
Improvisational Computational Storytelling in

Open Worlds

Lara J. Martin, Brent Harrison, and Mark O. Riedl

School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA

{lara.martin, brent.harrison, riedl}@cc.gatech.edu

Abstract. Improvisational storytelling involves one or more people interacting

in real-time to create a story without advanced notice of topic or theme. Human

improvisation occurs in an open-world that can be in any state and characters

can perform any behaviors expressible through natural language. We propose

the grand challenge of computational improvisational storytelling in open-world

domains. The goal is to develop an intelligent agent that can sensibly co-create

a story with one or more humans through natural language. We lay out some of

the research challenges and propose two agent architectures that can provide the

basis for exploring the research issues surrounding open-world human-agent

interactions.

Keywords: brave new ideas • intelligent narrative technologies • computational

improvisation • interactive narrative

1 Introducing Computational Improvisation

Storytelling has been of interest to artificial intelligence researchers since the earliest

days of the field. Artificial intelligence research has addressed story understanding,

automated story generation, and the creation of real-time interactive narrative

experiences. Specifically, interactive narrative is a form of digital interactive

experience in which users create or influence a dramatic storyline through actions by

assuming the role of a character in a fictional virtual world, issuing commands to

computer-controlled characters, or directly manipulating the fictional world state [1].

Interactive narrative requires an artificial agent to respond in real time to the actions

of a human user in a way that preserves the context of the story and also affords the

user to exert his or her intentions and desires on the fictional world. Prior work on

interactive narrative has focused on closed-world domains—a virtual world, game, or

simulation environment constrained by the set of characters, objects, places, and the

actions that can be legally performed. Such a world can be modeled by finite AI

representations, often based on logical formalizations. In this paper, we propose a

grand challenge of creating artificial agents capable of engaging with humans in

improvisational, real-time storytelling in open worlds.

Improvisational storytelling involves one or more people constructing a story in

real time without advanced notice of topic or theme. Improvisational storytelling is

often found in improv theatre, where two or more performers receive suggestions of

theme from the audience. Improvisational storytelling can also happen in informal

settings such as between a parent and a child or in table-top role-playing games.

While improvisational storytelling is related to interactive narrative, it differs in three

significant ways. First, improvisational storytelling occurs in open worlds. That is, the

set of possible actions that a character can perform is the space of all possible

thoughts that a human can conceptualize and express through natural language.

Second, improvisational storytelling relaxes the requirement that actions are strictly

logical. Since there is no underlying environment other than human imagination,

characters’ actions can violate the laws of causality and physics, or simply skip over

boring parts. However, no action proposed by human or agent should be a complete

non sequitur. Third, character actions are conveyed through language and gesture.

In this paper we explore the challenges from and potential solutions to creating

computational systems that can engage with humans in improvisational storytelling.

We envision a system in which humans control some characters in an open world,

while some are controlled by artificial intelligence. Beyond entertainment,

computational improvisational storytelling unlocks the potential for a number of

serious applications. Computational improvisational storytelling systems could

engage with forensic investigators, intelligence analysts, or military strategists to

hypothesize about crimes or engage in creative war-gaming activities. Virtual agents

and conversational chatbots can also create a greater sense of rapport with human

users by engaging in playful activities or gossip. Successful development of an

artificial agent capable of engaging with humans in open-world improvisational

storytelling will demonstrate a human-level ability to understand context in

communication. It will also provide an existence proof that artificial intelligence can

achieve human-like creativity.

2 Background

2.1 Interactive Narrative

Riedl and Bulitko [1] give an overview of AI approaches to interactive narrative. The

most common form of interactive narrative involves the user taking on the role of the

protagonist in an unfolding storyline. The user can also be a disembodied observer—

as if watching a movie—but capable of making changes to the world or talking to the

characters. A common solution, first proposed by Bates [2] is to implement a drama

manager. A drama manager is an intelligent, omniscient, and disembodied agent that

monitors the virtual world and intervenes to drive the narrative forward according to

some model of quality of experience. An experience manager [3] is a generalization

of this concept, recognizing the fact that not all narratives need to be dramatic, such as

in the case of education or training applications.

