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Abstract. Improvisational storytelling involves one or more people interacting 

in real-time to create a story without advanced notice of topic or theme. Human 

improvisation occurs in an open-world that can be in any state and characters 

can perform any behaviors expressible through natural language. We propose 

the grand challenge of computational improvisational storytelling in open-world 

domains. The goal is to develop an intelligent agent that can sensibly co-create 

a story with one or more humans through natural language. We lay out some of 

the research challenges and propose two agent architectures that can provide the 

basis for exploring the research issues surrounding open-world human-agent 

interactions. 
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improvisation • interactive narrative 

1 Introducing Computational Improvisation 

Storytelling has been of interest to artificial intelligence researchers since the earliest 

days of the field. Artificial intelligence research has addressed story understanding, 

automated story generation, and the creation of real-time interactive narrative 

experiences. Specifically, interactive narrative is a form of digital interactive 

experience in which users create or influence a dramatic storyline through actions by 

assuming the role of a character in a fictional virtual world, issuing commands to 

computer-controlled characters, or directly manipulating the fictional world state [1]. 

Interactive narrative requires an artificial agent to respond in real time to the actions 

of a human user in a way that preserves the context of the story and also affords the 

user to exert his or her intentions and desires on the fictional world. Prior work on 

interactive narrative has focused on closed-world domains—a virtual world, game, or 

simulation environment constrained by the set of characters, objects, places, and the 

actions that can be legally performed. Such a world can be modeled by finite AI 

representations, often based on logical formalizations. In this paper, we propose a 

grand challenge of creating artificial agents capable of engaging with humans in 

improvisational, real-time storytelling in open worlds. 

Improvisational storytelling involves one or more people constructing a story in 

real time without advanced notice of topic or theme. Improvisational storytelling is 

often found in improv theatre, where two or more performers receive suggestions of 

theme from the audience. Improvisational storytelling can also happen in informal 



settings such as between a parent and a child or in table-top role-playing games. 

While improvisational storytelling is related to interactive narrative, it differs in three 

significant ways. First, improvisational storytelling occurs in open worlds. That is, the 

set of possible actions that a character can perform is the space of all possible 

thoughts that a human can conceptualize and express through natural language. 

Second, improvisational storytelling relaxes the requirement that actions are strictly 

logical. Since there is no underlying environment other than human imagination, 

characters’ actions can violate the laws of causality and physics, or simply skip over 

boring parts. However, no action proposed by human or agent should be a complete 

non sequitur. Third, character actions are conveyed through language and gesture. 

In this paper we explore the challenges from and potential solutions to creating 

computational systems that can engage with humans in improvisational storytelling. 

We envision a system in which humans control some characters in an open world, 

while some are controlled by artificial intelligence. Beyond entertainment, 

computational improvisational storytelling unlocks the potential for a number of 

serious applications. Computational improvisational storytelling systems could 

engage with forensic investigators, intelligence analysts, or military strategists to 

hypothesize about crimes or engage in creative war-gaming activities. Virtual agents 

and conversational chatbots can also create a greater sense of rapport with human 

users by engaging in playful activities or gossip. Successful development of an 

artificial agent capable of engaging with humans in open-world improvisational 

storytelling will demonstrate a human-level ability to understand context in 

communication. It will also provide an existence proof that artificial intelligence can 

achieve human-like creativity. 

2 Background 

2.1 Interactive Narrative 

Riedl and Bulitko [1] give an overview of AI approaches to interactive narrative. The 

most common form of interactive narrative involves the user taking on the role of the 

protagonist in an unfolding storyline. The user can also be a disembodied observer—

as if watching a movie—but capable of making changes to the world or talking to the 

characters. A common solution, first proposed by Bates [2] is to implement a drama 

manager. A drama manager is an intelligent, omniscient, and disembodied agent that 

monitors the virtual world and intervenes to drive the narrative forward according to 

some model of quality of experience. An experience manager [3] is a generalization 

of this concept, recognizing the fact that not all narratives need to be dramatic, such as 

in the case of education or training applications.  

