
Crowdsourcing Interactive Fiction Games

Boyang Li, Stephen Lee-Urban, and Mark O. Riedl
School of Interactive Computing, Georgia Institute of Technology

Atlanta, Georgia, USA
{boyangli; lee-urban; riedl}@gatech.edu

ABSTRACT
Procedural generation of games has become an active re-
search field. We present a system that automatically gen-
erates an interactive fiction (IF) by learning from crowd-
sourced corpora of example stories. We ask crowd workers
from Amazon Mechanical Turk to write short stories about
a given situation with simple language, from which a plot
graph is learned, containing plot events, temporal prece-
dence and mutual exclusion relations between the events.
The plot graph describes an IF where players and non-player
characters choose from executable events as determined by
the plot graph. We demonstrate an IF learned from the
domain of bank robbery.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms
Algorithms, Human Factors

Keywords
Procedurally generated games, interactive fiction, crowd-
sourcing

1. INTRODUCTION
Recent years have seen a growing interest in computer-

generated games. Game generators can help simplify tech-
nically challenging aspects of game creation and improve re-
playability by dynamically adapting game content. Recent
work explored generation of mechanics and rule sets (e.g.,
[6]) and content generation within story contexts (e.g., [1]).

One game genre especially suitable for automated gener-
ation is Interactive Fiction (IF): a type of game with a text
interface, a strong narrative focus, and abundant opportu-
nities to change the story [2]. The fiction unfolds as a com-
bination of the designer’s intent and the choices the player

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FDG ’13 Crete, Greece
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

makes throughout. The core mechanic in IF is a lock-and-key
progression in which certain scenes and actions only become
possible after other scenes and actions have occurred. The
lock-and-key mechanism can be modeled by a plot graph in
which plot events—significant scenes that can occur in the
game—are related by temporal precedence constraints [8].
For example, a plot event of the player opening a vault must
be preceded by the event of acquiring the key [5]. A plot
graph captures the designer’s intended logical flow of events
that can happen; it reflects the designer’s beliefs about ac-
ceptable gameplay experiences.

This extended abstract describes the Scheherazade sys-
tem, which generates playable interactive fiction experiences
based on common sociocultural situations such as going to
a restaurant, going to the movies, catching an airplane, or
robbing a bank. Scheherazade addresses the critical re-
search challenge of obtaining domain knowledge about the
topic for which the game is to be constructed, including the
plot events, temporal precedence and mutual exclusions be-
tween events. Without assuming a pre-existing ontology, we
delegate this complex knowledge authoring task to a large
number of anonymous workers via Web services, i.e. we
crowdsource the plot graph. Crowdsourcing provides access
to human memories and creativity; a surrogate for the life-
time of experiences held by a human author. Previously,
Shaker et al. [7] crowdsourced aesthetics for Super Mario
levels.

2. PLOT GRAPH LEARNING
To create an interactive fiction of a particular situation

(e.g., a bank robbery), an automated query is sent to Ama-
zon Mechanical Turk to solicit crowd worker input. Crowd
workers are asked to provide linear archetypical narratives
in natural language for the given topic, which is a natural
mode of communication. To simplify natural language pro-
cessing, crowd workers are asked to describe one event with
one sentence containing a single verb, and to avoid complex
sentence structures and pronouns.

Second, sentences from different narrative examples that
are semantically similar are clustered together to create plot
events. Because of the simplified language, the system can
discover clusters that represent plot events with relatively
high accuracy. For example, we identify plot events for the
bank robbery scenario with 80.4% purity. We can also use
a second round of crowdsourcing to ask crowd workers to
improve the accuracy of NLP / clustering to 89.8%.

Third, we identify precedence between learned plot events.
For all pairs of events ei and ej , we test the two statistical

John gives
Sally bag

Sally calls
police

John drives
away

John gets in
car

John leaves
bank

John takes
bag

Sally gives
John bag

Sally presses
alarm

Sally puts
money in bag

Sally collects
money

Sally give
John money

John collects
money

Police
arrives

Police arrests
John

Normal EventA

A Optional Event

Precedence constraint
Mutual exclusion

A Conditional Event

Sally cries

...