There are many AI approaches to experience management. One way is to treat the

problem of story generation as a form of search such as planning [3–5], adversarial

search [6, 7], reinforcement learning [8], or case-based reasoning [9, 10], although

planning is still appropriate for games since they are closed systems [11]. All of the

above systems assume an a priori-known domain model that defines what actions are

available to a character at any given time.

Closed-world systems can sometimes appear open. Façade [12] allows users to

interact with virtual characters by freely inputting text. This gives the appearance of

open communication between the human player and the virtual world; however, the

system limits interactions by assigning the natural language input to dramatic beats

that are part of the domain model. Open-world story generation attempts to break the

assumption of an a priori-known domain model. Scheherazade-IF [13] attempts to

learn a domain model in order to create new stories and interactive experiences in

previously unknown domains. However, once the domain is learned, it limits what

actions the human can perform to those within the domain model. Say Anything [14]

is a textual case-based-reasoning story generator, meaning that it operates in the space

of possible natural language sentences. It responds to the human user by finding

sentences in blogs that share a similarity to human-provided sentences, but

consequently tends to fail to maintain story coherence without human intervention.

2.2 Improv Theatre

Humans have the ability to connect seemingly unrelated ideas together. If a computer

is working together with a user to create a new story, the AI must be prepared to

handle anything the human can think of. Even when given a scenario that appears

constrained, people can—and will—produce the unexpected. Magerko et al. [15]

conducted a systematic study of human improv theatre performers to ascertain how

they are able to create scenes in real time without advanced notice of topic or theme.

The primary conclusion of this research is that improv actors work off of a huge set of

basic scripts that compile the expectations of what people do in a variety of scenarios.

These scripts are derived from common everyday experiences (e.g., going to a

restaurant) or familiar popular media tropes (e.g., Old West shoot out). Magerko and

colleagues further investigated possible computational representations of scripts used

in improv [16], and how improv actors create and resolve violations in scripts [17].

3 Open-World Improvisational Storytelling

In order to push the boundaries of AI and computational creativity we argue that it is

essential to explore open-world environments because (a) we know that humans are

capable of doing so, especially with training (actors, comedians, etc.), and (b) natural

language interaction is an intuitive mode of human-computer interaction for humans

that is not constrained to finite sets of well-defined actions. Once the mode of

interaction between a human and an artificial agent is opened up to natural language,

it would be unnatural and ultimately frustrating for the human to restrict their

vocabulary to what the agent can understand and respond sensibly to. An intelligent

agent trained to work from within a closed world will struggle to come up with

appropriate responses to un-modeled actions. On the other hand, limiting the user’s

actions and vocabulary also limits the user’s creativity.

There are two general problems that must be addressed to achieve open-world

improvisational storytelling. First, an intelligent improvisational agent must have a set

of scripts comparable in scope to that held by a human user. This is in part addressed

by systems, such as Scheherazade [18] which learns scripts from crowdsourced

example stories, or various projects learning scripts from internet corpora [19, 20].

We loosely define a script as some expectation over actions. To date, no system has

demonstrated that it has learned a comprehensive set of scripts; however, once a

comprehensive set of scripts exists, these scripts can be used to anticipate human

actions that are consistent with the scripts and generate appropriate responses.

Second, an intelligent improvisational agent must be able to recognize and respond

to off-script actions. This means that the agent will need to generate new, possibly

off-script actions of its own in order to respond to the player in a seemingly non-

random way. The reasons why a human goes off script can be technical—the human’s

script does not exactly match the agent’s script for the same scenario—or because the

human wishes to express creative impulses or test the boundaries of the system.

Since humans normally tend to work off of some sort of script while improvising,

whether it is explicit or not, the AI also needs to relate user utterances to a script

through natural language understanding. Keeping track of a script is a matter of

comparing the meanings of human utterances—or semantics—which is an open

research question. Given language’s nearly infinite possibilities, it is very unlikely

that two people would use the exact same words or syntax to express the same idea. It

is just as unlikely that a user would create a similar sentence as the creators of the

agent would. Beyond understanding the meaning of individual sentences, there is still

the matter of what the semantics of the sentence mean within the context of the entire

story—also known as the pragmatics—since context is important to maintaining

coherence in a conversation.

In the remaining sections, we will introduce two potential approaches. The first

uses script representations closely aligned with observations of improv actors. The

second uses neural networks trained on a corpus of stories.