There are many AI approaches to experience management. One way is to treat the 

problem of story generation as a form of search such as planning [3–5], adversarial 

search [6, 7], reinforcement learning [8], or case-based reasoning [9, 10], although 

planning is still appropriate for games since they are closed systems [11]. All of the 

above systems assume an a priori-known domain model that defines what actions are 

available to a character at any given time.  



Closed-world systems can sometimes appear open. Façade [12] allows users to 

interact with virtual characters by freely inputting text. This gives the appearance of 

open communication between the human player and the virtual world; however, the 

system limits interactions by assigning the natural language input to dramatic beats 

that are part of the domain model. Open-world story generation attempts to break the 

assumption of an a priori-known domain model. Scheherazade-IF [13] attempts to 

learn a domain model in order to create new stories and interactive experiences in 

previously unknown domains. However, once the domain is learned, it limits what 

actions the human can perform to those within the domain model. Say Anything [14] 

is a textual case-based-reasoning story generator, meaning that it operates in the space 

of possible natural language sentences. It responds to the human user by finding 

sentences in blogs that share a similarity to human-provided sentences, but 

consequently tends to fail to maintain story coherence without human intervention. 

2.2 Improv Theatre 

Humans have the ability to connect seemingly unrelated ideas together. If a computer 

is working together with a user to create a new story, the AI must be prepared to 

handle anything the human can think of. Even when given a scenario that appears 

constrained, people can—and will—produce the unexpected. Magerko et al. [15] 

conducted a systematic study of human improv theatre performers to ascertain how 

they are able to create scenes in real time without advanced notice of topic or theme. 

The primary conclusion of this research is that improv actors work off of a huge set of 

basic scripts that compile the expectations of what people do in a variety of scenarios. 

These scripts are derived from common everyday experiences (e.g., going to a 

restaurant) or familiar popular media tropes (e.g., Old West shoot out). Magerko and 

colleagues further investigated possible computational representations of scripts used 

in improv [16], and how improv actors create and resolve violations in scripts [17].  

3 Open-World Improvisational Storytelling 

In order to push the boundaries of AI and computational creativity we argue that it is 

essential to explore open-world environments because (a) we know that humans are 

capable of doing so, especially with training (actors, comedians, etc.), and (b) natural 

language interaction is an intuitive mode of human-computer interaction for humans 

that is not constrained to finite sets of well-defined actions. Once the mode of 

interaction between a human and an artificial agent is opened up to natural language, 

it would be unnatural and ultimately frustrating for the human to restrict their 

vocabulary to what the agent can understand and respond sensibly to. An intelligent 

agent trained to work from within a closed world will struggle to come up with 

appropriate responses to un-modeled actions. On the other hand, limiting the user’s 

actions and vocabulary also limits the user’s creativity. 

There are two general problems that must be addressed to achieve open-world 

improvisational storytelling. First, an intelligent improvisational agent must have a set 

of scripts comparable in scope to that held by a human user. This is in part addressed 



by systems, such as Scheherazade [18] which learns scripts from crowdsourced 

example stories, or various projects learning scripts from internet corpora [19, 20]. 

We loosely define a script as some expectation over actions. To date, no system has 

demonstrated that it has learned a comprehensive set of scripts; however, once a 

comprehensive set of scripts exists, these scripts can be used to anticipate human 

actions that are consistent with the scripts and generate appropriate responses. 

Second, an intelligent improvisational agent must be able to recognize and respond 

to off-script actions. This means that the agent will need to generate new, possibly 

off-script actions of its own in order to respond to the player in a seemingly non-

random way. The reasons why a human goes off script can be technical—the human’s 

script does not exactly match the agent’s script for the same scenario—or because the 

human wishes to express creative impulses or test the boundaries of the system.  

Since humans normally tend to work off of some sort of script while improvising, 

whether it is explicit or not, the AI also needs to relate user utterances to a script 

through natural language understanding. Keeping track of a script is a matter of 

comparing the meanings of human utterances—or semantics—which is an open 

research question. Given language’s nearly infinite possibilities, it is very unlikely 

that two people would use the exact same words or syntax to express the same idea. It 

is just as unlikely that a user would create a similar sentence as the creators of the 

agent would. Beyond understanding the meaning of individual sentences, there is still 

the matter of what the semantics of the sentence mean within the context of the entire 

story—also known as the pragmatics—since context is important to maintaining 

coherence in a conversation.  