...

...

Figure 1: Part of a plot graph learned from the
crowd.

hypothesis before(ei, ej) and before(ej , ei) based on the bi-
nomial distribution. The hypothesis with confidence greater
than threshold Tc are accepted and added to the model.
Both hypotheses may be rejected and the two events will be
considered as parallel. Relations that fall slightly below the
threshold may be recognized if adding the relation to the
graph reduces an error metric, computed as the difference
of the distance between two events on the graph and their
average distance in the input data set. This effectively low-
ers the threshold locally and provides a flexible mechanism
that caters to noisy input narratives.

Fourth, we identify mutual exclusion relations between
plot events. As a generalization of OR-relations in plot
graphs, mutual exclusions indicate when only one of two
events can happen in the same game. Mutual exclusions oc-
cur when the mutual information between two plot events
is high—indicating that one plot event predicts the exis-
tence (or non-existence) of the other—and co-occurrence is
low. When a mutual exclusion relation is found between two
plot events ei, ej that are temporally ordered, probably with
other events in between, then ei is marked as optional and ej

is conditional on ei. For example, pressing the silent alarm
precludes calling the police later in the game.Figure 1 shows
part of a learned plot graph capturing several variations for
a bank robbery.

3. PLOT GRAPH EXECUTION
A set of execution rules, used together with the plot graph,

ensures that players always experience a coherent progres-
sion through the game, regardless of their choices. The ex-
ecution rules determine what events are available for execu-
tion at any given point in time. A plot event is executable
when all of its direct, non-optional predecessors have been
executed, except those excluded by mutual exclusion. When
an event is executable, its owner, either the player or a non-
player character (NPC) has to decide whether to execute
it. Race conditions can occur if both the player or NPCs
have executable events; we implement a short delay on NPC

Figure 2: Playing the generated interactive fiction.

choices to give the player slightly more control over the story.
Once an event is executed, Scheherazade removes the fol-
lowing events from the graph: events in mutual exclusion
with executed events, events all of whose parents are ex-
cluded, and events whose descendants are executed. The
game continues until one ending event is executed.

The entire plot graph learning pipeline and plot graph ex-
ecution algorithms are fully implemented. We have demon-
strated the system on a plot graph of a bank robbery sit-
uation. One manual step remains necessary: a dramatized
textual description must be given for each plot event for
display purposes. The game interface is shown in Figure 2.
Due to space constraints, we refer readers interested in more
details to earlier papers [3, 4].

4. ACKNOWLEDGMENTS
We gratefully acknowledge the support of the U.S. Defense

Advanced Research Projects Agency (DARPA).

5. REFERENCES
[1] K. Hartsook, A. Zook, S. Das, and M. Riedl. Toward

supporting storytellers with procedurally generated
game worlds. In Proc. of IEEE CIG, 2011.

[2] K. Hayles and N. Montfort. Interactive fiction. In The
Routledge Companion to Experimental Literature.
Routledge, 2012.

[3] B. Li, S. Lee-Urban, D. S. Appling, and M. O. Riedl.
Crowdsourcing narrative intelligence. Advances in
Cognitive Systems, 2:25–42, 2012.

[4] B. Li, S. Lee-Urban, and M. O. Riedl. Toward
autonomous crowd-powered creation of interactive
narratives. In Proc. of the INT5 Workshop, 2012.

[5] M. Nelson and M. Mateas. Search-based drama
management in the interactive fiction Anchorhead. In
Proc. of AIIDE, 2005.

[6] M. Nelson and M. Mateas. An interactive game-design
assistant. In Proc. of Int’l Conf. on Intelligent User
Interfaces, 2008.

[7] N. Shaker, G. N. Yannakakis, and J. Togelius.
Crowd-sourcing the aesthetics of platform games. IEEE
Trans. on Computational Intelligence and AI in
Games, 2012.

[8] P. Weyhrauch. Guiding Interactive Fiction. PhD thesis,
Carnegie Mellon University, 1997.