4 Plot Graph Approach

We present a first attempt at creating a computational architecture for maintaining a

coherent story context when co-creating with a human user. We acknowledge that

open-world improvisation will not be solved until we address many open research

challenges. Our goal is to offer an initial conjecture about how an improvisational

agent might be built, which can be expanded upon as research challenges become

solved.

Fig. 1. The proposed plot graph system’s architecture.

The proposed system architecture is shown in Fig. 1. First, the user enters in a line

of text to narrate the action that they want the main character to take. This text is

compared against the script, in this case represented as a plot graph (Section 4.1). The

natural language processing happens in two stages: interpreting the semantic content

in order to track the world state (Section 4.2) and determining the constituency of the

user’s action (Section 4.3). The agent employs different strategies for responding to

sentences based on whether they describe actions that are constituent, consistent, or

exceptional. Once the AI produces a sentence, the entire process repeats.

4.1 Introduction to Plot Graphs

For our work, we assume a script representation; in particular, one called a plot graph.

Plot graphs have been found to be effective for interactive narrative and story

generation [6–8, 13, 18]. We use the representation developed by Li et al. [18], which

facilitates script learning from crowdsourced narrative examples. A plot graph is a

script representation that compactly describes a space of possible stories (and thus

expectations about stories) that can be told about a specific scenario such as going to a

restaurant or robbing a bank. A plot graph is a directed acyclic graph where the nodes

in the plot graph are events. One type of edge represents temporal precedence

relationships between events. For example, consider the plot graph in Fig. 2, which

shows a fragment of a plot graph for robbing a bank. The plot graph node <John

Enters the Bank> is connected to <John Scans the Bank>, which means that the

former event must be completed before the latter would be expected to begin. These

relationships, however, are not strict causal relationships. The node <John Covers

Face>, for example, is also connected to <John Approaches Sally> but has no parent

node. This means that it can be executed at any time as long as it occurs before John

approaches Sally. A second type of link between nodes represents mutual exclusivity

of events, where the occurrence of one event predicts the absence of the other. Mutual

exclusions encode branches in the plot where a choice leads to different variations of

the scenario. Each plot graph node contains a set of semantically-similar sentences,

describing the same event in different ways. A plot graph can be used to generate

different legal sequences of events. The plot graph in Fig 2. was learned from data

and algorithms from Li et al. [18].

Fig. 2. A section of the robbery plot graph used in our system, where solid arrows represent

temporal precedence and dotted lines represent mutual exclusion between plot event nodes.

4.2 Maintaining World State

One of the challenges of open-world improvisational storytelling is representing and

maintaining a world state without making too many constraining assumptions about

the entities and relations between entities that can occur in the world. Furthermore,

new entities, objects, and places can be created at any time. We propose that the AI’s

internal world state contains two aspects: the AI’s current knowledge about the

world’s usable items (beliefs), and the AI’s memory of the story.

The AI’s belief system about world state must ground each user or AI turn in terms

of the semantics of the action expressed in natural language. One solution is to ground

all sentences using VerbNet [21], an ontology of verbs and their syntax-dependent

semantics created by linguists to serve as a domain-independent verb lexicon.

VerbNet consists of frames for sets of verbs that are semantically and generally

syntactically equivalent. Frames contain rules for how to label entities playing roles in

the sentences (e.g., “John rode his horse to the bank” infers that “John” and “his

horse” are now at “the bank”), predicate-like facts about those roles (e.g., “John rode

his horse” means that “John” and “his horse” moved), and limiting factors for which

entities can fill roles (e.g., the verb “ride” requires an animate object).

We are augmenting VerbNet to include predicates about accessibility and

proximity. Entities that are accessible exist in the world and entities that are proximate

to the AI agent can be directly manipulated. When the user or the agent takes a turn,

grounded predicates are added to the agent’s belief state, which continues to grow at

every turn unless something becomes inaccessible (i.e., it dies, it disappears, it is

eaten, etc.). See the top portion of Fig. 3 for an example of beliefs.