In the remaining sections, we will introduce two potential approaches. The first 

uses script representations closely aligned with observations of improv actors. The 

second uses neural networks trained on a corpus of stories. 

4 Plot Graph Approach 

We present a first attempt at creating a computational architecture for maintaining a 

coherent story context when co-creating with a human user. We acknowledge that 

open-world improvisation will not be solved until we address many open research 

challenges. Our goal is to offer an initial conjecture about how an improvisational 

agent might be built, which can be expanded upon as research challenges become 

solved. 

 

Fig. 1. The proposed plot graph system’s architecture. 

 



The proposed system architecture is shown in Fig. 1. First, the user enters in a line 

of text to narrate the action that they want the main character to take. This text is 

compared against the script, in this case represented as a plot graph (Section 4.1). The 

natural language processing happens in two stages: interpreting the semantic content 

in order to track the world state (Section 4.2) and determining the constituency of the 

user’s action (Section 4.3). The agent employs different strategies for responding to 

sentences based on whether they describe actions that are constituent, consistent, or 

exceptional. Once the AI produces a sentence, the entire process repeats. 

4.1 Introduction to Plot Graphs 

For our work, we assume a script representation; in particular, one called a plot graph. 

Plot graphs have been found to be effective for interactive narrative and story 

generation [6–8, 13, 18].  We use the representation developed by Li et al. [18], which 

facilitates script learning from crowdsourced narrative examples. A plot graph is a 

script representation that compactly describes a space of possible stories (and thus 

expectations about stories) that can be told about a specific scenario such as going to a 

restaurant or robbing a bank. A plot graph is a directed acyclic graph where the nodes 

in the plot graph are events.  One type of edge represents temporal precedence 

relationships between events. For example, consider the plot graph in Fig. 2, which 

shows a fragment of a plot graph for robbing a bank. The plot graph node <John 

Enters the Bank> is connected to <John Scans the Bank>, which means that the 

former event must be completed before the latter would be expected to begin. These 

relationships, however, are not strict causal relationships. The node <John Covers 

Face>, for example, is also connected to <John Approaches Sally> but has no parent 

node. This means that it can be executed at any time as long as it occurs before John 

approaches Sally. A second type of link between nodes represents mutual exclusivity 

of events, where the occurrence of one event predicts the absence of the other. Mutual 

exclusions encode branches in the plot where a choice leads to different variations of 

the scenario. Each plot graph node contains a set of semantically-similar sentences, 

describing the same event in different ways. A plot graph can be used to generate 

different legal sequences of events. The plot graph in Fig 2. was learned from data 

and algorithms from Li et al. [18].  

 

Fig. 2. A section of the robbery plot graph used in our system, where solid arrows represent 

temporal precedence and dotted lines represent mutual exclusion between plot event nodes. 

 



4.2 Maintaining World State  

One of the challenges of open-world improvisational storytelling is representing and 

maintaining a world state without making too many constraining assumptions about 

the entities and relations between entities that can occur in the world. Furthermore, 

new entities, objects, and places can be created at any time. We propose that the AI’s 

internal world state contains two aspects: the AI’s current knowledge about the 

world’s usable items (beliefs), and the AI’s memory of the story.  

The AI’s belief system about world state must ground each user or AI turn in terms 

of the semantics of the action expressed in natural language. One solution is to ground 

all sentences using VerbNet [21], an ontology of verbs and their syntax-dependent 

semantics created by linguists to serve as a domain-independent verb lexicon. 

VerbNet consists of frames for sets of verbs that are semantically and generally 

syntactically equivalent. Frames contain rules for how to label entities playing roles in 

the sentences (e.g., “John rode his horse to the bank” infers that “John” and “his 

horse” are now at “the bank”), predicate-like facts about those roles (e.g., “John rode 

his horse” means that “John” and “his horse” moved), and limiting factors for which 

entities can fill roles (e.g., the verb “ride” requires an animate object). 

