by research in automated
evaluation of the visual layout of interfaces [14, 16]. In
this case, layout evaluation would not be based on absolute
metrics, but rather on relative comparisons for consistency.

Our current work on the system falls into two areas. First,
we are improving the robustness and generality of the
implementation; we believe that it will eventually be
possible to apply the system to arbitrary applications to
produce detailed analyses. Second, we are examining
relationships to the literature on automated interface
generation. Given the data produced by the navigation
process, it should be possible to construct a structured
representation of the temporal and spatial changes that can
occur within an application in the graphical user interface,
such as a grammar. We believe that such a grammar
could motivate the construction of more robust production

rules that make fewer assumptions about the interface
itself. Such grammar-based production rules might also
allow us to reduce the number of limitations because we
would be able to better predict how a widget will modify
the screen, allowing us to end our reliance on the
distinction between transitional widgets and non-
transitional widgets.

The behaviors displayed by the current system, and those
of related systems [17, 18], suggest a direction of growing
interest to cognitive modeling researchers: the evaluation
of off-the-shelf interactive applications by modeling
techniques. A wide range of results have been produced by
using cognitive models to evaluate different aspects of
computer applications, on and off the desktop. Tasks have
included menu selection [2], dialing cellular telephones
while driving [12], and flying aircraft [13], among many
others. In most cases, however, even for models that
include perception and motor components [3, 7, 10], the
models have access either to the internals of the
application or to its interface. This raises the question, in
some cases, whether plausible assumptions are made about
the transfer of information between the model and the
environment, rather than respecting known constraints on
human visual or motor processing [1]. The system
described in this paper is the first we know of that
performs an automatic evaluation (under the limitations
discussed in the previous section) of an independently
developed system strictly from the user's perspective on the
interface.

ACKNOWLEGEMENTS
This effort was supported by the National Science
Foundation under award 0083281, by the Space and Naval
Warfare Systems Center, San Diego, and by NFS Career
Award 0092586. The information in this paper does not
necessarily reflect the position or policies of the U.S.
government, and no official endorsement should be
inferred.

REFERENCES
1. Anderson, J. & Lebiere, C. The Atomic Components of

Thought. Lawrence Erlbaum, Mahwah, NJ, 1998.

2. Byrne, M.D. ACT-R/PM and menu selection: applying
a cognitive architecture to HCI. International Journal
of Human-Computer Studies, 55 (2001), 41-84.

3. Byrne, M.D., Anderson, J.R., Douglass, S., & Matessa,
M. Eye tracking the visual search of click-down menus.
In Proceedings of CHI’99 (Pittsburgh PA, May 1999),
ACM Press, 402-409.

4. Catledge, L.D. & Pitkow, J.E. Characterizing browsing
strategies in the World-Wide Web. Computer
Networks and ISDN Systems, 27,6 (1995), 1065-1073.

5. Dix, A.J., Finlay, J.E., Abowd, G.D., Beale, R. Human-
Computer Interation, 2nd ed. Prentice Hall, 1998.

6. Erran, C., Crawford, S., & Chen, H. Browsing in
hypertext: a cognitive study. IEEE Transations on
Systems, Man, and Cybernetics, 22, 5 (1992), 865-883.

7. Hornof, A.J., Kieras, D.E. Cognitive modeling
demonstrates how people use anticipated location
knowledge on menu items. In Proceedings of CHI’99
(Pittsburgh PA, May 1999), ACM Press, 410-417.

8. Kieras, D. & Meyer, D.E. An overview of the EPIC
architecture for cognition and performance with
application to human-computer interaction. Human-
Computer Interaction, 12, 4 (1997), 391-438.

9. Newell, A. Unified Theories of Cognition. Harvard
University Press, Cambridge, MA, 1990.

10. Ritter, F.E., Baxter, G.D., Jones, G., & Young R.M.
Supporting cognitive models as users. ACM
Transactions on Computer-Human Interaction, 7, 2
(2000), 141-173.

11. Ritter, F.E., Van Rooy, D., St. Amant, R. A user
modeling design tool for comparing interfaces. Under
review.

12. Salvucci D.D. & Macuga, K.L. Predicting the effects
of cell-phone dialing on driver performance. In
Proceedings of the 4th International Conference on
Cognitive Modeling (Fairfax VA, July 2001), 25-30.

13. Shoppek, W., Holt, R.W., Diez, M.S., & Boehm-Davis,
D.A. Modeling behavior in complex and dymanic
situations – the examples of flying an automated
aircraft. In Proceedings of the 4th International
Conference on Cognitive Modeling (Fairfax VA, July
2001), 265-266.

14. Sears, A. Layout appropriateness: a metric for
evaluation user interface widget layout. IEEE
Transactions on Software Engineering, 19, 7 (1993),
707-719.

15. Spence, R. A framework for navigation. International
Journal of Human-Computer Studies, 51 (1999), 919-
945.

16. St. Amant, R. Navigation and planning in a mixed-
initiative user interface. In Proceedings of the 14th
National Conference on Artificial Intelligence
(Providence RI, July 1997), AAAI Press, 64-69.

17. St. Amant, R. & Riedl, M.O. A perception/action
substrate for cognitive modeling in HCI. International
Journal of Human-Computer Studies, 55, 1 (2001), 15-
39.

18. St. Amant, R. & Zettlemoyer, L.S. The user interface as
an agent environment. In Proceedings of the 4th
International Conference on Autonomous Agents
(Barcelona Spain, June 2000), 483-49.