The AI’s memory allows the agent to organize concepts based on recency and

spatiality. We propose to use the event-indexing model [22], a psychology framework

that is meant to explain how people comprehend new information and store it in their

long-term memory. Event indexing has been modified previously for artificial

intelligence and story comprehension to model a readers’ memory [23, 24]. The AI

Fig. 3. An example of the two parts of the state where the first event is “John rode his horse”

(E0), followed by the second event: “John entered the bank” (E1). On the top half of the figure

are the beliefs of the AI shown after E0 and E1, respectively. The bottom half of the figure

shows the AI’s memory during these events.

maintains a memory graph of what nouns (entities) were mentioned during which

turns and what is spatially proximate. Entities are connected to a special node

representing the event, En, as well as to any other entity referenced by the event’s

sentence. The salience of objects can be computed as the distance in the memory

graph between two objects. See the bottom portion of Fig. 3 for an example of an

event-indexing memory structure that corresponds to the world state beliefs.

4.3 Responding to the User

Recall that improvisational storytelling involves identifying the script for a situation

and then breaking that script. Therefore, one of the first things a computational

improvisational agent must do is to identify whether the user is attempting to follow a

script or break it. Riedl et al. [4] established a classification for how user actions

relate to the sense of continuity and coherence in interactive narratives:

 Constituent: User actions that meet the expectation of the AI. In the case of

improvisational storytelling, a constituent action is one predicted by the AI’s

script.

 Consistent: User actions that do not meet the expectation of the AI but do not

prevent the AI from continuing to execute according to its script.

 Exceptional: User actions that do not meet the expectation of the AI and

exclude the possibility of the AI continuing to execute according to its script.

An improvisational agent must determine if a user action is constituent, consistent,

or exceptional. Consistent actions should be responded to before continuing with

actions recommended by a script. Exceptions have been the subject of prior research

[3, 4, 25]. Once an exceptional user action is identified, we need to have a system that

can respond in a sensible matter via planning. We need a way to turn the action that

was decided as an appropriate next step into a set of semantic units, and then translate

the semantics into some sort of grammatical sentence. Natural language generation is

not yet a solved problem, let alone generating creative sentences.

Constituent Branch. A constituent action indicates that the user is likely to be

following the script. The constituent response strategy is shown in orange in Fig. 1.

Our check for constituency is straightforward: The agent checks to see if the user’s

sentence matches against one of the plot events that can directly succeed the most

recently-executed plot event. If the user’s action is constituent, the agent can follow

up by selecting a successor plot event from the plot graph (if the plot event belongs to

an AI-controlled character). To respond to the user, the agent can choose any existing

sentence in the cluster of sentences associated with the selected plot graph node.

Consistent Branch. Consistent actions are those that do not move the script forward

but also do not prevent it from moving forward. The agent’s strategy for consistent

actions is shown in purple in Fig. 1. If the agent fails to match the user’s sentence to

the plot graph and the action is not deemed an exception, the agent continues the story

by generating an off-script response. While there are many techniques that can be

used to select off-script responses, our proposal is to generate a response by

identifying objects with high-salience from its “memory”, selecting one that is

accessible, and then determining which actions can be performed with said object.

One way to determine which verbs can be performed on an entity is to query

ConceptNet 5 [26], a commonsense knowledgebase that has a large number of facts

about objects commonly found in the real world and what they are used for. The

actions that can be performed on the object are looked up in VerbNet, and all possible

sentences are generated from the verb frame’s syntax templates by filling roles. Any

sentence generated in this way can be selected randomly or ranked according to

likelihood. The likelihood of a sentence can be computed by constructing a language

model over a large corpus such as Wikipedia or Google’s Project Gutenberg that

estimates the how likely combinations of verbs and nouns are to co-occur in the

English language.

Exceptional Branch. Exceptions occur when the user’s action causes the world to

enter a state in which no successor in the plot graph can be executed because one or

more preconditions of each successor plot point is contradicted. Exceptions can also

occur when future plot events that must occur likewise have their preconditions

contradicted. For example, a character expected to contribute to the script is absent, a

necessary object is missing, or the user is in the wrong place. The agent’s strategy for

handling exceptions is shown in red in Fig. 1. The improvisational agent must still act,

and one strategy is to “repair” the script by finding another action, or sequence of

actions, that is not part of the plot graph but restores the world state such that a

subsequent plot point can execute. This repair process can be modeled as a planning

problem: the task of searching for a sequence of actions that transforms the world

state into one in which a goal situation holds. Planning has been applied to repairing

stories represented as partial-order plans [3, 4] and stories represented as petri nets

[25].