We are augmenting VerbNet to include predicates about accessibility and 

proximity. Entities that are accessible exist in the world and entities that are proximate 

to the AI agent can be directly manipulated. When the user or the agent takes a turn, 

grounded predicates are added to the agent’s belief state, which continues to grow at 

every turn unless something becomes inaccessible (i.e., it dies, it disappears, it is 

eaten, etc.). See the top portion of Fig. 3 for an example of beliefs. 

The AI’s memory allows the agent to organize concepts based on recency and 

spatiality. We propose to use the event-indexing model [22], a psychology framework  

that is meant to explain how people comprehend new information and store it in their 

long-term memory. Event indexing has been modified previously for artificial 

intelligence and story comprehension to model a readers’ memory [23, 24]. The AI 

 
Fig. 3. An example of the two parts of the state where the first event is “John rode his horse” 

(E0), followed by the second event: “John entered the bank” (E1). On the top half of the figure 

are the beliefs of the AI shown after E0 and E1, respectively. The bottom half of the figure 

shows the AI’s memory during these events. 
 



maintains a memory graph of what nouns (entities) were mentioned during which 

turns and what is spatially proximate. Entities are connected to a special node 

representing the event, En, as well as to any other entity referenced by the event’s 

sentence. The salience of objects can be computed as the distance in the memory 

graph between two objects. See the bottom portion of Fig. 3 for an example of an 

event-indexing memory structure that corresponds to the world state beliefs. 

4.3 Responding to the User 

Recall that improvisational storytelling involves identifying the script for a situation 

and then breaking that script. Therefore, one of the first things a computational 

improvisational agent must do is to identify whether the user is attempting to follow a 

script or break it. Riedl et al. [4] established a classification for how user actions 

relate to the sense of continuity and coherence in interactive narratives: 

 Constituent: User actions that meet the expectation of the AI. In the case of 

improvisational storytelling, a constituent action is one predicted by the AI’s 

script. 

 Consistent: User actions that do not meet the expectation of the AI but do not 

prevent the AI from continuing to execute according to its script. 

 Exceptional: User actions that do not meet the expectation of the AI and 

exclude the possibility of the AI continuing to execute according to its script. 

An improvisational agent must determine if a user action is constituent, consistent, 

or exceptional. Consistent actions should be responded to before continuing with 

actions recommended by a script. Exceptions have been the subject of prior research 

[3, 4, 25]. Once an exceptional user action is identified, we need to have a system that 

can respond in a sensible matter via planning. We need a way to turn the action that 

was decided as an appropriate next step into a set of semantic units, and then translate 

the semantics into some sort of grammatical sentence. Natural language generation is 

not yet a solved problem, let alone generating creative sentences. 

 

Constituent Branch. A constituent action indicates that the user is likely to be 

following the script. The constituent response strategy is shown in orange in Fig. 1. 

Our check for constituency is straightforward: The agent checks to see if the user’s 

sentence matches against one of the plot events that can directly succeed the most 

recently-executed plot event. If the user’s action is constituent, the agent can follow 

up by selecting a successor plot event from the plot graph (if the plot event belongs to 

an AI-controlled character). To respond to the user, the agent can choose any existing 

sentence in the cluster of sentences associated with the selected plot graph node. 

 

Consistent Branch. Consistent actions are those that do not move the script forward 

but also do not prevent it from moving forward. The agent’s strategy for consistent 

actions is shown in purple in Fig. 1. If the agent fails to match the user’s sentence to 

the plot graph and the action is not deemed an exception, the agent continues the story 

by generating an off-script response. While there are many techniques that can be 

used to select off-script responses, our proposal is to generate a response by 

identifying objects with high-salience from its “memory”, selecting one that is 



accessible, and then determining which actions can be performed with said object. 