Planning can be used to repair plot graphs as well. The goal situation is any state in

which the preconditions of a successor plot point or descendant of a successor holds.

By finding a sequence of actions to be performed by the user and AI-controlled

entities, the plot graph is restored and able to continue as normal; the planned

sequence becomes a branch of the plot graph. However, there is at least one

remaining open challenge. The space of possible actions, being all actions that can be

expressed in language, is very large, and the complexity of search is proportional to

the branching factor. Therefore, despite work on planning with language in closed

worlds [27], the complexity of search through language in an open-world would have

a very large, if not infinite, branching factor. Even abstracting actions into VerbNet

frames results in a branching factor in the thousands (number of frames in the

ontology times the number of ways roles can be instantiated with known characters

and objects).1 Fortunately, most repairs are likely to require a sequence of one or two

actions. Sampling-based planning algorithms such as Monte Carlo Tree Search may

be adapted to story repair.

It is possible that no repair is possible, meaning the planner fails to find a sequence

of actions that transforms the world into a state where the plot graph can continue

executing. This may be due to non-reversible actions (e.g., an object is destroyed)

1 This analysis excludes the possibility of creating new objects.

performed by the user or due to the search failing because of the size of the search

space and the need to respond within a small, fixed amount of time. In this case, new

strategies will be required, such as switching to an emergent, reactionary storytelling

mode such as that used to generate the response in the consistent branch.

4.4 Limitations

The proposed architecture addresses the challenges that we put forth earlier in this

paper; however, there are several limitations that must be mentioned. One limitation

is that this technique assumes the presence of a plot graph to act as a script. While

Scheherazade has the ability to learn plot graphs from crowdsourced stories, it will be

problematic to assume that the system will have access to all possible stories that a

user may want to tell. Furthermore, the learned plot graphs may not match the scripts

held in human users’ heads, so the user may perform actions not in the AI’s plot graph

or skip over events deemed irrelevant or uninteresting. To handle greater stochasticity

of human behavior, it will be advantageous to convert the plot graph into a dynamic

probabilistic graph with skip-transitions, allowing the AI to jump to the most

appropriate event in the plot graph. Often in improvisational storytelling, one would

move seamlessly from one script to another or blend elements of several scripts. A

more complete system would require the ability to recognize if the user has changed

topics—a common yet not fully solved problem shared with other conversational AI

systems—or to merge plot graphs to better explain what the user is trying to do.

Additionally, the performance of the agent is heavily reliant on the performance of

the natural language understanding (NLU) techniques used. NLU, especially in the

areas of semantic reasoning and pragmatics are still open research problems. Further,

VerbNet may not be the best technique for tracking semantics, and ConceptNet is

known to be incomplete. These limitations are enumerated here to recommend

research areas likely necessary to move the state of the art in interactive narrative

systems toward those fully capable of open-world story improvisation with humans.

5 Neural Network Approach

We previously proposed the use of plot graphs to model expectation in a story and

explicitly build up state information using external ontologies and corpora. One

alternative way that this could be done is to model expectation using a recurrent

neural network (RNN) with long short-term memory (LSTM) nodes to preserve story

context. These types of networks can take in a sequence of past events and generate a

possibly infinite sequence of new events. During training, RNNs learn a

representation of state that is embedded in the network’s hidden LSTM layers. As a

result, this technique is not as reliant on external ontologies to learn state information.

In addition, expectation is innate in an RNN. Each time a new event is presented to

the RNN, it will calculate a probability distribution over the expected next events.

Thus, script information can be extracted by choosing the most expected event to

occur at a given time step [20].

In terms of our initial proposed architecture, this means that an RNN is well suited

to handle constituent actions that the user may take, where constituent would mean

the user performed an event that the RNN was expecting to see with high probability.

However, consistent and exceptional events—events performed by the user that are

not high-probability transitions and may also create logical inconsistencies later—

may present challenges to RNNs. As with the prior approach, consistent and

exceptional events can be handled by turning improvisation into a planning problem.

There has been promising work done using deep reinforcement learning (Deep-RL)

to dynamically generate dialogues [28]. Reinforcement learning is a technique for

solving planning problems in stochastic and uncertain domains. A reward function

provides a measure for how much value the algorithm receives for performing certain

actions in certain states; reinforcement learning attempts to maximize expected

reward over time. Deep-RL involves the use of a deep neural net to estimate the

probability of transitioning from one state to another or the value that will be received

in states it has not previously seen. Here, the RNN learns an internal representation of

state and uses that in conjunction with an author-supplied reward function to

determine the value of generating an event at the current time. Using this framework,

these deep neural approaches can handle consistent and exceptional actions. If the

user takes off-script actions, then the system will still generate events that will

maximize its long-term reward. Thus, the system’s behavior is largely dependent on

how this reward function is defined. For example, if the reward function prioritized

staying on-script then it would strive to return to a state where future events are

predicted with high probability.

There are many advantages to this type of approach. First, it does not rely on

external ontologies to build up a representation of state. These neural models can be

trained on corpora of natural language, such as stories or news articles, including non-

English corpora. In addition, this allows the system to easily learn different types of

behavior based on the corpus used for training. The previously proposed architecture

uses plot graphs to encode commonsense procedures and then provides strategies for

handling unexpected user behavior. What a neural net expects would depend on the

data it is trained upon; for example, training it on plot synopses of movies would

naturally lead to expectations of dramatic behavior from the user and more

commonsense behavior would be considered exceptional. One disadvantage of a

neural network approach is that the state representation used by the RNN is

obfuscated in the hidden LSTM layers. Thus, it is not clear as to why the system will

make certain choices (beyond the goal of maximizing future reward). This loss in

system transparency can make it difficult to evaluate the effectiveness of such a

system. Since state cannot be directly observed, this leads to a greater likelihood of

non-sequiturs due to mistaken beliefs about the state of the fictional improv world.

6 Conclusions

In this paper, we introduce improvisational storytelling, one or more people

constructing a story in real time without advanced notice of topic or theme. We

discuss some of the challenges that need to be addressed in order to create a

computational, improvisational storytelling system and propose two architectures that

address some of these challenges as a starting point.

As human-AI interaction becomes more common, it becomes more important for

AIs to be able to engage in open-world improvisational storytelling. This is because it

enables AIs to communicate with humans in a natural way without sacrificing the

human’s perception of agency. We hope that formalizing the problem and examining

the challenges associated with improvisational storytelling will encourage researchers

to explore this important area of work to help enable a future where AI systems and

humans can seamlessly communicate with one another.

Acknowledgements. This work was supported by the Defense Advanced Research

Projects Agency (DARPA) under Contract No. W911NF-15-C-0246. The authors

would also like to thank Will Hancock for his work on our initial plot graph system.

References

1. Riedl MO, Bulitko V (2013) Interactive Narrative: An Intelligent Systems

Approach. AI Mag 34:67–77. doi: 10.1609/aimag.v34i1.2449

2. Bates J (1992) Virtual Reality, Art, and Entertainment. Presence

Teleoperators Virtual Environ 1:133–138. doi: 10.1162/pres.1992.1.1.133

3. Riedl MO, Stern A, Dini DM, Alderman JM (2008) Dynamic Experience

Management in Virtual Worlds for Entertainment, Education, and Training.

Int Trans Syst Sci Appl Spec Issue Agent Based Syst Hum Learn 4:23–42.

4. Riedl M, Saretto CJ, Young RM (2003) Managing Interaction Between Users

and Agents in a Multi-agent Storytelling Environment. In: Proc. Second Int.

Jt. Conf. Auton. Agents Multiagent Syst. ACM, pp 741–748

5. Porteous J, Cavazza M (2009) Controlling narrative generation with planning

trajectories: The role of constraints. In: Jt. Int. Conf. Interact. Digit. Storytell.

Springer, pp 234–245

6. Nelson MJ, Mateas M (2005) Search-Based Drama Management in the

Interactive Fiction Anchorhead. In: Proc. First Annu. Conf. Artif. Intell.

Interact. Digit. Entertain. pp 99–104

7. Weyhrauch PW (1997) Guiding Interactive Drama. Carnegie Mellon

University, Pittsburgh, PA

8. Nelson MJ, Roberts DL, Isbell CL, Mateas M (2006) Reinforcement learning

for declarative optimization-based drama management. In: Proc. Fifth Int. Jt.