One way to determine which verbs can be performed on an entity is to query 

ConceptNet 5 [26], a commonsense knowledgebase that has a large number of facts 

about objects commonly found in the real world and what they are used for. The 

actions that can be performed on the object are looked up in VerbNet, and all possible 

sentences are generated from the verb frame’s syntax templates by filling roles. Any 

sentence generated in this way can be selected randomly or ranked according to 

likelihood. The likelihood of a sentence can be computed by constructing a language 

model over a large corpus such as Wikipedia or Google’s Project Gutenberg that 

estimates the how likely combinations of verbs and nouns are to co-occur in the 

English language. 

 

Exceptional Branch. Exceptions occur when the user’s action causes the world to 

enter a state in which no successor in the plot graph can be executed because one or 

more preconditions of each successor plot point is contradicted. Exceptions can also 

occur when future plot events that must occur likewise have their preconditions 

contradicted. For example, a character expected to contribute to the script is absent, a 

necessary object is missing, or the user is in the wrong place. The agent’s strategy for 

handling exceptions is shown in red in Fig. 1. The improvisational agent must still act, 

and one strategy is to “repair” the script by finding another action, or sequence of 

actions, that is not part of the plot graph but restores the world state such that a 

subsequent plot point can execute. This repair process can be modeled as a planning 

problem: the task of searching for a sequence of actions that transforms the world 

state into one in which a goal situation holds. Planning has been applied to repairing 

stories represented as partial-order plans [3, 4] and stories represented as petri nets 

[25]. 

Planning can be used to repair plot graphs as well. The goal situation is any state in 

which the preconditions of a successor plot point or descendant of a successor holds. 

By finding a sequence of actions to be performed by the user and AI-controlled 

entities, the plot graph is restored and able to continue as normal; the planned 

sequence becomes a branch of the plot graph. However, there is at least one 

remaining open challenge. The space of possible actions, being all actions that can be 

expressed in language, is very large, and the complexity of search is proportional to 

the branching factor. Therefore, despite work on planning with language in closed 

worlds [27], the complexity of search through language in an open-world would have 

a very large, if not infinite, branching factor. Even abstracting actions into VerbNet 

frames results in a branching factor in the thousands (number of frames in the 

ontology times the number of ways roles can be instantiated with known characters 

and objects).1 Fortunately, most repairs are likely to require a sequence of one or two 

actions. Sampling-based planning algorithms such as Monte Carlo Tree Search may 

be adapted to story repair. 

It is possible that no repair is possible, meaning the planner fails to find a sequence 

of actions that transforms the world into a state where the plot graph can continue 

executing. This may be due to non-reversible actions (e.g., an object is destroyed) 

                                                           
1 This analysis excludes the possibility of creating new objects. 



performed by the user or due to the search failing because of the size of the search 

space and the need to respond within a small, fixed amount of time. In this case, new 

strategies will be required, such as switching to an emergent, reactionary storytelling 

mode such as that used to generate the response in the consistent branch. 

4.4 Limitations 

The proposed architecture addresses the challenges that we put forth earlier in this 

paper; however, there are several limitations that must be mentioned. One limitation 

is that this technique assumes the presence of a plot graph to act as a script. While 

Scheherazade has the ability to learn plot graphs from crowdsourced stories, it will be 

problematic to assume that the system will have access to all possible stories that a 

user may want to tell. Furthermore, the learned plot graphs may not match the scripts 

held in human users’ heads, so the user may perform actions not in the AI’s plot graph 

or skip over events deemed irrelevant or uninteresting. To handle greater stochasticity 

of human behavior, it will be advantageous to convert the plot graph into a dynamic 

probabilistic graph with skip-transitions, allowing the AI to jump to the most 

appropriate event in the plot graph. Often in improvisational storytelling, one would 

move seamlessly from one script to another or blend elements of several scripts. A 

more complete system would require the ability to recognize if the user has changed 

topics—a common yet not fully solved problem shared with other conversational AI 

systems—or to merge plot graphs to better explain what the user is trying to do. 

Additionally, the performance of the agent is heavily reliant on the performance of 

the natural language understanding (NLU) techniques used. NLU, especially in the 

areas of semantic reasoning and pragmatics are still open research problems. Further, 

VerbNet may not be the best technique for tracking semantics, and ConceptNet is 

known to be incomplete. These limitations are enumerated here to recommend 

research areas likely necessary to move the state of the art in interactive narrative 

systems toward those fully capable of open-world story improvisation with humans. 

5 Neural Network Approach 

We previously proposed the use of plot graphs to model expectation in a story and 

explicitly build up state information using external ontologies and corpora. One 

alternative way that this could be done is to model expectation using a recurrent 

neural network (RNN) with long short-term memory (LSTM) nodes to preserve story 

context. These types of networks can take in a sequence of past events and generate a 

possibly infinite sequence of new events. During training, RNNs learn a 

representation of state that is embedded in the network’s hidden LSTM layers. As a 

result, this technique is not as reliant on external ontologies to learn state information. 

In addition, expectation is innate in an RNN. Each time a new event is presented to 

the RNN, it will calculate a probability distribution over the expected next events. 

Thus, script information can be extracted by choosing the most expected event to 

occur at a given time step [20].  



In terms of our initial proposed architecture, this means that an RNN is well suited 

to handle constituent actions that the user may take, where constituent would mean 

the user performed an event that the RNN was expecting to see with high probability. 

However, consistent and exceptional events—events performed by the user that are 

not high-probability transitions and may also create logical inconsistencies later—

may present challenges to RNNs. As with the prior approach, consistent and 

exceptional events can be handled by turning improvisation into a planning problem.  

There has been promising work done using deep reinforcement learning (Deep-RL) 

to dynamically generate dialogues [28]. Reinforcement learning is a technique for 

solving planning problems in stochastic and uncertain domains. A reward function 

provides a measure for how much value the algorithm receives for performing certain 

actions in certain states; reinforcement learning attempts to maximize expected 

reward over time. Deep-RL involves the use of a deep neural net to estimate the 

probability of transitioning from one state to another or the value that will be received 

in states it has not previously seen. Here, the RNN learns an internal representation of 

state and uses that in conjunction with an author-supplied reward function to 

determine the value of generating an event at the current time. Using this framework, 

these deep neural approaches can handle consistent and exceptional actions. If the 

user takes off-script actions, then the system will still generate events that will 

maximize its long-term reward. Thus, the system’s behavior is largely dependent on 

how this reward function is defined. For example, if the reward function prioritized 

staying on-script then it would strive to return to a state where future events are 

predicted with high probability.  

There are many advantages to this type of approach. First, it does not rely on 

external ontologies to build up a representation of state. These neural models can be 

trained on corpora of natural language, such as stories or news articles, including non-

English corpora. In addition, this allows the system to easily learn different types of 

behavior based on the corpus used for training. The previously proposed architecture 

uses plot graphs to encode commonsense procedures and then provides strategies for 

handling unexpected user behavior. What a neural net expects would depend on the 

data it is trained upon; for example, training it on plot synopses of movies would 

naturally lead to expectations of dramatic behavior from the user and more 

commonsense behavior would be considered exceptional. One disadvantage of a 

neural network approach is that the state representation used by the RNN is 

obfuscated in the hidden LSTM layers. Thus, it is not clear as to why the system will 

make certain choices (beyond the goal of maximizing future reward). This loss in 

system transparency can make it difficult to evaluate the effectiveness of such a 

system. Since state cannot be directly observed, this leads to a greater likelihood of 

non-sequiturs due to mistaken beliefs about the state of the fictional improv world. 

6 Conclusions 

In this paper, we introduce improvisational storytelling, one or more people 

constructing a story in real time without advanced notice of topic or theme.  We 

discuss some of the challenges that need to be addressed in order to create a 



computational, improvisational storytelling system and propose two architectures that 

address some of these challenges as a starting point.  

As human-AI interaction becomes more common, it becomes more important for 

AIs to be able to engage in open-world improvisational storytelling. This is because it 

enables AIs to communicate with humans in a natural way without sacrificing the 

human’s perception of agency. We hope that formalizing the problem and examining 

the challenges associated with improvisational storytelling will encourage researchers 

to explore this important area of work to help enable a future where AI systems and 

humans can seamlessly communicate with one another. 
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