Conf. Auton. Agents Multiagent Syst. ACM, pp 775–782

9. Diaz-Agudo B, Gervas P, Peinado F (2004) A case based reasoning approach

to story plot generation. In: Adv. Case-Based Reason. Proc. Springer, pp 142–

156

10. Zhu J, Ontañón S (2014) Shall I compare thee to another story?—An

empirical study of analogy-based story generation. IEEE Trans Comput Intell

AI Games 6:216–227. doi: 10.1109/TCIAIG.2013.2275165

11. Ware SG, Young RM (2010) Rethinking Traditional Planning Assumptions to

Facilitate Narrative Generation. Proc 2nd Work Comput Model Narrat (CMN

2010) 71–72.

12. Mateas M, Stern A (2003) Integrating Plot, Character and Natural Language

Processing in the Interactive Drama Façade. In: Proc. Technol. Interact. Digit.

Storytell. Entertain. Conf. pp 139–151

13. Guzdial M, Harrison B, Li B, Riedl MO (2015) Crowdsourcing Open

Interactive Narrative. Proc. 10th Int. Conf. Found. Digit. Games

14. Swanson R, Gordon AS (2008) Say Anything: A Massively Collaborative

Open Domain Story Writing Companion. In: Jt. Int. Conf. Interact. Digit.

Storytell. Springer, pp 32–40

15. Magerko B, Manzoul W, Riedl M, et al (2009) An Empirical Study of

Cognition and Theatrical Improvisation. In: Proc. Seventh ACM Conf. Creat.

Cogn. ACM, pp 117–126

16. Magerko B, O’Neill B (2012) Formal Models of Western Films for

Interactive Narrative Technologies. In: Proc. 2nd Work. Comput. Model.

Narrat. Istanbul, Turkey, pp 83–90

17. Brisson A, Magerko B, Paiva A (2011) Tilt riders: Improvisational agents

who know what the scene is about. In: Int. Work. Intell. Virtual Agents.

Springer, pp 35–41

18. Li B, Lee-Urban S, Johnston G, Riedl MO (2013) Story Generation with

Crowdsourced Plot Graphs. In: Proc. Twenty-Seventh AAAI Conf. Artif.

Intell. pp 598–604

19. Chambers N, Jurafsky D (2008) Unsupervised Learning of Narrative Event

Chains. In: Proc. Assoc. Comput. Linguist. Citeseer, pp 789–797

20. Pichotta K, Mooney RJ (2016) Learning Statistical Scripts With LSTM

Recurrent Neural Networks. Proc. 30th AAAI Conf. Artif. Intell. (AAAI-16),

Phoenix, Arizona

21. Kipper-Schuler K (2005) VerbNet: A broad-coverage, comprehensive verb

lexicon. University of Pennsylvania

22. Zwaan RA, Langston MC, Graesser AC (1995) The Construction of Situation

Models in Narrative Comprehension: An Event-Indexing Model. Psychol Sci

6:292–297. doi: 10.1111/j.1467-9280.1995.tb00513.x

23. Niehaus J, Michael Young R (2014) Cognitive models of discourse

comprehension for narrative generation. Lit Linguist Comput 29:561–582.

24. O’Neill B, Riedl M (2014) Dramatis: A Computational Model of Suspense.

AAAI 2:944–950.

25. Riedl M, Li B, Ai H, Ram A (2011) Robust and Authorable Multiplayer

Storytelling Experiences. In: Proc. Seventh AAAI Conf. Artif. Intell. Interact.

Digit. Entertain. pp 189–194

26. Speer R, Havasi C (2012) Representing General Relational Knowledge in

ConceptNet 5. In: LREC. pp 3679–3686

27. Branavan SRK, Kushman N, Lei T, Barzilay R (2012) Learning High-Level

Planning from Text. In: Proc. 50th Annu. Meet. Assoc. Comput. Linguist. pp

126–135

28. Li J, Monroe W, Ritter A, Jurafsky D (2016) Deep Reinforcement Learning

for Dialogue Generation. arXiv Prepr. arXiv1606.01541

